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Abstract—Outdated channel state information (CSI) severely
degrades the performance of adaptive transmission systems that
adapt their transmissions to channel fading. In contrast with
mitigation methods that sacrifice scarce wireless resources to
compensate for such a performance loss, channel prediction
provides an efficient solution. A few predictors for frequency-flat
channels were by far proposed, whereas those suited to frequency-
selective channels are seldom explored. In this paper, therefore, we
propose to apply a recurrent neural network to build a frequency-
domain channel predictor for wideband communications. As an
application example, integrating a predictor into a multi-input
multi-output orthogonal frequency-division multiplexing system
to improve the correctness of antenna selection is provided. Per-
formance assessment is carried out in multi-path fading channels
defined by 3GPP Extended Vehicular A and Extended Typical
Urban models. Results reveals that this predictor is effective to
combat the outdated CSI with reasonable computational complex-
ity. It outperforms the Kalman filter-based predictor notably and
has an intrinsic flexibility to enable multi-step prediction.

I. INTRODUCTION

Outdated channel state information (CSI) due to the feedback
delay between a receiver and a transmitter severely deteriorates
the performance of a wide variety of wireless systems, e.g.,
multiple-input multiple-output (MIMO) [1], massive MIMO
[2], cooperative relaying [3], interference alignment [4], orthog-
onal frequency-division multiplexing (OFDM) [5], and physical
layer security [6], [7]. In the fifth generation (5G) system, on
the one hand, new applications such as Tactile Internet [8] and
autonomous driving impose a huge demand for ultra-reliable,
secure and high-available wireless links. On the other hand,
acquiring accurate CSI gets harder in some 5G deployment
scenarios, e.g., millimeter wave and high-speed trains.

To cope with the outdated CSI, a large number of mitigation
algorithms and protocols that compensate for the performance
loss passively with a cost of scarce wireless resources have been
proposed in the literature [9]. In contrast, channel prediction
provides an efficient approach by improving the quality of
CSI directly without spending extra wireless resources, and
therefore attracts much attention from researchers [10]. Besides
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the statistical methods [11]–[14] that model a fading channel
as an autoregressive (AR) process and apply a Kalman filter
(KF) to realize a linear predictor, Artificial Intelligence (AI)
technology is also being discussed recently. Making use of
its capability of time-series prediction [15], a recurrent neural
network (RNN) was firstly proposed in [16] to build a narrow-
band single-antenna predictor and was further extended to
MIMO channels by [17], [18]. The feasibility of applying a
deep neural network to predict fading channels was also studied
in [19]. In [20], the authors of this paper proposed to employ
a real-valued RNN to implement a multi-step predictor and
further verified its effectness in a MIMO system [21].

However, the aforementioned predictors focused mainly on
frequency-flat channels, whereas those suited to frequency-
selective channels are seldom explored. In this paper, therefore,
we propose to utilize a RNN to build a frequency-domain
channel predictor for wideband communications. As a concrete
application, integrating this predictor into a MIMO-OFDM
system so as to improve the correctness of selecting transmit
antennas is illustrated. Performance assessment is carried out
in multi-path fading environment specified by 3GPP Extended
Vehicular A (EVA) and Extended Typical Urban (ETU) channel
models [22]. A number of influential factors, namely, esti-
mation errors due to additive noise, inter-antenna correlation,
the Doppler shift, and signal interpolation errors, are taken
into account during the assessment. Moreover, a comparison
of performance and complexity between the RNN and KF
predictor is conducted.

The rest of this paper is organized as follows: Section II
gives the system model. Section III proposes the RNN-based
frequency-domain predictor. Section IV describes a prediction-
assisted MIMO-OFDM system. Section V evaluates its perfor-
mance and complexity. Finally, Section VI remarks this paper.

II. SYSTEM MODEL

To begin with, the discrete-time baseband model for a single-
antenna system in a frequency-selective channel is provided:

y[t] =

L−1∑
l=0

hl[t]x[t− l] + z[t], (1)



where hl[t] denotes the lth tap for a time-varying channel filter,
x[t] and y[t] represent the transmitted and received signals at
time t, respectively, and z[t] is additive noise. Dropped time
index for brevity, a frequency-selective channel is modeled as
a linear channel filter h= [h0, h1, . . . , hL−1]

T , where L is the
filter length. This channel can be converted into N independent
frequency-flat sub-carriers by means of the OFDM modulation
[23]. The signal transmission over the nth sub-carrier at time
t can be modeled as

ỹn[t] = h̃n[t]x̃n[t] + z̃n[t], n = 0, 1, . . . , N−1, (2)

where x̃n[t], ỹn[t], and z̃n[t] stand for the transmitted signal,
received signal, and noise, respectively, in the frequency do-
main. According to the picket fence effect in discrete Fourier
transform (DFT) [24], the frequency response of the chan-
nel filter denoted by h̃=[h̃0, h̃1, . . . , h̃N−1]T is the DFT of
h′= [h0, h1, . . . , hL−1, 0, . . . , 0]

T that is the filter h padding
with N−L zeros at the tail.

The extension of (2) to a multi-antenna system with Nt

transmit and Nr receive antennas is straightforward by applying
the same OFDM modulation into MIMO channels. Thus, on the
nth sub-carrier, the signal transmission is represented by

ỹn[t] = H̃n[t]x̃n[t] + z̃n[t], n = 0, 1, . . . , N−1, (3)

where ỹn[t] represents Nr received symbols for sub-carrier n
at time t, x̃n[t] corresponds to Nt transmit symbols, z̃[t] is a
vector of additive noise. H̃n[t]=[h̃nrnt

n [t]]Nr×Nt
denotes the

frequency-domain channel matrix at time t, where 16nr6Nr,
16nt6Nt, and h̃nrnt

n ∈C1×1 stands for the channel frequency
response on sub-carrier n between transmit antenna nt and
receive antenna nr, which can be derived by the DFT of its
channel filter denoted by hnrnt=[hnrnt

0 , hnrnt
1 , . . . , hnrnt

L−1 ]T .
Owing to the feedback delay τ , the available CSI at the

transmitter is in some extent outdated, which may substantially
differ from the actual CSI at the instant of signal transmission,
i.e., H̃n[t] 6=H̃n[t+τ ]. It was widely recognized that the outdat-
ed CSI severely degrades the performance of wireless systems
adapting their transmissions to the channel fading [1]–[6]. The
task of channel prediction is to obtain a predicted channel
matrix Ĥn[t+τ ] that approximates its actual value H̃n[t+τ ]
as close as possible on the basis of the available CSI H̃n[t].

III. FREQUENCY-DOMAIN CHANNEL PREDICTION

According to [25], a fading channel can be modeled as
an autoregressive process of order p, and a Kalman filter is
employed to build a time-domain channel predictor [11]–[14].
In this paper, we further transform it into a frequency-domain
predictor that is capable of predicting channel’s frequency
response over each sub-carrier, as follows:

Ĥn[t+ 1] =

p∑
k=1

akH̃n[t− k + 1], (4)

where a1, a2, . . . , ap denote the AR coefficients that can
be figured out from its discrete-time autocorrelation func-
tion R[m]=J0(2πfdTsN |m|), where fd indicates the maximal
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Fig. 1. Schematics of the RNN-based frequency-domain multi-step predictor
for frequency-selective multi-antenna channels.

Doppler shift, the symbol period Ts equals the inverse of the
sampling rate Ts=1/fs, N represents the total number of sub-
carriers or the size of DFT, and J0(·) is the zeroth-order Bessel
function of the first kind. Despite it is simple to implement,
the KF predictor has two limitations: 1) only providing one-
step prediction Ĥ[t+1] rather than multi-step ones Ĥ[t+D];
2) relying on the knowledge of the Doppler shift fd that is
difficult to obtain in practice.

Recently, recurrent neural networks [15] are also being
considered to implement channel prediction thanks to its strong
capability exhibited in time-series prediction. However, the
focus of the RNN predictors is by far on frequency-flat fad-
ing channels, whereas those for frequency-selective channels
are still missing. To fill this gap, we propose in this pa-
per a RNN-based frequency-domain predictor for frequency-
selective multi-antenna channels. The main idea is to convert a
frequency-selective channel into a set of parallel frequency-flat
sub-carriers, and then utilize a RNN predictor to forecast the
frequency response of sub-carriers. Fig.1 illustrates the block
diagram of the proposed predictor. The applied network is
composed by three layers: an input layer having NI neurons
that include external input and feedback, a hidden layer with
NH neurons, and an output layer with NO neurons. Each
connection between the output of a neuron in the predecessor
layer and the input of a neuron in the successor layer is assigned
with a weight. As shown in Fig.1, w

li
denotes the weight

connecting the ith input and the lth hidden neuron, while v
ml

is
the weight for hidden neuron l and output m, where 16i6NI ,
16l6NH , and 16m6NO.

The operation of a RNN predictor is divided into two phases:
training and predicting. As long as a network’s parameters such
as the number of layers and neurons have been determined, a



training procedure starts from an initial state where all weights
are randomly selected. Providing a training data set, i.e., a
series of channel response samples, the RNN processes each
sample and compares its resulting prediction against the desired
value. The prediction error is propagated back through the
network in order to update the weights iteratively until a certain
convergence condition reaches. The details of RNN and its
training procedure can refer to the literature such as [16], [26].

If a RNN is trained by a series of channel frequency response
over a certain sub-carrier {H̃n[t] |t=1, 2, . . .}, it can be applied
to predict unknown frequency-domain CSI per sub-carrier. At
time t over sub-carrier n, as shown in Fig.1, the channel matrix
H̃n[t], as well as its d-step delays H̃n[t−1], ..., H̃n[t−d], are
fed into the RNN as the external input. To adapt the input
layer, channel matrices with the dimension of Nr×Nt need to
be vectorized as:

h̃n = vec
(
H̃n

)
= [h̃11n , h̃

12
n , ..., h̃

NrNt
n ]T , (5)

which is implemented through a Matrix-to-Vector (M2V) mod-
ule as shown in this figure. Meanwhile, feeding the D-step
delay of the output, namely ĥn[t]=[ĥ11n [t], ..., ĥNrNt

n [t]]T , back
to the input layer, together with the external input, the whole
input at time t is thus h̃n[t], h̃n[t−1], ..., h̃n[t−d], ĥn[t]. The
RNN output is then the prediction for D steps ahead, i.e.,
ĥn[t+D], which can be recovered to a predicted channel matrix
Ĥn[t+D] by a Vector-to-Matrix (V2M) module.

From the perspective of a pilot-assisted system, only a
subset of sub-carriers instead of all N sub-carriers needs to be
predicted if channel interpolation is utilized. Suppose one pilot
is inserted every NP sub-carriers, there are a total of P=

⌊
N
NP

⌋
pilot sub-carriers. Given their predicted CSI Ĥp[t+D], where
for example p=(i−1)NP and i=1, . . . , P , the prediction for
all sub-carriers Ĥn[t+D], n=0, . . . , N−1 can be obtained by
interpolating Ĥ0[t+D], ĤNP

[t+D], . . . , Ĥ(P−1)NP
[t+D].

IV. PREDICTION-ASSISTED TAS IN MIMO-OFDM

To further shed light on the frequency-domain channel pre-
diction, transmit antenna selection (TAS) in a MIMO system
with Nt transmit and Nr receive antennas in a frequency-
selective fading channel is depicted here as one of its ap-
plications. The frequency-selective channel is converted into
N parallel frequency-flat sub-carriers by means of the fast
Fourier transform (FFT) modulator and the inverse FFT (IFFT)
demodulator, together with the cyclic prefix (CP), as shown
in Fig.2. There exist two selection schemes: bulk or per-tone
selection, as mentioned in [27]. For a better observation on the
effect of channel prediction, we adopt the latter, i.e., each sub-
carrier decides its best antenna individually instead of the same
selection for all sub-carriers.

An OFDM symbol carries a payload of M data symbols de-
noted by d=[d1, d2, . . . , dM ]T , while the remaining P=N−M
sub-carriers are reserved for comb-type pilot symbols that
are uniformly inserted in sub-carriers p=(i−1)NP , where
i=1, . . . , P and NP is the interval of pilots. Thus, the frequency
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Fig. 2. Illustration of prediction-assisted TAS in a MIMO-OFDM system,
where the CSI on pilot sub-carriers H̃p[t] is fed into a channel predictor to get
their D-step-ahead prediction Ĥp[t+D]. Then, a channel interpolator recovers
the CSI on all sub-carriers Ĥn[t+D], which is used for antenna selection,
unlike the outdated CSI H̃n[t] in a traditional TAS system.

response of pilot sub-carrier p denoted by H̃p[t] can be esti-
mated at the receiver. Taking advantage of channel’s frequency
correlation, a frequency-domain interpolation is conducted to
recover the CSI on all sub-carriers including data and pilot
ones, i.e., H̃n[t], n=0, 1, . . . , N−1. Following the per-tone
selection scheme [27], each data sub-carrier chooses its own
transmit antenna that has the largest channel gain. The key
difference is that the traditional TAS system directly applies
the outdated CSI H̃n[t] to select in sub-carrier n, following

ηn[t] = arg max16nt6Nt

∥∥∥h̃nt
n [t]

∥∥∥ , (6)

where ηn[t] represents the index of the best antenna at time t
for sub-carrier n, h̃nt

n [t] is the ntht column vector of the channel
matrix H̃n[t], and ‖·‖ stands for the Euclidean norm of a vector.
The receiver feeds a set of selected antenna indices for all data
sub-carriers {ηn[t] | 06n6N−1, n6=p} back to the transmitter
through a feedback channel. In the nth sub-carrier of OFDM
symbol t+D, the TAS precoder allocates a data symbol to the
best antenna ηn[t], while other antennas are null by padding a
symbol of 0. Using a simplest system configuration with Nt=2,
N=8, NP =4, and M=6 as an example, the data vectors for
two transmit chains are probably

d1 = [0, d1, d2, 0, 0, 0, 0, d6]T

d2 = [0, 0, 0, d3, 0, d4, d5, 0]T , (7)

where sub-carriers n=0 and 4 are reserved for pilot symbols,
and n=1, 2, and 7 select the first antenna to carry data symbols
d1, d2, and d6, respectively.



Due to the channel fading, the outdated CSI H̃n[t] may
differ substantially from the actual CSI H̃n[t+D], leading to
a remarkable performance degradation [28]. With the aid of
channel prediction, a selection decision can be made in terms
of the predicted CSI that is possible to closely approximate
the actual CSI. At time t, as depicted in Fig.2, estimating
the pilots at the tth OFDM symbol can get the CSI of pilot
sub-carriers H̃p[t], which is fed into the channel predictor to
get the predicted CSI Ĥp[t+D]. A frequency-domain channel
interpolator is applied to obtain the CSI on all sub-carriers
denoted by Ĥn[t+D], n=0, 1, . . . , N−1 so as to replace the
outdated CSI H̃n[t], n=0, 1, . . . , N−1 in a traditional TAS
system. Thus, the best transmit antenna over sub-carrier n can
be selected as

η̂n[t] = arg max16nt6Nt

∥∥∥ĥnt
n [t+D]

∥∥∥ . (8)

V. PERFORMANCE AND COMPLEXITY ASSESSMENTS

In this section, the performance and complexity of the
proposed predictor are assessed and compared with the KF pre-
dictor. Outage probability achieved by the prediction-assisted
TAS in a MIMO-OFDM system is evaluated by Monte-Carlo
simulations. The applied frequency-selective channels follow
the 3GPP EVA and ETU models with a maximal Doppler
shift of fd=70Hz and 300Hz, respectively. The effects of
additive noise, given signal-to-noise ratios (SNRs) equaling to
20dB and 30dB, and inter-antenna correlation with coefficients
of α=0.3 and 0.9, are also taken into account. The signal
bandwidth (or the sampling rate) is 1MHz, which is converted
into N=64 parallel sub-carriers by the OFDM modulation,
resulting in a sub-carrier spacing around4f=15KHz. Through
the observation in the simulation, the optimal number of hidden
neurons is set to NH=10 and the length of tapped delay line
is d=3. The simulation parameters are summarized in Table I.

A. Computational Complexity

In general, the number of complex multiplications is used as
a measure for the computational complexity. As can be derived
from Fig.1, the hidden and output layer need to conduct NINH

and NONH times multiplication per prediction, respectively,
amounting to a total number of Ωrnn=NH(NI+NO). The

TABLE I
SIMULATION PARAMETERS

Parameters Values

Sampling rate fs = 1MHz

Maximum Doppler shifts fd = 70 or 300Hz

MIMO 4× 1

OFDM DFT size N = 64

Channel models 3GPP ETU and EVA [22]

Neural Network 3-layer RNN

Training algorithm Levenberg-Marquardt [26]

Length of tapped delay d = 3

Number of hidden neuron NH = 10

number of required input neurons is proportional to the num-
ber of MIMO subchannels NrNt, we have NI=(d+2)NrNt,
and similarly the number of output neurons is NO=NrNt.
Then, the complexity of the RNN predictor can be indicated
by Ωrnn=(d+3)NHNrNt. In contrast, derived from (4), the
KF predictor requires Ωkf=pNrNt times multiplication per
prediction. Since a small filter order such as p=4 is generally
optimal and thus (d+3)NH>p, it is concluded that the KF
predictor is computationally simpler than the RNN predictor.

Further, it is meaningful to make clear how many computing
resources are required. The number of pilot sub-carriers per
OFDM symbol is N/NP , and there are fs/N OFDM symbols
per second, from which the number of predictions per second
can be figured out, i.e., ψ=fs/NP . The required multiplications
per second by the KF predictor is exactly the product of ψ
and Ωkf , i.e., Ω

(s)
kf =fsΩkf/NP , and Ω

(s)
rnn=fsΩrnn/NP in

the case of the RNN predictor. In terms of the parameters
given in Table I and assume NP =4, we have Ω

(s)
kf =4×106

and Ω
(s)
rnn=60×106. Compared with off-the-shelf digital signal

processors (DSPs), e.g., TI 66AK2x that provides a capability
of nearly 2×104 Million Instructions executed Per Second
(MIPS), the required resource of the RNN predictor is 0.3%.
Even if in a massive MIMO system with a dimension of 32×4,
it consumes 10% of the resource of a single DSP. In summa-
ry, the required computing resource of channel prediction is
affordable, which is promising from the practical perspective.

B. Performance

To train the RNN, we build a training data set that contains
a series of consecutive CSI {H̃tr[t] |t=1, 2, . . .} extracted from
an arbitrary sub-carrier during 10 periods of fluctuation (i.e.,
channel’s coherence time). A training process starts from
an initial state where all weights are randomly selected. At
iteration t, feeding the channel matrix H̃tr[t] into the RNN,
the resultant output is compared with the desired value and
the prediction error Ĥtr[t+D]−H̃tr[t+D] is propagated back
through the network so as to update the weights by means
of training algorithms such as Levenberg-Marquardt [26]. This
process is iteratively carried out until the RNN reaches a certain
convergence condition. In contrast, the KF predictor does not
need a training process. Its filter coefficients required in (4) can
be figured out if fd and fs are known.

Suppose the applied multi-antenna system is a uniform
linear array having Nr=1 receive and Nt=4 transmit anten-
nas, a single transmit antenna with the largest instantaneous
channel gain is selected. The outage probability, an impor-
tant performance metric over fading channels, is defined as
P(R)=Pr{log2(1+SNR)<R}, where Pr is the notation of
mathematical probability and R means a target end-to-end data
rate that is set to 1bps/Hz in our simulation. Three different
CSI modes are compared:
• The perfect mode where the transmit antenna in subcarrier
n at OFDM symbol t+D is chosen in terms of the actual
CSI H̃n[t+D], despite it never exists in practice owing to
delay and noise.
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CSI to select antennas in a MIMO-OFDM system over the EVA channel.

• As in a traditional TAS system, only the outdated CSI
H̃n[t] is available.

• With the aid of channel prediction, the predicted CSI
Ĥn[t+D] that is possible to closely approximates the
actual CSI is used.

Fig.3 illustrates the performance achieved by the MIMO-
OFDM system in the EVA channel with a maximal Doppler
frequency of fd=70Hz. First, the RNN predictor is tuned to
one-step prediction mode (D=1) in order to compare with the
KF predictor directly. The multi-antenna channels are indepen-
dent and identically distributed (i.i.d.) as marked in the figure
by the correlation coefficient of α=0. There is no performance
loss due to the outdated CSI and the curves of the perfect,
predicted, and outdated modes are identical. That is because the
prediction step D=1 is equivalent to a time length of 64us that
is negligible relative to the coherence time Tc≈1/fd=14.28ms.
In order to make the CSI really outdated, the RNN predictor
is then reset to multi-step mode and the prediction step is in-
creased to D=20, corresponding to 1.28ms. To check whether
the predictor is effective in correlated channels, we impose
the correlation matrix recommended in 3GPP LTE standards
[22] on the EVA channels. Under the medium correlation
indicated by α=0.3, the outdated CSI has a performance loss of
4.5dB given P(R)=10−2 in comparison with the perfect mode,
while the channel prediction can take nearly 4dB back. As
mentioned previously, the KF predictor can merely predict one
step ahead and therefore is not applicable to this case. Further
increased the channel correlation to α=0.9, as shown in Fig.3,
the performance of multi-step prediction is also clearly better
than that of the outdated CSI. With the increase of channel cor-
relation, the system performance degrades because the available
spatial diversity gain vanishes gradually, independently of the
application of channel prediction.

The performance evaluation is conducted also in i.i.d. ETU
channels with a maximal Doppler frequency of fd=300Hz.
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Fig. 4. Performance comparison of using the outdated, predicted, and perfect
CSI to select antennas in a MIMO-OFDM system over the ETU channel.

First, the RNN predictor is set to one-step mode corresponding
to the same time length of 64us, whereas the coherence time
drops to Tc≈1/fd=3.3ms. The effect of the outdated CSI is not
negligible this time, as shown in Fig.4, where a performance
loss of about 0.7dB is observed at P(R)=10−4. Using the
curve of the perfect mode as a benchmark, the KF predictor
achieves the optimal performance. Although the RNN predictor
is slightly inferior to the KF predictor, it is still quite close to
the optimal performance and outperforms the outdated mode
clearly. As mentioned in Section III, channel interpolation is
involved in the process of channel estimation, so the effect of
interpolation errors that is defined as the difference between
the perfect CSI and the interpolated CSI is taken into account.
For the purpose of a better illustration, the results for pilot’s
insertion interval NP =3 are selected to show in the figure. Even
in the mode of one-step prediction D=1, the outdated CSI has
a remarkable loss of 3.6dB in comparison with the perfect
mode at the outage probability of 10−3. The KF predictor
is vulnerable to interpolation errors, as shown in the figure,
which achieves a worse result that is very comparable to the
outdated mode. In contrast, the RNN predictor outperforms
the KF predictor with an SNR gain of 3.1dB. In addition
to interpolation errors, the available CSI is also impaired by
estimation errors since additive noise cannot be avoided in
the process of channel estimation. Under the assumption that
the SNR of pilots is SNRp=20dB, a performance evaluation
with a prediction step of D=5 is conducted. The results reveal
that additive noise has a notable impact on the performance,
but the RNN predictor still receives an SNR gain of around
2dB at P (R)=10−2 compared with that of the outdated CSI.
If the SNR of pilots is further increased to SNRp=30dB, a
performance gain of nearly 3dB can be expected. In conclusion,
the RNN predictor is effective to against the outdated CSI no
matter whether the frequency-selective channels are noiseless
or noisy, independent or correlatted.



VI. CONCLUSIONS

This paper proposed a recurrent neural network-based
frequency-domain predictor for frequency-selective multi-
antenna channels. The application of this channel predictor into
a MIMO-OFDM system so as to improve the correctness of
selecting transmit antennas at the transmitter was illustrated.
Performance assessment was carried out in multi-path fading
environment specified by 3GPP EVA and ETU channel models
taking into account the influential factors including spatial
correlation, the Doppler shift, as well as interpolation and
estimation errors. Numerical results verified the effectiveness
of the RNN predictor to combat the outdated CSI no matter
whether channels are noiseless or noisy, correlated or inde-
pendent. Although its computational complexity is higher than
the Kalman filter, the required computing resource is still
affordable relative to off-the-shelf hardware. More importantly,
the proposed predictor has a flexibility of conducting multi-step
prediction and is more robust against interpolation errors.
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