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Abstract—Accurate channel state information (CSI) is a pre-
requisite to reap the benefits of fading-adaptive wireless com-
munications. In practice, however, the available CSI is generally
outdated due to processing and feedback delays, which deteriorate
system’s performance severely. Channel prediction that is able to
forecast future CSI provides a promising solution. In addition to
statistical methods, namely modelling a time-varying channel as
an autoregressive process and using a Kalman filter to predict,
artificial intelligence techniques with the capability of time-series
prediction are also being discussed recently. This paper compares
performance and complexity of these two kinds of predictors.
The numerical results on prediction accuracy measured by mean
squared error in both noiseless and noisy Rayleigh fading channel-
s, together with their achieved performance in a transmit antenna
selection system, are comparatively illustrated.

I. INTRODUCTION

Providing accurate channel state information (CSI) at the
transmitter can remarkably improve the performance of wire-
less techniques, e.g., antenna selection [1], multiple-input
multiple-output (MIMO) [2], massive MIMO [3], relaying [4],
physical layer security [5] and ultra-reliable transmissions [6].
However, these techniques suffer from severe performance
degradations if the available CSI is inaccurate, which generally
happens due to feedback and processing delays. In the era of
fifth generation (5G) mobile systems, such a dilemma becomes
more challenging. On the one hand, the revolutionary 5G
applications, such as Tactile Internet [7] and automated driving,
impose a demand on more reliable, secure and higher available
wireless connectivity. On the other hand, getting accurate
CSI becomes harder in some 5G deployment scenarios, e.g.,
millimeter wave and high-speed trains.

To combat with CSI inaccuracy, a large number of miti-
gation algorithms and protocols have been proposed in the
literature. These methods sacrifice scarce wireless resources
(power, time, frequency, etc.) to passively compensate for
the performance loss [4]. In contrast, as an active approach
that improves the quality of CSI directly without the cost
of wireless resource, channel prediction has attracted interest
from researchers. In addition to statistical methods [8]–[10] that
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model a fading channel as an autoregressive (AR) process and
employ a Kalman filter (KF) to predict, Artificial Intelligence
(AI) techniques with the capability of time-series prediction is
also being discussed recently. In [11], the authors proposed to
use a recurrent neural network (RNN) to build a predictor for
narrow-band channels. This predictor was further extended to
MIMO channels by [12] and [13]. In [14], the authors of this
paper proposed to apply a real-valued RNN to implement a
multi-step MIMO channel predictor and further illustrated its
achievable performance in a multi-antenna system in [15].

Although the feasibility of AI-based channel prediction has
been justified in [11]–[15], to the best of our knowledge, a
comparison on performance and complexity between AI- and
KF-based predictors is still missing. Also, their achievable
performance in wireless systems, especially in noisy channels,
were not reported in the literature. To fill this gap, this pa-
per compares prediction accuracy measured by mean squared
error (MSE) between KF- and RNN-based predictors in both
noiseless and noisy Rayleigh channels. The performance in
terms of outage probability achieved by a transmit antenna
selection (TAS) system with the aid of channel prediction
is also provided. Besides, the computational complexity of
these two predictors in terms of the amount of complex-valued
multiplication is compared.

The rest of this paper is organized as follows: Section II
discusses the principles of these two predictors. Section III
provides an example of applying a predictor in a TAS system.
Section IV compares their performance and complexity via
numerical results. Finally, Section V remarks this paper.

II. MIMO CHANNEL PREDICTORS

Without loss of generality, a frequency-flat fading MIMO
system with Nr receive and Nt transmit antennas is given by

y(t) = H(t)x(t) + z(t), (1)

where y(t) represents Nr received symbols at time t, x(t) cor-
responds to Nt transmit symbols, z is additive white Gaussian
noise, H(t)=[hnrnt

(t)]Nr×Nt
stands for the channel matrix at

time t, and hnrnt
∈C1×1 denotes the complex-valued channel

coefficient between transmit antenna nt and receive antenna



nr, where 16nr6Nr and 16nt6Nt. Owing to feedback and
processing delays, the CSI used to select adaptive parameters
at the transmitter may substantially differs from the CSI at the
instant of using these selected parameters to transmit signals,
namely H(t) 6=H(t+τ), where τ denotes the delay. It was wide-
ly recognized [1]–[4] that the outdated CSI severely deteriorates
systems’ performance. The aim of channel prediction is to
forecast a channel matrix Ĥ(t+τ) that is as close as possible to
its actual value H(t+τ) for the upcoming instant t+τ . Relying
on traditional statistical methods [8]–[10], a fading channel is
modelled as an autoregressive process and a Kalman filter is
employed to build a linear predictor. Recently, recurrent neural
network [16], an AI technique has a strong capability on time-
series prediction, is also being discussed. The mechanisms of
these two kinds of predictors are detailed as follows:

A. KF-based Predictor

According to [17], a complex autoregressive process of order
p denoted by AR(p) can be generated by

x[n] =

p∑
k=1

akx[n− k] + w[n], (2)

where w[n] is zero mean complex Gaussian noise with the
variance of σ2

p, and {a1, a2, . . . , ap} denote the AR model
coefficients. The corresponding power spectral density (PSD)
of the AR(p) process is written as

Pa(f) =
σ2
p

|1 +
∑p
k=1 ake

−2πjfk|2
. (3)

For the Rayleigh channel, the theoretical PSD of a fading signal
has the following form:

Pr(f) =


1

πfd

√
1−

(
f
fd

)2 , |f | 6 fd

0, f > fd

, (4)

where fd is the maximum Doppler shift. The corresponding
discrete-time autocorrelation function is

R[n] = J0(2πfm|n|), (5)

where fm=fdTs indicates the maximal Doppler shift normal-
ized by the sampling rate fs=1/Ts, and J0(·) is the zeroth-
order Bessel function of the first kind. According to [17],
an arbitrary spectrum can be closely approximated by an AR
model with sufficiently large order. The basic relationship
between a desired autocorrelation function R[n] and an AR(p)
model parameters can be given in matrix form by

v = Ra, (6)

where

R =


R[0] R[−1] · · · R[−p+ 1]

R[1] R[0] · · · R[−p+ 2]

...
...

. . .
...

R[p− 1] R[p− 2] · · · R[0]

 , (7)

a =
[
a1 a2 · · · ap

]T
, (8)

v =
[
R[1] R[2] · · · R[p]

]T
. (9)

Substituting (7)-(9) into (6), the coefficients {a1, a2, . . . , ap} is
determined. Thus, the KF-based predictor is depicted as

Ĥ[t+ 1] =

p∑
k=1

akH[t− k + 1] (10)

Note that (10) can only provide a one-step-ahead prediction, in
comparison with a multi-step-ahead prediction enabled by the
RNN-based predictor.

B. RNN-based Predictor

The RNN is an AI technique that has shown a strong
capability in time-series prediction [16]. Fig.1 illustrates the
internal structure of an RNN-based multi-step multi-antenna
channel predictor. It is composed by three layers: an output
layer with No neurons, a hidden layer with NH neurons and
an N -dimensional input layer that consists of external input and
feedback from the output. At time t, the corresponding channel
matrix H(t), as well as its d-step delays H(t−1), ...,H(t−d),
are fed into the RNN as the external input. In order to adapt
to the input layer, channel matrices need to be vectorized as:

hv = ~H = [h11, h12, ..., hNrNt ]. (11)

Such an input structure can be implemented through a tapped
delay line with d taps and a Matrix-to-Vector (M2V) module
as shown in the figure. Feeding a recurrent component de-
noted by ĥv(t)=[ĥ11(t), ..., ĥNrNt(t)] back to the input layer,
together with the external input, the input vector at time t can
be expressed by i(t)=[hv(t),hv(t−1), ...,hv(t−d), ĥv(t)]. The
output of the RNN is thus a prediction for D steps ahead, i.e.,
ĥv(t+D), which can be transformed into a predicted channel
matrix Ĥ(t+D) by a Vector-to-Matrix (V2M) module.

The behaviour of an RNN is decided by its weights and
transfer functions. Each connection between the output of a
neuron in the predecessor layer and the input of a neuron in the
successor layer is assigned with a weight. As shown in Fig.1,
w

ln
denotes the weight connecting the nth input and the lth

hidden neuron, while c
ml

is the weight for hidden neuron l and
output neuron m, where 16n6N , 16l6NH and 16m6No.
The transfer function typically falls into one of three models:
linear, threshold and Sigmoid. In general, the Sigmoid function
is chosen in each hidden neuron, which is defined as

S(x) =
1

1 + e−x
. (12)

Then, the output of the lth hidden neuron at time t is

Ωl(t)=S (wl · i(t)) (13)

where wl · i(t) is the dot product of the input vector i(t) and
the weight vector wl=[w

l1
, ..., w

lN
] related to the lth hidden
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Fig. 1. Schematics of an RNN-based multi-step multi-antenna channel predictor.

neuron. Given the output neuron with a linear transfer function,
the mth output denoting a prediction value for time t+D is

ym(t+D) =

NH∑
l=1

c
ml

Ωl(t), (14)

where the index m stands for m=(nr−1)NT+nt. Substituting
(13) into (14), the prediction value at the mth output neuron is

ĥnrnt
(t+D) =

NH∑
l=1

c
((nr−1)NT +nt)l

S (wl · i(t)) . (15)

The operation of the RNN-based predictor is divided into two
phases: training and prediction. Once a network’s parameters,
such as the number of layers and neurons, have been deter-
mined, it is ready to be trained. Providing a training dataset, i.e.,
a series of channel samples, the RNN processes each sample
and compares its resulting prediction against the desired value.
The prediction error is propagated back through the network
so as to update the weights iteratively until a convergence
condition reaches. Afterwards, the trained RNN can be applied
to predict unknown channels. The details of training methods
for an RNN can refer to the literature such as [18].

III. PREDICTION-ASSISTED TAS SYSTEM

To further shed light on channel prediction, a multi-antenna
system with transmit antenna selection is utilized as an ex-
emplary application. As illustrated in Fig.2, a frequency-flat
fading MIMO system with Nt transmit antenna candidates and
Nr receive antennas is considered. The signal transmission is
organized as blocks with a length of S symbols per block.
The antenna-specific pilot symbols are inserted at the header
of every block in a time-division multiplexing manner so as
to independently estimate the experienced fading. The pilot
symbols constitute the first Nt entries, while the remainder
is data symbols. Relying on these pilots, a channel matrix of
size Nr×Nt for the tth block, i.e., H(t)=[hnt

(t)]Nr×Nt
, can

be estimated at the receiver.
Assuming L out of NT transmit antennas are selected,

corresponding to a total of
(
Nt

L

)
possible choices. Denoting the

channel matrix with the dimension of Nr×L for the jth choice
as Hj(t), where 16j6

(
Nt

L

)
, which is a subset of H(t). The

traditional TAS system directly applies H(t) to select antennas
with the largest channel gain:

J = arg max16j6(Nt
L )‖Hj(t)‖2, (16)

where ‖·‖ denotes the Frobenius norm of a matrix. The receiver
feeds the selected index J back to the transmitter through a
feedback channel. The transmitter activates antennas belonging
to choice J to transmit the data symbols at block t+D, where
D corresponds to the minimal number of blocks needed to
absorb the feedback delay. Due to the channel fading, the
channel matrix H(t) used to select antennas may substantially
differ from H(t+D) at the block of data transmission. In
other words, Hj(t) that has the largest channel gain at block
t may vary after D blocks later, even in a deep fade, leading
to a severe performance loss. With the assistance of channel
prediction, the best antenna choice can be selected in terms of
the predicted CSI rather than the outdated CSI. At time t, as
depicted in Fig.2, the channel matrix H(t) are fed into the RNN
to predict the upcoming CSI Ĥ(t+D), which is employed to
select transmit antennas following

Ĵ = arg max16j6(Nt
L )‖Ĥj(t+D)‖2 (17)

IV. PERFORMANCE AND COMPLEXITY COMPARISONS

In this section, the performance and complexity of the
KF- and RNN-based predictors are compared by Monte-Carlo
simulation. The numerical results on prediction accuracy mea-
sured by MSE, as well as outage probability achieved by a
prediction-assisted TAS system, over independent and identi-
cally distributed (i.i.d) multi-antenna channels are illustrated.
Each subchannel is assumed to follow Rayleigh frequency-flat
fading, where the channel coefficient h is zero-mean circularly-
symmetric complex Gaussian random variable with the variance
of 1, i.e., h∼CN (0, 1). The sampling rate is set to 100KHz that
generally satisfies a frequency-flat fading assumption and the
maximal Doppler shifts up to 300Hz are tested. The signal
transmission is organized in block-wise, with a block size
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Fig. 2. Illustration on a prediction-assisted TAS system, where the current CSI H(t) is input into a channel predictor to forecast the upcoming CSI Ĥ(t+D).
The antennas are selected according to Ĥ(t+D), rather than H(t) in a traditional TAS system.

TABLE I
SIMULATION PARAMETERS

Parameters Values

Sampling rate fs=100KHz

Maximum Doppler shifts fd < 300Hz

MIMO configuration 4×1
Block size S=50 symbols

Channels i.i.d. Rayleigh frequency-flat fading

Neural Network 3-layer RNN

Training algorithm Levenberg-Marquardt [18]

Size of training data 1000 samples per subchannel

Size of testing data 107 samples in total

Number of hidden neuron NH = 10

amounts to S=50 that includes Nt pilot symbols inserted at the
head of each block. Through the observation in the simulation,
the optimal number of hidden neurons is NL=10 and the length
of tapped delay line is d=3. The simulation parameters are
summarized in Table I.

A. Computational Complexity

Let us use the number of operations in complex multipli-
cation as the metric for computational complexity. To con-
duct one time prediction, as calculated from (13) and (14),
the hidden and output layers need to carry out NNH and
NoNH times multiplication operations, respectively, amounting
to a complexity of Ωr=NH(N+No). As shown in Fig.1,
the number of required input neurons is proportional to both
the number of subchannels and the delayed taps d, namely
N=(d+2)NrNt. The number of output neurons equals to
the number of subchannels No=NrNt. Then, the required
multiplication operations per prediction can be calculated by
Ωr=(d+3)NHNrNt. In contrast, the complexity of the KF-
based predictor is Ωk=pNrNt as derived from (10). It is
recommended by simulation results that p=4 is the optimal
filter order, analogous to d=3 and NH=10 for the RNN.
In a 4×1 MIMO system, for example, we have Ωk=16 and

Ωr=240. That is too say, the KF-based predictor is simpler
than the RNN-based predictor.

Further, it is meaningful to make clear how many computing
resources are required. The prediction rate, i.e., the number
of predictions conducted per second, can be calculated by
fp=fs/S with the assumption of one prediction per block,
resulting in fp=2000 in terms of Table I. Thus, the required
number of multiplication operations per second for the KF- and
RNN-based predictor are Ωkfp=3.2×104 and Ωrfp=4.8×105,
respectively. Compared with the capability of current digital
signal processor (DSP), e.g., TI 66AK2x that provides more
than 104 Million Instructions executed Per Second (MIPS),
their required computing resources are less than 0.01%. Even
if in a massive MIMO system with a dimension of 32×4,
their required computing resources occupy only about 0.1%.
Hence, the complexity of channel prediction is quite reasonable
in comparison with the hardware capability, which is very
promising from the practical perspective.

B. Performance

To train the neural network, we get a training dataset that
consists of a series of CSI extracted from consecutive 103 data
blocks, i.e., {H(t)|16t6103}. The training process starts from
an initial state where all weights are randomly set. At iteration
t, feeding the channel matrix H(t) into the RNN, the resultant
output is compared with the desired value and the predic-
tion error Ĥ(t+D)−H(t+D) is backpropagated to update the
weights by training algorithms such as Levenberg-Marquardt
[18]. This process is iteratively carried out until the RNN
reaches a certain convergence condition. For evaluating the
trained RNN, a testing dataset consisting of CSI extracted from
consecutive K=107 blocks, i.e., {H(k)|16k6K}, is built. At
the kth data block, the predictor generates a predicted channel
matrix Ĥ(k+D) to approximate its actual value H(k+D). To
measure the accuracy of prediction, mean squared error that is

defined as MSE= 1
K

∑K
k=1

∥∥∥Ĥ(k)−H(k)
∥∥∥2 is employed as a

performance metric. In contrast, the KF-based predictor does
not need a training process. Its filter coefficients can be figured
out according to (6) given fd and fs. Note that the filter is
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Fig. 3. Prediction accuracy of two predictors with different maximal Doppler shifts in (a) noiseless and (b) noisy Rayleigh channels.
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Fig. 4. Outage probabilities achieved by the prediction-assisted TAS system in (a) noiseless and (b) noisy i.i.d. multi-antenna Rayleigh channels.

applied to predict the CSI of pilots, rather than that of data
symbols. Hence, the sampling rate used in (5) should equal to
the rate of prediction fp. Once the coefficients are determined,
we can apply the KF-based predictor given in (10) on the testing
dataset to derive its MSE.

Fig.3 compares the prediction accuracy of two kinds of
predictors in both noiseless and noisy Rayleigh channels. For
simplicity, only the MSE results for the single-antenna case
Nt=Nr=1 are illustrated since those of the multi-antenna case
are equivalent due to the assumption of i.i.d. channels. First,
we assume that the applied CSI is perfect without taking into
account estimation errors. As shown in Fig.3a, the channel
predictors have very high prediction accuracy in a noiseless
channel. Although the MSE results get worse with the growth
of fd, the RNN-based predictor still achieves a result of nearly
10−5 in a high Doppler shift of fd=300Hz. It is observed
that the performance of the KF-based predictor is affected
by the filter order p. Starting from p=1, which has a weak
capability with an MSE greater than 10−1 in fd=300Hz, the

prediction accuracy can be improved with the increase of
the filter order until p=4. As shown in the figure, AR(4) is
the optimal KF-based predictor in a noiseless channel. It has
comparable accuracy as the RNN-base predictor except in the
cases of fd=50 and 100Hz where AR(4) slightly outperforms.
The accuracy becomes worse after the filter order increases
to greater than p>4. That is to say, a larger order does not
necessarily correspond to a performance improvement.

In practice, the available CSI is imperfect because additive
noise cannot be avoided in the process of channel estimation.
Under the assumption that the signal-to-noise ratio (SNR) of
pilots is SNRp=20dB, a training and testing dataset contain
noisy CSI are built. Applying these datasets to retrain the RNN
and evaluate the predictors, the results reveal that noise has an
obvious impact on prediction accuracy. As shown in Fig.3b, the
MSE results achieved by the RNN-based predictor deteriorate
from better than 10−5 in the noiseless channel to larger than
10−2. The best accuracy of the KF-based predictor is this time
achieved by AR(1), which is still inferior to the RNN-based



predictor. As shown in the figure, the accuracy gets worse with
the increase of the filter order. That is because the problem
of error propagation becomes severe with a larger filter order
when the applied CSI contains estimation error.

In addition to prediction accuracy, evaluating the perfor-
mance of two predictors applied in wireless systems is more
practically meaningful. Hence, the numerical results on outage
probability achieved by a prediction-assisted TAS system hav-
ing Nt=4 transmit antennas and Nr=1 receive antenna in i.i.d.
MIMO channels with fd=100Hz are obtained. Three different
antenna selection modes are compared: i) The perfect mode
that chooses transmit antennas for block t+D according to the
perfect CSI at that block, i.e., H(t+D), although it is practically
unavailable. ii) The outdated mode in traditional TAS systems
where the outdated CSI H(t) is applied. iii) With the aid of
channel prediction, the prediction mode makes a decision based
on the predicted CSI Ĥ(t+D). The default prediction step is set
to D=1 since the KF-based predictor can only make one-step-
ahead prediction, while D=2 steps prediction for the RNN-
based predictor is also tested. In noiseless channels, as shown
in Fig.4a, applying channel prediction receives a remarkable
performance gain. Observing the level of outage probability at
10−4, the prediction mode has an SNR gain of nearly 9dB
over the outdated mode. Using the performance of the perfect
mode as a benchmark, the KF-based predictor with p= 4 can
achieve the optimal performance and the RNN-based predictor
has a suboptimal performance with a small SNR loss of around
1dB. When the predictor step is increased to D=2, the RNN-
based predictor gets a larger performance gain over the outdated
mode, amounting to an SNR gain of approximately 10dB at the
outage probability of 10−3.

Meanwhile, the results of outage probability in noisy chan-
nels are derived by means of reusing the datasets employed in
Fig.3b. This case, the optimal KF-based predictor is AR(2),
which receives almost the same performance as the RNN-
based predictor. Observing the outage probability of 10−3, the
prediction mode has a performance gap of around 2.5dB away
from the optimal result, whereas it outperforms the outdated
mode with an SNR gain of greater than 3dB. In the case of
D=2, the RNN-based predictor obtains a gain of around 4dB.
Although the noise has a strong negative effect on prediction
accuracy, its impact on the performance of the prediction-
assisted TAS system is mild. Compared Fig.4b with Fig.4a,
the outage probability of the RNN-based predictor degrades
from 7×10−6 to 4.5×10−5 at the SNR of 20dB. However, the
KF-based predictor performs unstably in noisy channels and,
as exemplified by the curve of AR(4) in Fig.4b, is sometimes
vulnerable to the noise. In a nutshell, the RNN-based predictor
not only reaps a comparable performance gain as the KF-
based predictor but also exhibits better flexibility (in multi-step
predictions) and robustness against additive noise.

V. CONCLUSIONS

This paper compared the complexity and performance of two
kinds of wireless channel predictors built from the Kalman

filter and artificial intelligence. The complexity of the RNN-
based predictor is higher than the KF-based predictor, but its
required computing resource is still marginal compared with
DSP’s capability. The numerical results on prediction accuracy
and outage probability achieved by a prediction-assisted TAS
system revealed that applying channel prediction has a remark-
able performance benefit. Although the KF-based predictor
is simpler and has a comparable prediction capability as the
RNN-based predictor, the latter exhibits better flexibility in
multi-step predictions and stronger robustness against additive
noise. Moreover, other advanced AI techniques such as long-
short term memory and deep learning, may provide a greater
potential in channel prediction, which are worth taking efforts
to explore in the next step.
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