
Correct Modi�cation of Complex Plans 1Jana Koehler2Abstract. We present a general approach to exible planmodi�cation based on a deductive framework that enables aplanner to correctly modify complex plans containing controlstructures like conditionals and iterations.1 IntroductionWork on plan reuse and modi�cation is motivated by expectedgains in exibility and e�ciency when planners are providedwith the ability to modify and reuse plans. The need to modifyexisting plans occurs when execution fails, where a plan hasto be revised in the light of new information, and when a planspeci�cation is changed, i.e., a plan has to be adapted to newrequirements.While there exist frameworks extending strips-based plan-ners, e.g., the priar system [10] and the spa system [7], thereare no approaches which study plan reuse and modi�cationin the context of deductive planning [6, 14, 2, 15].Following a logical approach, plan modi�cation leads tomodi�ed plans which are provably correct. Furthermore, sinceplan modi�cation is done deductively, a semantic comparisonof planning problems is possible instead of a syntactic match.A general formalism with clearly de�ned semantics is obtainedand the formal view facilitates the investigation of theoreti-cal properties [16, 17]. While current approaches are limitedto the modi�cation of sequential plans containing no controlstructures, this approach enables a system to automaticallymodify sequential, conditional, and iterative plans.2 Formalization of Plan Modi�cationIn deductive planning systems, planning problems are givenas formal plan speci�cations, i.e., formulae in the underlyinglogic. Plan generation is done by a constructive proof of aspeci�cation formula Specold leading to a plan Planold thatis su�cient for the speci�cation. A plan Planold is a solutionfor another speci�cation Specnew if Specold entails Specnew,i.e., each solution for Specold is a solution for Specnew:Specold j= SpecnewIf this relationship holds, then Specnew is a logical instanceof Specold and thus, solving Specold is su�cient for solvingSpecnew. An instance of the reused plan Planold will thereforealso solve the current planning problem.1 This paper has been awarded the Digital Equipment Prize 1994.2 German Research Center for Arti�cial Intelligence (DFKI),Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany, e-mail:koehler@dfki.uni-sb.de

A deductive proof attempt is suitable to show this rela-tionship between the two plan speci�cations: in general, planspeci�cations comprise a description of the preconditions, pre,which hold in the initial state and a description of the goals,goal, the plan has to achieve. Therefore, we show Specold j=Specnew by attempting to prove thatprenew ! preold and goalold ! goalnewhold. If both subproofs succeed we know that �rstly, thecurrent preconditions prenew are su�cient for the precondi-tions preold the reused plan Planold requires and that second-ly, the goals goalold achieved by Planold are su�cient for thecurrently required goals goalnew . This means the reused planis applicable in the current initial state and it achieves at leastall of the currently required goals.The proof attempt enables a planner to compare plan-ning problems deductively in order to �nd out whether thereuse candidate is \su�ciently similar" to the current plan-ning problem, i.e., whether their preconditions and goals areto a large extent common. The comparison requires us to per-form uni�cation operations during the proof, i.e., we applysubstitutions such that variables from Specold are instantiat-ed with terms from Specnew. Furthermore, di�erent variablesmust be mapped to di�erent terms, i.e., the substitutionsmust be injective. Injectivity may not always be required butit is a save condition ensuring that a proper instance of thereuse candidate is computed during the proof.Based on this formal framework, plan modi�cation pro-ceeds in two phases:1. Plan Interpretation: The relation between the precondi-tions (precondition proof) and goals (goal proof) is proved.During the proof, knowledge about regularities of the appli-cation domain that is represented in the form of deductionrules can be applied. If the proof succeeds, an instance ofPlanold is computed satisfying Specnew, otherwise re�ttinginformation is extracted from the failed proof.2. Plan Re�tting: Plan re�tting tries to modify the reusecandidate in accordance with the result of the interpreta-tion phase, i.e., it constructs a plan skeleton that the plan-ner can exploit in generating a solution. The plan skeletonis extended to a correct plan by verifying reused subplansand by generating new subplans for open subgoals. Thus,plan re�tting constrains the current planning process byproviding the planner with reusable \pieces of information"in the form of action instances and control structures.c 1994 J. KoehlerECAI 94. 11th European Conference on Arti�cial Intelligence Edited by A. CohnPublished in 1994 by John Wiley & Sons, Ltd.

3 Deductive Plan Modi�cation in MRLThe formal framework presented in the previous section pro-vides the basis for the reuse component mrl [13, 11] thathas been developed as an integrated part of the deductiveplanner phi [4, 1]. The underlying planning formalism is themodal temporal logic LLP that possesses an interval-basedsemantics [3].LLP provides the modal operators � (next),} (sometimes),ut (always) and the binary modal operator ; (chop) whichexpresses the sequential composition of formulae. The only\uents" available in LLP are local variables, i.e., changesof states are reected in changed values of these variables.Plans are represented by a certain class of LLP formulae.They may contain basic actions which are expressed by theexecute predicate ex and control structures like conditionals(if-then-else) and iteration (while).Plan generation is done deductively by performing con-structive proofs of plan speci�cations in a sequent calculuswhich was developed for LLP. Plan speci�cations are LLPformulae of the form [Plan ^ precondition] ! goal, i.e., if thePlan is carried out in a state where the preconditionholds thena state will be achieved satisfying the goal. During the proof,the planvariable Plan is replaced by a plan formula satisfyingthe speci�cation. The proofs are guided by tactics which canbe described in a tactic language [3] provided by the system,an idea which was borrowed from the �eld of tactical theoremproving [5, 8, 18].The application domain of phi is the unix mail domainwhere objects like messages and mailboxes are manipulated byactions like read, delete, and save. The atomic actions avail-able to the planner are the elementary commands of the unixmail system. For example, the axiomatization of the save-command readsopen flag(m) = T ^ delete flag(msg(x;m)) = F^ex(save(x; f;m))! � [file(msg(x;m)) = f ^ save flag(msg(x;m)) = T]The state of a mailbox may change from state to state, i.e.,mailboxes are represented as local variables. As a precondi-tion, the save-command requires that the mailbox m is open,i.e., its open flag yields the value true (T) and that the mes-sage x has not yet been deleted, i.e., its delete flag yields thevalue false (F). As an e�ect, the message x from the mailboxm is saved in a �le f and its save flag is set to the value truein the next state.In the following, we discuss an example in which an it-erative plan is modi�ed. Assume that the current planningproblem Specnew is speci�ed asPlan ^ open flag(mb) = T ^8mail [sender(msg(mail;mb)) = Joe! delete flag(msg(mail;mb)) = F]! }8mail [sender(msg(mail;mb)) = Joe! read flag(msg(mail;mb)) = T ^save flag(msg(mail;mb)) = T ^delete flag(msg(mail; mb)) = T] (1)The speci�cation describes the goal \Read, save and deleteall messages from sender Joe" under the precondition that themailbox is open and no message from Joe has yet been deleted.

Assume that furthermore, the search in the plan library asdescribed in [11] has retrieved the reuse candidate SpecoldPlan ^ open flag(m) = T ^8x [sender(msg(x;m)) = s! delete flag(msg(x;m)) = F]! }[screen display = select msgs(s;m)^}8 x [sender(msg(x;m)) = s! read flag(msg(x;m)) = T ^file(msg(x;m)) = f]] (2)which achieves a subset of the current goals under the samepreconditions by executing the plan Planoldex(from(s;m)) ;n := 1 ;while n < length(m) doif sender(msg(n;m)) = sthen ex(type(n;m)) ; ex(save(n;m))else ex(empty action) ;n := n + 1 odIn the example, an iterative plan has to be modi�ed, inwhich a case analysis occurs. The plan speci�cations con-tain universally quanti�ed conjunctive goals, disjunctive andnegated atomic preconditions and goals as well as the speci-�cation of temporary subgoal states with the help of nestedsometimes operators.33.1 Plan InterpretationThe plan interpretation phase performs the two subproofsprenew ! preold and goalold ! goalnew .The relation between preconditions and goals could also bechecked by syntactically comparing the state descriptions asin most plan reuse systems. Performing a proof of the formu-lae can be viewed as a semantic comparison. During a proof,knowledge concerning regularities in the planning domain isapplied that can be extracted, e.g., from the action axiomschemata available to the planner. For example, from the ax-iomatization of the save-command we can derive the rulessave flag(msg(x;m)) = T! file(msg(x;m)) = f (3)file(msg(x;m)) = f !save flag(msg(x;m)) = T (4)reecting the relationship between the atomic e�ects of thiscommand, i.e., whenever the save ag of a message has beenset to T then there must be a �le in which the message hasbeen saved and vice versa.The validity of the relation between the preconditions prenewand preold is obvious. The proof of the relation between thegoals requires the following sequent in the LLP sequent cal-culus to be proved:3 Observe thatA! B is equivalent to:A_B, i.e., a goal containingan implication can be considered as a disjunctive goal.Planning, Scheduling and Reasoning about Actions 606 J. Koehler

}[screen display = select msgs(s;m)^}8 x [sender(msg(x;m)) = s! read flag(msg(x;m)) = T ^file(msg(x;m)) = f]])}8mail [sender(msg(mail;mb)) = Joe! read flag(msg(mail; mb)) = T ^save flag(msg(mail; mb)) = T ^delete flag(msg(mail;mb)) = T] (5)A special-purpose proof tactic guides the proof attempt inthe LLP sequent calculus. The use of tactics supports thedeclarative representation of control knowledge. The searchspace considered during the proof can be kept to a manageablesize and only those deduction steps which appear to be themost promising are performed, i.e., we give up completenessin order to achieve e�ciency [16]. Figure 1 sketches a part ofthe tactic goal tac that is used in the example.goal tac(goal seq,Axioms):-apply rule strict(left sometimes,goal seq,seq1),iterate rule(left and,seq1,seq2),or else(call tac(close leaves,seq2,Axioms),call tac(goal tac,seq2,Axioms)).close leaves(seq2,Axioms):-apply rule strict(right sometimes,seq2,seq3),call tac(derive axioms,seq3,Axioms).Figure 1. Sketch of the goal-proof TacticThe tactic speci�es a well de�ned ordering of deduction ruleapplications. It is composed of tacticals [3] like iterate rule,apply rule strict, and call tac. Each tactical speci�es a spe-ci�c mode of rule or tactic applications. The tactical ap-ply rule strict applies the rule speci�ed in its �rst argumentto a sequent speci�ed in its second argument and returns as aresult the sequent speci�ed in its third argument. The tacti-cal iterate rule repeats a rule application as long as possible,while the tactical call tac calls another tactic. The followingsequent rules are applied by the tactic goal tac:� �; A;B) ��; A ^B) � left and (l^)� �) A;� �) B;��) A ^B;� right and (r^)� ��; A) ���;}A) � left sometimes (l}) 4� �) A;��) }A;� right sometimes (r})The proof tactic is designed in such a way that it always ter-minates. In addition, it is considered as a decision procedure:if the tactic does not construct a proof tree, it is assumed that4 With �� and ��: �� df= futBjutB 2 �g and �� df= f}Bj}B 2 �g.

no proof is possible and that a falsifying valuation for someof the leaves in the deduction tree has been obtained.The tactic proceeds recursively over the sometimes oper-ators in both goal speci�cations in order to compare everytemporary subgoal state speci�ed in goalold with each of thetemporary subgoal states from goalnew .In the example, the tactic is called with sequent 5 as inputargument. In a �rst step, it has to apply rule l} and rule l^to sequent 5 which lead to sequent 6:screen display = select msgs(s,m) ;}8 x [sender(msg(x;m)) = s! read flag(msg(x;m)) = T ^file(msg(x;m)) = f])}8mail [sender(msg(mail;mb)) = Joe! read flag(msg(mail; mb)) = T ^save flag(msg(mail; mb)) = T ^delete flag(msg(mail; mb)) = T] (6)With the framed formula, the �rst temporary subgoal fromgoalold has been isolated. In the example, the speci�cation ofgoalnew contains only one temporary subgoal. The goal tacticcalls now the tactic close leaves that tries to prove a subgoalfrom goalnew in using the isolated subgoal from goalold. Ob-viously, this is impossible and such the tactic terminates witha failure. As close leaves failed, the goal tactic is recursivelycalled with sequent 6 as input argument. Applying the rulel} to sequent 6 again leads to sequent 7. Note that rule l^cannot be applied and thus leaves the sequent unchanged.8 x [sender(msg(x;m)) = s! read flag(msg(x;m)) = T ^file(msg(x;m)) = f])}8mail [sender(msg(mail;mb)) = Joe! read flag(msg(mail; mb)) = T ^save flag(msg(mail; mb)) = T ^delete flag(msg(mail; mb)) = T] (7)Now, the tactic close leaves applies the rule r} leading tosequent 8:8 x [sender(msg(x;m)) = s! read flag(msg(x;m)) = T ^file(msg(x;m)) = f])8mail [sender(msg(mail;mb)) = Joe! read flag(msg(mail; mb)) = T ^save flag(msg(mail; mb)) = T ^delete flag(msg(mail; mb)) = T] (8)The tactic derive axioms calls a specialized tactic dealingwith universally quanti�ed goals. This tactic aims at isolat-ing and comparing each of the atomic subgoals occurring ingoalold and goalnew . Consequently, the atomic subformulaemust be separated by further sequent rule applications. Thetactic applies the rules r 8, l 8 followed by the rules r ! andl ! as shown below.� �; A[c=x]) ��; 8xA) � l 8Planning, Scheduling and Reasoning about Actions 607 J. Koehler

� �) �; A[a=x]�) �;8xA r 8� �) A;� �; B) ��; A ! B) � l !� �; A) B;��) A ! B;� r !universal goal tac(subgoal,Axioms):-apply rule strict(r8,subgoal,seq1),apply rule strict(l8,seq1,seq2)apply rule strict(r!,seq2,seq3)apply rule strict(l!,seq3,seq4)iterate rule(l^,seq4,seq5),iterate rule(r^,seq5,outseq),call tac(�nd axioms,outseq,Axioms).Figure 2. Sketch of the universal-goal TacticThe tactic as shown in Figure 2 computes the sequents(A1) to (A3). They lead to axioms under the substitutionfx=mail;m=mb; s=Joeg. In order to obtain an axiom from(A3), the knowledge represented in rule 4 is additionally ap-plied.(A1) sender(msg(mail;mb)) = Joe) sender(msg(x;m)) = s(A2) read flag(msg(x;m)) = T) read flag(msg(mail;mb)) = T(A3) file(msg(x;m)) = f) save flag(msg(mail; mb)) = TObserve that there is no axiom containing the current atom-ic subgoal delete flag(msg(mail;mb)) = T . Therefore, thetactic failed in proving that goalold ! goalnew holds. Theplan does not achieve all of the required goals and thus planre�tting must begin.3.2 Plan Re�ttingPlan re�tting starts with an analysis of the plan interpreta-tion phase. The proof of the relation between the old andcurrent preconditions prenew ! preold has been successfullycompleted, i.e., the reuse candidate is applicable in the cur-rent initial state. In order to analyze the goal proof, entriesare computed which record the result of the proof attempt byrelating atomic goals from goalold and from goalnew to eachother, cf. Figure 3. This information is now analyzed underthe following assumptions:� An atomic subgoal from goalold that occurs not in an axiomindicates that the reuse candidate may contain superuousactions. The subgoal was not necessary to derive axioms,i.e., plan re�tting concludes that this subgoal is not re-quired in the current goal speci�cation goalnew . Therefore,actions achieving this old subgoal are removed from thecandidate plan.

� An atomic subgoal from goalold that occurs in an axiomindicates reusable actions. All actions achieving these sub-goals are preserved because they achieve subgoals requiredin the current goal speci�cation.� An atomic subgoal from goalnew that occurs not in an ax-iom indicates an open current subgoal not achieved by thereuse candidate. Plan re�tting marks a failure of plan in-terpretation and starts with constructing a plan skeleton.old hscreen display = select msgs(s;m); nonew �i Axiomold hread flag(msg(x;m)) = T;new read flag(msg(mail;mb)) = T i Axiomold hfile(msg(x;m)) = f;new save flag(msg(mail; mb)) = T i Axiomold h�; nonew delete flag(msg(mail;mb)) = T i AxiomFigure 3. Result of the Plan Interpretation PhaseFigure 4 shows the algorithm that analyzes the informationrepresented in Figure 3.for i = 1 to n do /* all goals goalnewi */if entry hgoalnewi ; goaloldj i existsthen reuse subplan achieving goaloldj/* goalnewi is achieved by reuse candidate */else plan has to be modi�ed/* generate new subplan for goalnewi */endforfor j = 1 to k do /* all goals goaloldj */if entry hgoalnewi ; goaloldj i existsthen reuse subplan achieving goaloldjelse attempt to optimize plan/* remove superuous subplan for goaloldj */endforFigure 4. Analysis of the Plan Interpretation PhaseNote that we have no information obtained from the failedproof attempt that is su�cient for constructing the \right"plan skeleton, i.e., a plan skeleton that can be extended toa correct plan. Therefore, plan re�tting and plan generationcannot be separated and plan generation becomes involved inthe process of plan-skeleton construction.Plan re�tting also relies on information from the plan li-brary that is stored together with the reuse candidate: ananalysis of the plan generation process that has led to thereused plan reveals which action from Planold achieves whichatomic e�ect in goalold. In the example, the following rela-tions between actions and atomic goals are stored in the planlibrary:� ex(type(n;m)) achieves read flag(msg(x;m)) = TPlanning, Scheduling and Reasoning about Actions 608 J. Koehler

� ex(save(n;m)) achieves file(msg(x;m)) = f� ex(from(s;m)) achievesscreen display = select msgs(s;m)Consequently, the action ex(from(s;m)) is removed fromthe skeleton, while ex(type(n;m)) and ex(save(n;m)) are pre-served after proper instantiation with the substitution com-puted during the proof attempt. Furthermore, a plan for themissing subgoal delete flag(msg(mail; mb)) = T has to begenerated and inserted into the plan skeleton. In order to de-termine the position in the skeleton where this plan has to beadded, the current goal speci�cation goalnew is analyzed withthe help of the underlying planning system, as described in[13]. Finally, control structures must be veri�ed and eventu-ally modi�ed during the re�tting process. A special-purposetactic for second-principles planning implements veri�cationand generation as deductive processes. In the example, thetactic identi�es the universally quanti�ed goal in a �rst stepand thus calls the tactic for the generation of an iterative planby introducing a while construct which coincides with the iter-ative control structure in the skeleton. The proof that has ledto this while construct is replayed. During the replay processthe tactic has to construct the conditional plan occurring inthe body of the iteration by introducing a case analysis. Thisprocess requires us to address the conjunctive goal containingthe three atomic subgoals. After ordering the subgoals withthe help of a tactic dealing with conjunctive goals [3], a planfor each of the subgoals is generated. This leads to a reuse ofthe subplan ex(type(n;mb)) ; ex(save(n;mb)) from the skele-ton, while the action ex(delete(n;mb)) has to be generatedfrom scratch.As a result, the following plan solving Specnew is obtained:n := 1 ;while n < length(mb) doif sender(msg(n;mb)) = Joethen ex(type(n;mb)) ;ex(save(n;mb)) ;ex(delete(n;mb))else ex(empty action) ;n := n + 1 od4 ConclusionWe have presented a deductive approach to plan modi�cationwhich yields provably correct plans. Apart from sequentialplans, this approach enables a planner to modify plans con-taining control structures like conditionals and iterations. Thetheoretical model is independent of any particular planningformalism and makes no restrictive assumptions on the natureof plans.The approach is the basis for the implemented system mrl.As a main advantage, the system possesses a clearly de�nedsemantics which allows formal properties of plan modi�cationto be proved. Furthermore, an empirical evaluation of the sys-tem has led to very satisfactory results [13, 12].ACKNOWLEDGEMENTSI would like to thank Mathias Bauer, Susanne Biundo, DietmarDengler, Gaby Paul, and Wolfgang Wahlster for their interest

in my work and for fruitful discussions. The anonymous ref-erees made helpful comments on a draft version of this paper.REFERENCES[1] M. Bauer, S. Biundo, D. Dengler, J. Koehler, and G. Paul,`PHI - a logic-based tool for intelligent help systems', InIJCAI-93 [9], pp. 460{466.[2] W. Bibel, `A deductive solution for plan generation', NewGeneration Computing, 4, 115{132, (1986).[3] S. Biundo and D. Dengler, `The logical language for planningLLP', Research Report, German Research Center for Arti�-cial Intelligence, (1994).[4] S. Biundo, D. Dengler, and J. Koehler, `Deductive planningand plan reuse in a command language environment', in Pro-ceedings of the 10th European Conference on Arti�cial In-telligence, ed., B. Neumann, pp. 628{632, Vienna, Austria,(August 1992). John Wiley & Sons.[5] R. Constable, Implementing Mathematics with the NuprlProof Development System, Prentice Hall, 1986.[6] C. Green, `Application of theorem proving to problem solv-ing', in Proceedings of the 1st International Joint Conferenceon Arti�cial Intelligence, pp. 219{239, Washington, D.C.,(May 1969).[7] S. Hanks and D. Weld, `Systematic adaptation for case-basedplanning', in Proceedings of the 1st International Confer-ence on Arti�cial Intelligence Planning Systems, pp. 96{105,Washington, D.C., (1992). Morgan Kaufmann, San Mateo.[8] M. Heisel, W. Reif, and W. Stephan, `Tactical theorem prov-ing in program veri�cation', in Proceedings of the 10th Inter-national Conference on Automated Deduction, Lecture Notesin Arti�cial Intelligence 449, pp. 117{131, Kaiserslautern,Germany, (1990). Springer, Berlin.[9] Proceedings of the 13th International Joint Conference onArti�cial Intelligence, Chambery, France, August 1993. Mor-gan Kaufmann.[10] S. Kambhampati and J.A. Hendler, `A validation-structure-based theory of plan modi�cation and reuse', Arti�cial Intel-ligence, 55, 193 { 258, (1992).[11] J. Koehler, `An application of terminological logics to case-based reasoning', in Proceedings of the 4th International Con-ference on Principles of Knowledge Representation and Rea-soning, eds., J. Doyle, E. Sandewall, and P. Torasso. MorganKaufmann, San Francisco, CA, (1994).[12] J. Koehler, `Avoiding pitfalls in case-based planning', in Pro-ceedings of the 2nd International Conference on Arti�cialIntelligence Planning Systems, Chicago, IL, (1994). MorganKaufmann, San Mateo.[13] J. Koehler, `Flexible plan reuse in a formal framework', inCurrent Trends in AI Planning, eds., C. B�ackstr�om andE. Sandewall, pp. 171{184. IOS Press, Amsterdam, Wash-ington, Tokyo, (1994).[14] R. Kowalski, Logic for Problem Solving, North Holland, Am-sterdam, 1979.[15] Z. Manna and R. Waldinger, `How to clear a block: Plan for-mation in situational logic', Journal of Automated Reasoning,3, 343{377, (1987).[16] B. Nebel and J. Koehler, `Plan modi�cation versus plan gen-eration: A complexity-theoretic perspective', In IJCAI-93 [9],pp. 1436{1441.[17] B. Nebel and J. Koehler, `Plan reuse versus plan generation:Atheoretical and empirical analysis', Research Report RR-93-33, German Research Center for Arti�cial Intelligence (DF-KI), (1993).[18] L. Paulson, `Isabelle: The next 700 theorem provers', in Log-ic and Computer Science, ed., P. Odifredi, Academic Press,(1990).Planning, Scheduling and Reasoning about Actions 609 J. Koehler

