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Abstract

Future rovers will be equipped with substantial onboard autonomy as space agencies

and industry proceed with missions studies and technology development in prepa-

ration for the next planetary exploration missions. Simultaneous Localization and

Mapping (SLAM) is a fundamental part of autonomous capabilities and has close

connections to robot perception, planning and control. SLAM positively affects rover

operations and mission success. The SLAM community has made great progress in

the last decade by enabling real world solutions in terrestrial applications and is

nowadays addressing important challenges in robust performance, scalability, high-

level understanding, resources awareness and domain adaptation. In this thesis, an

adaptive SLAM system is proposed in order to improve rover navigation performance

and demand.

This research presents a novel localization and mapping solution following a

bottom-up approach. It starts with an Attitude and Heading Reference System

(AHRS), continues with a 3D odometry dead reckoning solution and builds up to a

full graph optimization scheme which uses visual odometry and takes into account

rover traction performance, bringing scalability to modern SLAM solutions.

A design procedure is presented in order to incorporate inertial sensors into the

AHRS. The procedure follows three steps: error characterization, model derivation

and filter design. A complete kinematics model of the rover locomotion subsystem

is developed in order to improve the wheel odometry solution. Consequently, the

parametric model predicts delta poses by solving a system of equations with weighed

least squares. In addition, an odometry error model is learned using Gaussian pro-

cesses (GPs) in order to predict non-systematic errors induced by poor traction of

the rover with the terrain. The odometry error model complements the parame-

tric solution by adding an estimation of the error. The gained information serves to

adapt the localization and mapping solution to the current navigation demands (do-

main adaptation). The adaptivity strategy is designed to adjust the visual odometry

computational load (active perception) and to influence the optimization back-end

by including highly informative keyframes in the graph (adaptive information gain).

Following this strategy, the solution is adapted to the navigation demands, providing

an adaptive SLAM system driven by the navigation performance and conditions of

the interaction with the terrain. The proposed methodology is experimentally verified

on a representative planetary rover under realistic field test scenarios. This thesis

introduces a modern SLAM system which adapts the estimated pose and map to the

predicted error. The system maintains accuracy with fewer nodes, taking the best of

both wheel and visual methods in a consistent graph-based smoothing approach.
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Chapter 1

Introduction

This chapter motivates the thesis and highlights the impact of a localization and

mapping system on mission success and operations. It addresses the current problem

on the design of sensor fusion and debates the need for more onboard autonomy for

planetary rovers. The structure of this document is presented at the end of this

chapter.

1.1 Background

Robots have their origin in the ancient world but it is not until the industrial rev-

olution and with the use of electricity when robots began to make an impact on

our lives, Siciliano and Khatib (2016). Robotics started its modern development in

car factories where the requirements for autonomy were limited to a few sets of

commands. When robots were mainly preprogrammed or teleoperated the require-

ments for autonomy in general and autonomous navigation in particular were very

limited. Robotics have finally emerged from the structured environments in factories

to the outdoor domain setting higher requirements for autonomous navigation. Mo-

bile robots are present in several field of application such as driverless cars, agricul-

ture, underwater and planetary exploration. The concept of sending robots to explore

beyond the realm of Earth has been present since the early 1960s, Gao (2016). The fu-

ture of exploration is driven by robotics, and autonomous systems are a key element.

This is demonstrated in recent mission studies like the MarsFast performed by ESA

(2016). In addition, the level of autonomy is not fixed and is diverse from mission

to mission. A robot might operate in different levels of autonomy according to mis-

sion requirements and communication constraints. The European Cooperation for

Space Standardization (ECSS) defines four levels of autonomy in the Requirements

& Standards Division (2008). The levels go from E1: real-time ground control or tele-

operation; to E4: goal-oriented mission operation or autonomous operation. Beside

1



2 Chapter 1. Introduction

the ECSS Standard, further information about autonomy and its definition for plan-

etary rovers can be also found in Bajracharya et al. (2008), Schwendner and Joyeux

(2010) and Gao (2016). The more mankind aims to explore the universe, more level

of autonomy is required due to communication and operations constraints.

The engineering process of a planetary rover is a concurrent design which in-

volves several iterations and phases presenting many challenges during the process.

The rover system design is driven by mission requirements and environmental con-

straints that affect the final rover concept. The design parameters and constraints

affect the final set of sensors in order to localize and perceive the surroundings.

Different philosophies and approaches are usually taken based on a number of cri-

teria such as redundancy, Technology Readiness Level (TRL), mass, simplicity, relia-

bility and accuracy. During a concurrent design process, different systems contribute

to the definition of a suitable rover design: locomotion, power, thermal, On Board

Data Handling (OBDH) and many others. An engineering methodology and under-

standing of performance in detail improve and accelerate such process in the design.

Mobile robots in the space domain are sometimes referred to as ground spacecrafts

and their design appears as a balanced evaluation. However, there are some differ-

ences and peculiarities that make the rover design a unique case in relation to con-

ventional spacecrafts. Among all the systems that constitute a planetary rover, three

are critical during the design due to their influence on the mission success: these

systems are power, locomotion and navigation. Power needs to be properly scaled

since it is a crucial system affecting the performance of the rover as well as scientific

instruments. The locomotion and the navigation systems are sometimes mentioned

together as mobility, emphasizing their importance and interdependence. In particu-

lar, the navigation system in spacecraft terminology divides into three capabilities

as Guidance, Navigation and Control (GNC). Guidance is the path planning respon-

sibility. Navigation is the localization and mapping competency and Control is the

commanding of the rover locomotion system. These three capabilities are of exclu-

sive competence of the navigation system. They heavily depend on the mission and

their requirements affect the design. These requirements are of three types: opera-

tional, functional and resources. Operation, because the communication constraint

in space imposes a certain level of autonomy. Functional requirements define the

level of performance. Resources establish the sensor type, perception, computational

power and software restrictions. Fig. 1.1 shows a rover GNC system diagram. The

navigation front-end and back-end appears together with the onboard computation

demands.





4 Chapter 1. Introduction

puts are combined in a sensor fusion framework in order to estimate the pose with

accuracy (i.e. position and attitude), as described in the work by Mitchell (2007); Lig-

gins et al. (2009). The localization and mapping problem uses random variables and

probabilistic inference due to the inherent nature of the problem. Sensory informa-

tion is affected by noise, limiting the deterministic capabilities of the rover to know

its localization and surroundings. This lack of precision is described as uncertainty

in the measurement. Inaccuracy affects sensor readings, the rover state and the

model of the environment which are modeled as random variables. The combination

of different sources of information determines a better estimation of the quantities

and is referred to as sensor fusion. Sensor fusion is the process of combining sensory

data or higher levels of information in order to obtain a more meaningful estima-

tion than when individual sensory data are used. The uncertainty and the sensor

fusion form the foundations of probabilistic Simultaneous Localization and Mapping

(SLAM) techniques. Therefore, SLAM appears as a central element to understand

the autonomous navigation process. It provides the current pose of the rover (i.e.

localization) and detail elements in the surroundings (i.e. environment). This infor-

mation can be calculated by different levels of precision and complexity. The resulting

quantities are then used in the planning and control part in order to interact with

the environment. This is also called the sensing-acting loop in robotics agents. The

localization and mapping system is typically divided into two parts, the front-end

and the back-end (left side in Fig. 1.1). The former has direct access to the sensor

information and produces higher level of sensory data (i.e. delta displacements, im-

age features extraction, data association). In contrast, the back-end contains the

collection of optimization techniques and filters (i.e. Kalman filters, Particle filters,

nonlinear least squares optimizers) in order to estimate the Maximum a Posteriori

(MAP).

Delta displacements relates the current pose of the rover to one or more of its

previous poses (i.e. dead reckoning). Absolute position information on the other hand

relates the rover position to a globally referenced map of the environment (i.e. global

localization). While localization in robotics has some similarities between terres-

trial and space applications, they also have some differences. Robotic applications

in planetary exploration fail to benefit from GPS and accurate long-term localization

systems are needed for the mission success. Due to inherent sensor errors and com-

putation cost, sensor fusion techniques are used to estimate the resulting position

and attitude more accurately than if each sensor was considered individually. In or-

der to accomplish such a task, three kinds of sensors are nominally considered in

a planetary rover, joint encoders and inertial sensors for proprioceptive information

and cameras as exteroceptive sensors. This set of sensors are present in the majority

of current rover designs, Borenstein and Feng (1996b); Hidalgo-Carrio et al. (2012b);
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1.2 Motivation

The localization and mapping strategy heavily depends on the sensor technology and

operational constraints. The estimation of orientation or attitude is one of the key

estimates in robot navigation because it establishes the direction of motion. Acce-

lerometers and gyroscopes are used in the Inertial Measurement Unit (IMU) to mea-

sure the relative change in orientation. The integration of angular velocities to pro-

duce angular position results in accumulation of error or drift. Accelerometers can

correct such a drift in the pitch and roll angles when stationary with the estima-

tion of the gravity vector. The heading or yaw is the most critical angle since it

affects the direction of motion. The correction of heading by external means is an

open research problem due to the lack of strong magnetic field in non-terrestrial

applications, Volpe (1999) and Lambert (2011). Relative localization is the process of

determining the pose with respect to some initial coordinate frame. It is calculated

using wheel odometry, visual odometry and/or SLAM. Wheel odometry is the most

natural technique to compute relative displacements based on counting of wheel and

joint revolutions. Visual odometry estimates relative motion by extracting and track-

ing salient features on successive images. SLAM is the construction of a model of the

environment and the pose estimation within it. Afterwards, absolute localization can

be achieved by determining the rover pose in a global frame of reference. Panoramic

images and digital elevation models are the most used techniques. Orbiter imagery

matching uses high resolution images (e.g. HiRISE or LROC) to correct accumu-

lated pose errors in a global frame, Gao (2016). However, such global localization ap-

proaches are manual with a strong dependency on human intervention from ground.

The accuracy strongly depend on the details of the model, being extremely difficult to

achieve GPS-like precision, Gao (2016).

Relative localization strategies, such as wheel odometry, are computationally in-

expensive and effective on even terrain with good traction properties. The most com-

plete and reliable localization scheme for planetary rovers is, up to now, on board in

the Mars Science Laboratory (MSL), NASA (2015), and the Mars Exploration Rovers

(MER), NASA (2004) and Maimone et al. (2007b). Surface Attitude Position and

Pointing (SAPP) is the software component in charge of calculating and propagat-

ing rover attitude and position estimation for MER, using and combining different

techniques and sensory information. SAPP is further explained in Ali et al. (2005)

and carries out the propagation of the rover’s pose depending on three commands.

These commands are defined in the Attitude Acquisition Machine and triggered from

the ground control station depending on rover operations. The localization system

computes and propagates attitude using gyroscopes integration and additional sup-

port from the Sun’s elevation information on the camera images. Also accelerometers
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data in static regimen is provided. The rover position is propagated using wheel

odometry and no accelerometers are used in that step, Maimone et al. (2007b). Con-

ventional wheel odometry remains good on simple terrain, flat and level ground. The

rover Spirit only accumulated 3 % position error over 2 km of driving on level ground,

Biesiadecki et al. (2007). Quantitative ahead images from previous sol (Martian day -

24.6 h) allow further offline terramechanics simulation from the ground, giving valu-

able aid in wheel odometry and the type of maneuvers to perform. This is referred

to as active localization in Fig. 1.2. However, it is not possible on complex terrains

or when ahead images are not available. The MER mission did not consider visual

odometry from camera images in the nominal localization scheme by SAPP. The high

slippage observed while driving on Mars surface forced engineers to include visual

odometry in successive system updates. Maimone et al. (2007a) describe the use of

visual odometry based on structure from motion algorithms using stereo image com-

putation. Se et al. (2004) give also an analysis of applicability of visual odometry

in planetary rovers. Visual features are deduced and tuned for corner detection.

Stereo matching of the selected features and feature tracking, together with the suc-

cessive motion estimation, are computed on board the rover. The incorporation of

visual odometry into the localization addressed a significant advance. The applica-

tion of visual odometry turned out to be essential on demanding terrains, typically on

loose/mixed terrain and/or slopes of 10 % and higher, measuring slips as high as 125 %

when it tried to drive up more than 25◦ slope, reported in Helmick et al. (2004b); Mai-

mone et al. (2007a). Slippage detection is a complicated task, and soil parameters are

involved. It is described in Biesiadecki et al. (2007) how Spirit reached 100 % slippage

(no forward progress) on a 16◦ slope, while only few meters behind had 20 % slip on a

19◦ slope with no discernible difference in the character of the surface.

The penalty of using visual odometry is the computation load and the associated

power consumption. Visual odometry takes between 2 −3 min to process stereo pair

images on the RAD6000 (35 MIPS) processor of the MER rovers, and 60 % of over-

lap between image pairs is required, limiting turning maneuvers, Maimone et al.

(2007a). Consequently, it affects daily operations and degrades the mobility of the

whole rover, Biesiadecki et al. (2007) and Powell et al. (2006). The localization system

has a direct impact on rover trajectory, planning, speed, distance to traverse, ground

operations and scientific return. Direct driving speed for MER is about 124 m/h when

conducive terrain and ahead images are available for planning from ground. The

rover effective speed decreases to 10 m/h when activating visual odometry. In the case

of adding autonomous obstacle avoidance the effective speed reduces to 6 m/h, Biesi-

adecki et al. (2007). This difference in speed between using one or another local-

ization solution clearly points to the need for improving and analyzing the design of

future localization schemes. This fact has an important consequence on rover mo-
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2.25 h and a science sol as a pure scientific measurement activity day without rover

driving operations. The direct driving line in Fig. 1.4 is the average velocity for a

locomotion sol when direct driving is selected (i.e. telecommands with waypoints and

no autonomous navigation). The autonomous driving line shows the average speed

for locomotion sols using autonomous capabilities (i.e. visual odometry and obstacle

avoidance). The mission velocity line is the average mission velocity taking into ac-

count locomotion and science sols. All lines start at a single point at the Sojourner

rover since almost no autonomous surface navigation was available at that time.

The curves meet at the SFR concept in which there is no room for speed variation,

since a Mars return mission imposes such a mission velocity constraint. The plot

shows that future rovers will drive longer distances in a shorter time. The different

lines depicts how the rover speed is influenced by the surface navigation technology.

This is because the navigation strategy is dictated by information available from the

previous sol at the ground control station and based on surface and soil conditions

of the environment. MER direct driving average speed is approximately 92 m/sol

which considers a speed peak of 124 m/h in direct driving and 96 m/h using path

selection, Biesiadecki et al. (2007). However, autonomous capabilities with visual

odometry and obstacle avoidance on MER decreased the speed considerably, up to

6 m/h. MSL speed has been designed to reach up to 100 m/sol in direct driving and

43 m/sol for nominal speed when using autonomous capabilities. ExoMars require-

ments in Phase-B2 have a nominal speed of 50 m/sol in autonomous driving, Rusu

(2014). The total time available in a SFR mission for traversing 15 km in a straight

line (22 km effective traversal) in a maximum of 110 sols results in an average rover

speed of 200 m/sol, ESA (2016). MSL and ExoMars nominal average velocity are set

with autonomous navigation capabilities, in contrast to previous missions in which

direct driving was mainly utilized. SFR should take this improvement one step fur-

ther.

Understanding the dynamics of the navigation system in a planetary rover is de-

sirable in order to motivate this thesis. Fig. 1.5 depicts the system in two parts. Dur-

ing the first part, the rover acquires images from the navigation cameras, computes

a dense map of the surroundings and calculates the free obstacle path. Consequently,

the path is given to the second part in order to follow the desired trajectory and com-

pute the localization. The localization & locomotion part acquires the images from

the localization cameras, computes the image features, extracts the descriptors and

tracks correspondences with respect to the previous pair of images. During locomo-

tion the rover computes wheel odometry. Feature matching uses the information from

the wheel odometry to search for potential correspondences. The predicted region in

the image is calculated using a constant velocity model. The rover locomotion exe-

cutes the GNC cycle multiple times along the path for the autonomous driving until
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Figure 1.5: The navigation system for the autonomous driving of a planetary rover.

the final location target is reached.

While Mars undoubtedly is a primary target for exploration missions involving

mobile robotic systems, the Moon has also regained attention from the scientific com-

munity, as well as several space agencies and private entities that currently pur-

sue exploration missions, Astrobotic (2017). Multiple missions using either orbiters

or impactors (SMART-1, SELENE, Chang’e-1, Chandrayaan-1, LCROSS, LRO) have

verified the existence of volatiles like water in the lunar south polar region. This is

interesting from a scientific point of view as well as for the application for in-situ re-

source utilization scenarios. ESA has planned a precursor mission to the lunar south

pole, mainly to verify technologies in the area of soft precision landing, Homeister

et al. (2010). Originally the mission had a rover during the first phases of its design,

which was later removed due to mass constraints. Multiple experiments using the

rover were already planned in this design phase, which required high localization

accuracy of 0.1 % of the overall distance traveled. The study, called Next-LL, has a

scaled down rover in the range of 10 kg class vehicle, Richter et al. (2011). This rover

would only travel a distance of 100 m away from the lander. However, the rover would

need to return to the lander autonomously and thus, autonomously drive the 100 m

without operator intervention. The total distance was planned to be 10 km. This

distance requires a consistent localization and mapping component with appropri-

ate accuracy. Recently, Chinese and the Indian Space agencies have plans for lunar

rover missions and the Yutu rover from the Chinese National Space Administration

(CNSA) is the first rover to operate on the Moon since the Lunokhod 2, Laxman (2012)

and Chandrayaan (2017).
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Future missions are likely to be a SFR concept or a construction site in a Moon

scenario. Those mission concepts impose the exploration of an unknown environ-

ment, collection of samples and return to the sample capsule. Past missions have

demonstrated that the geometric and non-geometric hazards could stop the motion of

a rover. Those potential hazards are difficult to detect remotely from Earth, calling

for an on board solution Maimone et al. (2007b). Therefore, future rovers require

data fusion schemes (e.g. SLAM) to deduce rover position and orientation in a pro-

longed, optimal and adaptive manner. SLAM builds a globally consistent map of the

environment to locate the rover and store useful samples. It also provides a frame-

work to study sensors, efficient adaptivity and interprets the environment as a whole,

providing loop closures. Without SLAM the rover interprets the world as an infinite

corridor making long-term autonomous systems inefficient and susceptible to fail-

ure. In this aspect, the future of SLAM will combine machine learning techniques

with optimization approaches and hardware improvements (e.g. FPGAs) in order to

enable more reliable and fast surface navigation.

Biesiadecki et al. (2007) introduce an overview study on how the impact of

different navigation and localization modes affects rover autonomy and mission plan-

ning. Huntsberger et al. (2003) report upcoming developments at NASA/JPL for fu-

ture missions with special emphasis on precision navigation over relatively long dis-

tances and improvements in mobility operations. Schenker (2006) describes the im-

portance of surface mobility to science, addressing some key problems in advancing

performance of future planetary rovers. The impact and influence of the localization

and mapping system on the navigation and mission operations motivates this thesis.

A motivation towards a better understanding of a dead reckoning process design and

adaptiveness for modern SLAM systems in space.

1.3 Objective

The objective of this thesis is the design, development and evaluation of an adap-

tive SLAM driven by the navigation demands of a planetary rover. Such design,

development and evaluation focuses in every level of the localization and mapping

problem, from a simple but important dead reckoning to a complete optimization so-

lution. The needs of SLAM on board a planetary rover has significant differences

in terms of operational constraints and dynamics (see Section 1.2) with respect to

existing solutions. Adaptiveness in SLAM could mitigate, or completely solve, such

operational constraints. It is the thesis of this research to understand how adaptive

SLAM could improve SLAM with considerations in future planetary rovers.

What is adaptive SLAM? Generally, adaptiveness is the ability of a system to

adapt or change. In the context of localization and mapping, adaptiveness is the



1.3. Objective 13

act of adjusting SLAM to the system demands. Domain adaptation is an important

problem in modern SLAM systems and this thesis focuses on the important aspects

concerning planetary rovers. More specifically in this thesis, adaptiveness or adap-

tivity focuses on two domains or parts. Part I is dead reckoning, in which the robot

determines its pose by integrating delta displacements with respect to some initial

coordinate frame as an infinite corridor. Part II is Simultaneous Localization and

Mapping, the estimate of the pose and a model of the environment in which the robot

performs exploration. The following defines the essential statements of this thesis.

Thesis statements for the adaptiveness in the design of a dead reckoning process:

• Attitude and Heading Reference System Design. The estimation of the rover’s

attitude is the first task to investigate in the robot localization problem. Head-

ing defines the direction of motion and attitude determines an important role in

tasks such as map reconstruction, path planning and pointing communication

antennas. Tightly coupled SLAM systems are not practical SLAM solutions for

planetary rovers due to limitations in computational resources and operation

constraints, meaning the rover might operate in a simple dead reckoning mode

for some periods. The characterization of inertial sensors is of notable interest

for this aspect of the localization problem. This part establishes an adaptive de-

sign process using the Allan variance, Allan (1966), in order to incorporate any

inertial sensor to the inertial navigation system. The analysis of this statement

is in Chapter 3.

• Enhanced 3D odometry model. The inheritance from indoor robotics, which tra-

ditionally operates a robot in a structured or planar environment, has brought

inefficient and simple techniques to the field of odometry in outdoor robotics.

The definition of a contact point together with a contact point angle better de-

fines the robot displacement. Therefore, the estimation of delta displacement

using a complete motion model is a meaningful technique which produces a

more accurate estimation. In addition, the adaptive selection of contact points

to estimate the delta pose is a research question. This statement is investigated

in Chapter 4.

Statements in the adaptive Simultaneous Localization and Mapping:

• Machine learning for SLAM. This objective is the identification of hazardous

areas along the path by learning generalized kernels from previous rover expe-

rience. It comprises the development of a Gaussian Process in order to model

the statistical error or uncertainty of wheel odometry as a nonlinear regression
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model. The result is a Gaussian Process over odometry errors to overcome the

effect of poor traction on slippery terrains. The development of this statement

comprises Chapter 5.

• Adaptive Graph Sparsity. As a consequence of identifying non-systematic errors

in wheel odometry using a Gaussian Process model, the SLAM is influenced by

the traction performance providing an adaptive solution until now neglected

by the SLAM community. This adaptiveness in SLAM achieves more accurate

results with less resources by means of an adaptive data association policy, such

that the adaptiveness affects the visual odometry and the optimization back-

end. This statement is mainly evaluated in Chapter 6.

The design, development and evaluation of the above objectives comprise the core

of this thesis. Those elements are designed, developed and evaluated independently

in the document and combined in an adaptive localization and mapping solution.

1.4 Structure of this thesis

This document is structured in two main parts. Each part consists of two chapters

and each chapter describes a consistent piece of work related to each of the the-

sis statements summarized in Section 1.3. The structure is graphically depicted in

Fig. 1.6.

Part I describes the dead reckoning problem: Chapter 3 explains the design and

evaluation of an attitude and heading reference system. Chapter 4 develops the en-

hanced 3D odometry model which is used to improve dead reckoning and serves as

the motion model for prediction in the visual SLAM.

Part II conducts Simultaneous Localization and Mapping: Chapter 5 presents a

machine learning technique using a Gaussian Process (GP) for odometry error regres-

sion. Adaptive SLAM is described in Chapter 6, a localization and mapping solution

with active perception and adaptive graph sparsity based on the prediction perfor-

mance of wheel odometry.

In addition, state-of-the-art in SLAM and a historical evolution of planetary

rovers is described in Chapter 2. Finally, a discussion of the objectives of this the-

sis and future work are presented in Chapter 7.
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Figure 1.6: Structure of this thesis.
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Chapter 2

State of the Art

This thesis is at the point of confluence between the technological needs for future

planetary rovers and modern SLAM systems. This chapter gives an overview of the

state-of-the-art of SLAM and a historical evolution of planetary rovers over the years.

2.1 Simultaneous Localization and Mapping: A Brief

Survey

Though several research groups have worked on mapping and localization since early

in the 80’s, Moravec and Elfes (1985); Brooks (1985), the first complete SLAM imple-

mentation is from 1991, Moutarlier (1991), and the acronym SLAM first appears

at the International Symposium on Robotics Research (ISRR) in 1995, Leonard and

Durrant-Whyte (1991) and Durrant-Whyte et al. (1995). SLAM consists of estimating

the robot pose with on board sensors and the construction of a model of the environ-

ment (the map). The popularity of SLAM is related to the emergence of robots from

indoor and structure scenarios into increasingly outdoor and unstructured environ-

ments. Solving the SLAM problem is a good mix of probabilistic inference, geometry,

graph theory and optimization. In practice, the SLAM problem also involves system

integration, motion models, sensor characterization and calibration. This section fo-

cuses on establishing the foundations and principles to solve the SLAM problem as

well as the related work available in the literature.

The SLAM technique has evolved considerably over the years from the first

probabilistic formulations into a solid mathematical background. The SLAM problem

considers a mobile robot moving without a priori knowledge of the environment.

Fig. 2.1 shows the SLAM problem, which consists of a mobile robot (triangle) detect-

ing landmarks or features (stars) in the environment and at the same time the robot

uses the map (set of landmarks) to deduce its pose. Loop closure is the task when

the robot revisits a previous visited area. Task driven adaptive data association and

17
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their relative location. The set of landmarks observations is given by

z1:k = ¶z1, ...,zk♢ (2.3)

where zi is all observations of landmark mi from different robot locations zi =

¶zi,0, ...,zi,k♢. The fundamental problem is to estimate the model of the world m as

a set of landmarks ¶m1, ...,mk♢ and the robot trajectory x0:k. The SLAM problem is

then defined as the joint posterior probability over x0:k and m using the available

data measurements u1:k and z1:k. The formulation is given by

p(x0:k,m♣z1:k,u1:k). (2.4)

The variables on the right side of the bar are called observable variables. The ones

on the left size of the bar are referred to as hidden, latent or unobservable variables

and are the variables of interest. Here the SLAM community distinguishes two forms

of SLAM. One is known as the full SLAM problem and describes the estimation of

a posterior over the complete entire robot trajectory with the map, Grisetti et al.

(2010a). This is described in equation (2.4). The other form is the online SLAM in

which the current rover location is recovered, instead of the complete trajectory, and

the map of the environment, Durrant-Whyte et al. (2006). The latter is defined as

p(xk,m♣z1:k,u1:k). (2.5)

In the literature such online SLAM is known as filters and the full SLAM is

also called optimizers or smoothers. To solve either form of the SLAM problem,

the technique requires descriptions of the access to the observable variables. These

observable variables are measurements of the world through mathematical models.

Mathematical functions describe such a model in a noise-free world. The function f

describes the movement of the robot or the sensor model. Those mathematical forms

accept the last robot location xk−1 and sensor measurement xk as inputs

xk = f(xk−1,uk). (2.6)

Equation (2.6) function ignores the noise and external perturbation of the world,

which entails non-deterministic behaviours. The modeling of such noise adds an

uncertainty term ϵk and then xk = f(xk−1,uk) + ϵk. The model becomes a probability

distribution that peaks at the ideal value of f(xk−1,uk). The motion model of the

robot is described as state transitions in the form of

p(xk♣xk−1,uk). (2.7)
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The motion model is assumed to be a Markov process in which the next state xk

depends only on the previous state xk−1 and the odometry measurement input uk.

This document dedicates Chapter 4 to developing a 3D odometry model in order to

demonstrate the thesis that a complete motion model improves the state transition

estimation.

Likewise the observation model describes the probability of making a landmark

measurement when robot pose and landmark locations are known, in the form of

p(zk♣xk,m). (2.8)

The model equation indicates that the measurement depends on the robot location

and landmark locations. Only in the case where the robot location and the map are

known, observations are independent. The Bayes rule transforms the mathematical

relationships into a form of equations in order to estimate the posterior probability

distribution of the latent variables from the measurement values.

2.1.1 Bayes Filtering

The online SLAM solves the problem in two recursive steps: the prediction and the

correction form. The prediction step is the projection of the robot pose given the

odometry measurements uk, in the form of

p(xk,m♣z1:k−1,u1:k) =

∫

p(xk♣xk−1,uk) p(xk−1,m♣z1:k−1,u1:k−1)dxk−1. (2.9)

The prediction equation performs a marginalization which equates to an inte-

gral over xk−1 in the continuous domain. The chain rule splits the joint probability

into the prior p(xk♣xk−1,uk) and the prediction p(xk−1,m♣z1:k−1,u1:k−1) deduced from

equation (2.8) for the robot state xk and map m at a time k based on all previous in-

formation.

The correction or measurement step uses the Bayes rule in order to estimate the

posterior from the prior, deduced from equation (2.9) as

p(xk,m♣z1:k,u1:k) =
p(zk♣xk,m)p(xk,m♣z1:k−1,u1:k)

p(zk♣z1:k−1,u1:k)
. (2.10)

The process of building a map is formulated as the conditional density

p(m♣x0:k,z1:k,u1:k) which uses all the observation from different locations to esti-

mate the map m. The counterpart is the estimation of the robot location formulated

as p(xk♣k,z1:k,u1:k,m). The online SLAM problem, as described in equation (2.5), esti-

mates both latent variables, robot last pose xk and the updated map m in a recursive
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manner.

The remaining formulation is to find an appropriate representation of the noise.

The most common representation is an additive Gaussian model, leading to the Ex-

tended Kalman Filter (EKF) formulation of the online SLAM, Bailey and Durrant-

Whyte (2006). The alternative method is to use non-parametric filtering known as

Particle filter. The most common implementation of the Particle filter is the Rao-

Blackwellized particle filter, Doucet et al. (2000) and FastSLAM algorithm, Monte-

merlo et al. (2002) and Montemerlo et al. (2003).

2.1.1.1 EKF-SLAM

The EKF algorithm represent the observable variables as a multivariate Gaussian

distribution. The motion model of the robot is described by state transitions in the

form of

p(xk♣xk−1,uk) ≈ N (f(xk−1,uk),Rk) (2.11)

where N denotes a Normal distribution and R is the noise covariance. Conse-

quently, the observation model is described in the form

p(zk♣xk,m) ≈ N (h(xk,m),Qk) (2.12)

where h(·) describes the observation function and the noise terms in Q are the

measurement errors. The EKF-SLAM formulation estimates the mean

⎟

x̂k♣k

m̂k

]

= E

⎟

xk

m
♣z1:k

]

(2.13)

and covariance

Pk♣k =

⎟

Pxx Pxm

P ⊺
xm Pmm

]

k♣k

=

⎟⎠

xk − x̂k

m − m̂k

⎜ ⎠

xk − x̂k

m − m̂k

⎜⊺

♣z1:k

]

. (2.14)

A Gaussian distribution is fully modeled by its mean and covariance. The ad-

vantage of this formulation is that the algorithm computes as an algebraic form of

multiplying matrices and vectors. The prediction step is then in the form

x̂k♣k−1 = f(x̂k−1♣k−1,uk) (2.15)

Pxx,k♣k−1 = ∇fPxx,k−1♣k−1∇f⊺ + Rk (2.16)

where ∇f is the Jacobian of odometry model f evaluated at the robot pose es-
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timate xk−1♣k−1, Durrant-Whyte et al. (2006). In a static environment there is no

need to perform a prediction on the features, however it is required for landmarks

that move (i.e. dynamic environments). This is not formulated in this survey since

for planetary rovers moving landmarks are removed from the map. Afterwards, the

observation step follows the known Kalman update rule

⎟

x̂k♣k

m̂k

]

=
[

x̂k♣k−1m̂k−1

]

+Kk

[

zk − h(x̂k♣k−1, m̂k−1)
]

(2.17)

Pk♣k = Pk♣k−1 −KkSkK
⊺
k (2.18)

where Kk is the Kalman gain or matrix, which is computed as

Kk = Pk♣k−1∇h⊺S−1
k (2.19)

and the Sk is the measurement prediction covariance matrix derived as

Sk = ∇hPk♣k−1∇h⊺ + Qk. (2.20)

The ∇h is the Jacobian matrix of the observation function h evaluated at x̂k♣k−1

and m̂k−1. The derived EKF Kalman equations are the standard formulation. Other

variants of the filter are the Sigma-Point Kalman filters or the Unscented Kalman

Filter (UKF), Merwe et al. (2004).

The observation step updates all the landmarks and joint covariance matrix every

time there is a new observation. This entails a computational cost which grows

quadratically with the number of landmarks. There has been significant work in

developing alternatives to achieve real-time implementations. Most of the variants

adopts the structureless approach since the landmarks are not present in the state

vector. The State Cloning Kalman Filter (SC-KF), Mourikis et al. (2007b), is one

of the most mathematically elegant solutions. The approach requires a copy of the

state vector at previous time, which is called stochastic cloning. The first copy is the

state at the latest exteroceptive measurement while the second copy represents the

robot current state. At the prediction step of the filter the current state is propagated

while the copy stays unchanged. It is at the correction step when the copy is updated

and the copy is reset to the new measurement. This approach delays linearization

while having complexity only linear in the number of features. An evolution of the

algorithm, the Multi-State Cloning Kalman Filter (MSC-KF) described in Mourikis

et al. (2007a), takes the concept further to store multiple copies of the sensor pose

in the vector state. The concept of cloning makes the covariance more accurate as a

monotonically increasing function and therefore a better estimate. However, a struc-
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tureless filter with no features in the state vector entails marginalization of the land-

marks position which is a source of error.

EKF-SLAM performs linearization at every recursive step of the last state vec-

tor. Marginalization and erroneous linearization adds spurious information which

makes the filter very sensitive to outliers. An effect of the inconsistency is that the

estimation becomes over-confident which results in a non-optimal estimation. Con-

vergence and consistency can only be guaranteed in the linear case. The problem

has been addressed in the literature to perform the so-called observability analysis

by Hernandez et al. (2015). The Observable-Constrained EKF (OC-UKF) described

in Kottas et al. (2012); Huang et al. (2009), analyses the unobservable directions

which permit the filter to update only in the observable directions. This is because

the observability properties of the linearised model are key to determine filter con-

sistency. The methodology alters the computation of the Jacobian in order to achieve

the desired observability properties. An elaborate analysis of Visual-Inertial SLAM

is available in Martinelli (2012); Hesch et al. (2014).

Those inconsistencies in the EKF-SLAM formulation make the loop closure par-

ticularly difficult and intractable for long-term SLAM solutions.

2.1.1.2 Particle Methods

Sequential Monte Carlo filter or Particle methods are non-parametric models that

represent multimodal distributions (i.e. non-Gaussian). Particle filters approximate

posteriors by a finite number of values or samples instead of a fixed functional form

of the posterior p(xk,m♣z1:k−1,u1:k). The quality of the approximation relies on the

number of samples used to represent the posterior. As the number of parameters

increases the estimation converges to the true posterior. The approximation is based

on a set of N samples ¶αi♢N
i=1 referred to as particles. The theoretical derivation

is based on a general expectation E for an arbitrary function g(·) over a probability

distribution p(·) expressed as

Eg(·)(p(xk,m♣z1:k−1,u1:k)) =

∫

g(xk,m)p(xk,m♣z1:k−1,u1:k)dxk. (2.21)

This is known as the indicator function and its integral can be approximated with

a collection of particles αi drawn from the distribution p(·). The approximation for-

mulates as

Eg(·)(p(xk,m♣z1:k−1,u1:k)) ≈ 1

N

N
∑

i=1

g(αi
k) =

1

N

N
∑

i=1

δαi
k
(xk,m)♣N→∞

(2.22)
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where δ stands for the Dirac function at a given sample αi. The speed of conver-

gence of this estimate depends on N the number of particles. In practice, it can be

difficult to draw samples from the posterior distribution p(·) because it is multidimen-

sional and only known up to a certain constant value. The alternative is the Bayesian

Importance Sampling (IS) method. The IS method uses a proposal distribution

π(xk,m♣z1:k−1,u1:k) which approximates the true distribution p(xk,m♣z1:k−1,u1:k)

and the samples are given a set of importance weights ¶ωi♢N
i=1 to compensate for

this discrepancy. The weights are given as

ωi
k = ω(αi

k,m
i) =

p(αi
k,m

i♣z1:k−1,u1:k)

π(αi
k,m

i♣z1:k−1,u1:k)
. (2.23)

Therefore, equation (2.22) can now be expressed using the proposal distribution

π(·) and the weights

p(xk,m♣z1:k−1,u1:k) ≈ 1

N

N
∑

i=1

ωi
kδαi

k
(xk,m). (2.24)

The high dimensional space of the SLAM problem (i.e. pose and landmarks)

makes the direct application of the Particle method infeasible due to the computa-

tional cost. The method so-called Rao-Blackwellized, in which the joint state from

equation (2.4) and (2.21) is partitioned using the product rule. This technique make

sampling methods feasible in computational time. Further information appears in

the original work by Doucet et al. (2000). The joint SLAM state divides into the map

and the robot pose as

p(x0:k,m♣z1:k,u1:k) = p(m♣x0:k,z1:k) p(x0:k♣z1:k,u1:k). (2.25)

This trick is an important property to speed up the particle filter. The landmarks

become independent when related to the complete trajectory x0:k instead of the last

pose xk. The map can be computed analytically as a set of independent Gaussian

landmarks, with linear complexity instead of a joint map distribution with quadratic

cost.

At a certain time the joint state is given by a set of weights, particles and the map

as ¶ωi
k,α

i
0:k−1, p(m♣αi

0:k−1,z1:k−1)♢N
i . The Rao-Blackwellized particle filter for SLAM

is implemented as follows.

• When a new odometry measurement is received, compute a proposal distribu-

tion for each particle from the particle history,

αi
k ∼ π(xk♣αi

0:k−1,z0:k,uk). (2.26)
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The new particle is joined to the existing set of particles

αi
0:k ≜ ¶αi

0:k−1,x
i
k♢.

• Weight the samples using the Important Sampling method. The numerator is

formed with the measurement model and the motion model,

ωi
k = ωi

k−1

p(zk♣αi
0:k,z1:k−1) p(αi

k♣αi
k−1,uk)

π(xk♣αi
0:k−1,z0:k,uk)

. (2.27)

The measurement model differs from the original one in equation (2.12) since

the map is marginalized from the observations as

p(zk♣x0:k,z1:k−1) =

∫

p(zk♣xk,m) p(m♣x0:k−1,z1:k−1)dm. (2.28)

• Perform a particle resampling step when necessary. This step selects parti-

cles with their associated maps and probability proportional to their weights.

Selected particles are given a uniform weight distribution, ωi
k = 1/N . The fre-

quency of resampling differs between implementations, though the most com-

mon is once the weights are below a certain threshold. Some implementations

resample every time step or a fixed number of steps.

• Perform a EKF update for each particle with the observed landmark and the

known pose. This entails N Kalman updates but is simpler and computational

more efficient than propagating particles.

Each particle has the associated map as an independent Gaussian distribution

and the resulting map can be computed analytically, given by

p(m♣αi
0:k, z1:k) =

M
∏

j

p(mj ♣αi
0:k,z1:k). (2.29)

A fast implementation of the Rao-Blackwellized filter addressed in the litera-

ture is FastSLAM, Montemerlo et al. (2002). The algorithm modifies the proposal

distribution directly using the motion model and the last odometry readings. The

probabilistic sampling step is easily implemented for any robot for which kinematics

can be computed by

αi
k ∼ p(xk♣αi

k−1,uk). (2.30)

Consequently, from equation (2.31), the samples are weighted according to the
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marginalized observation model as

ωi
k = ωi

k−1p(zk♣αi
0:k,z1:k−1). (2.31)

The Particle filter implemented in FastSLAM has a set of interesting properties:

Rao-Blackwellized, conditional independence and particle resampling. Each particle

in FastSLAM carries a sample of the complete path but the actual update equation

uses the most recent pose, making the FastSLAM a filter. It also makes data associa-

tion easier since the adoption is made at each particle and not for the complete filter

as in the EKF-SLAM algorithm. This property makes particle methods more robust

against outliers. Particle filtering can be efficiently implemented using tree methods

in order to partition the map. Grid-based maps have been introduced in Grisetti

et al. (2007a). In their work, the Gaussian model for the landmarks is replaced by

a occupancy grid map. DP-SLAM uses ancestry tree methods to update grid-based

maps, reported in Eliazar and Parr (2004). This approach improves map represen-

tation using laser range finder and loop closing in deterministic environments. One

of the benefits of using sampling methods is the possibility to model non-Gaussian

and multimodal distributions. The work described in Stachniss et al. (2007) shows

that in around 5 % of test cases the Gaussian approximation is not sufficient to model

the likelihood distribution which might cause divergence of the filter. Therefore, the

work proposes a multimodal distribution while maintaining the same efficiency as

the Gaussian proposal, Stachniss et al. (2007).

Empirical results have shown that Particle methods can solve the SLAM problem

at the cost of high computational requirements. In practice, these methods also suffer

from several problems. Loop closure can create particle depletion. This prevents the

system from estimating consistent global maps. Some resampling techniques are in-

vestigated in Grisetti et al. (2007a); Stachniss et al. (2005) and Grisetti et al. (2007b)

which improve but do not completely solve the problem. In addition, the number of

particles to compute SLAM is set manually based on an initial guess. In outdoor en-

vironments, with a robot moving in a six dimensional space, the particle filter greatly

increases the number of samples. Generally, these penalties make Particle methods

difficult to scale for long-term SLAM solutions.

2.1.2 Smoothing

Kalman and Particle filters are recursive with the Markov property. As previously no-

ticed, a recursive form involves marginalization of past measurements into the last

estimate. This makes filter methods particularly sensitive to spurious information

and a single outlying measurement can corrupt the estimate. Smoothing methods

incorporate past measurements into the estimation of the current state. The termi-
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nology refers to smoothing because the estimate is smoothed by passing through the

measurement history. Most practical approaches use unimodal Bayesian smoothers

which models the uncertainty as a Gaussian probability distribution, called Kalman

smoothers. Kalman smoothers are optimal in the sense that all available information

is incorporated to make the best estimate that is mathematically achievable.

Solving the SLAM problem using smoothing starts with the full SLAM problem

definition from equation (2.4). Solving the equation consists of finding the Maximum

a Posteriori (MAP) estimation of the robot’s trajectory x0:k and the map m. A solution

to the SLAM problem would not be possible without a well defined structure. The

structure used in smoothing is a graph formulation of the SLAM problem shown in

Fig. 2.1. Such graph representation is formally derived from a Dynamic Bayesian

Network (DBN) which describes a stochastic process with a directed graph structure.

Landmarks and robot poses are stored in the nodes while measurements are repre-

sented by edges or arcs in the graph. Two consecutive poses xk−1, xk are related

together by an edge which represents the odometry measurement uk. Other edges

are given by the feature measurement zk,k of a landmark k at a certain pose xk.

Building the graph is performed online while the robot is traversing the environment

leading to a continuously increasing size. Edges in the graph are soft constraints

and solving the optimization problem is also referred as relaxing these constraints.

Sometimes mentioned in the literature as relaxation. Computing the SLAM solution

is analogous to computing the state of minimal energy of this model. The goal of a

Maximum a Posteriori (MAP) approach is to maximize the log-posterior given as

x̂0:k, m̂ = arg max
x0:k,m

log(p(x0:k,m♣z1:k,u1:k)) (2.32)

x̂0:k, m̂ = arg max
x0:k,m

N
∏

k

p(xk♣xk−1,uk)
N
∏

i

p(zi,k♣xk,mi). (2.33)

Each constraint of the form p(xk♣xk−1,uk) is the motion model given by the

odometry input uk. Likewise, p(zi,k♣xk) is the landmark measurement model, and

both models correspond to edges in the graph structure. Under a Gaussian noise as-

sumption, the motion model corresponds to equation (2.11) and the measurement or

observation model to equation (2.12). The MAP estimate for the trajectory x̂0:k and

the map m̂ is obtained by minimizing the negative log of the joint probability as

x̂0:k, m̂ = arg min
x0:k,m

−log(p(x0:k,m♣z1:k,u1:k)). (2.34)

Substituting the process and measurement models, gives the following nonlinear
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least squares problem

x̂0:k, m̂ = arg min
x0:k,m

¶∥
N
∑

k

f(xk−1,uk) − x ∥2
Rk

+ ∥
N
∑

i

h(xk,mi) − zi,k ∥2
Qi

♢ (2.35)

where ∥ e ∥2
Σ= e⊺Σ−1e for the squared Mahalanobis distance with covariance Σ.

This is a sparse nonlinear least square system. Sparse because each node in the

graph is only connected to a small number of other nodes. The number of constraints

in the graph is (at worst) linear in the time elapsed and in the number of nodes in the

graph. The odometry model f and the measurement mode h are nonlinear for which

a good linearization point is not available. Common optimization methods, such as

Levenberg–Marquardt or Gauss–Newton, are typically used to solve a succession of

linear approximations to equation (2.35). It is worthwhile to notice, this is similar

to EKF-SLAM but iterating repeatedly to approach the minimum, therefore avoiding

the problem deduced from incorrectly linearization. The least squares is on a mani-

fold due to the rotational components over the non-Euclidean 3D Special Orthogonal

Group SO(3). A smooth manifold is a non-Euclidean mathematical space, but can be

seen as Euclidean on a local scale. The manifold structure is an important part of

modern SLAM implementations, but conceptually the SLAM problem is equivalent.

The reader can find abundant material about the manifold structure of the problem

in Hertzberg (2008); Grisetti et al. (2010b).

Graphical SLAM scales better to higher-dimensionality maps in comparison to

EKF-SLAM, in which the update time is quadratic with the size of the map. The up-

date time of the graph is constant and the memory required is, for most cases, linear.

These two reasons make graphical SLAM methods more suitable for outdoor robotics

than Bayes filtering methods. However, computing the optimization can be expen-

sive and depends on the constraints in the graph. For this reason, two approaches

for smoothing are commonly discussed and presented here:

• Fixed-lag smoothing estimates the states within a given window and perform

marginalization with the other nodes in the graph. This approach is more ac-

curate than EKF-SLAM since it takes a bigger number of past measurements.

Fixed-lag is also more robust against outliers in the measurements than fil-

ters. However, marginalization of states out of the window entails less sparsity

which leads to inefficiency in the estimate. Interesting works are available in

the literature: Mourikis and Roumeliotis (2008); Sibley et al. (2010); Dong-Si

and Mourikis (2011); Leutenegger et al. (2015).

• Full smoothing or batch nonlinear least squares approaches are methods that

estimate the complete history of poses and landmarks (map). This approach
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is also called full SLAM and guarantees the highest accuracy. The computa-

tional cost quickly becomes infeasible for real-time performance, as the pose

and map grows with time. However, there is significant research on the full

SLAM problem. Kummerle et al. (2011a,b) is an interesting work which pro-

vides online estimation of calibration parameters in a graph SLAM. Recently,

other research proposed target variables to deal with smaller graphs, reduce

the computational cost and enhance robustness, Carlone et al. (2014). An impor-

tant development has been the incremental smoothing and mapping from Kaess

and Ranganathan (2008); Kaess et al. (2011a,b), which take advantage of fac-

tor graphs to maintain efficiency and update a subset of nodes affected by a

new measurement using a novel data structure called a Bayes tree. These re-

searches make full smoothers very attractive for real-time SLAM systems.

2.1.3 Relation of Paradigms

The three different methods described here cover most of the work done in SLAM.

EKF-SLAM was mainly implemented during the first years of the SLAM problem.

It set the mathematical principles of the SLAM problem and helped to analyze

the challenges related with optimization and robust data association. At the same

time, Particle methods became popular due to their robustness against outliers and

multidimensional modeling of the uncertainty distribution. EKF-SLAM and Rao-

Blackwellized methods covered most of the implementations during the first 20 years

of SLAM. EKF-SLAM has been implemented with a small set of landmarks, mostly

in structured environments, since the computational cost is quadratic with the size

of the map. Few exceptions, such as the SC-KF mentioned in Section 2.1.1.1, keep

the computational cost linear with the number of features. However, filter consis-

tency needs to be ensured with a tedious observability-constrained analysis. Particle

methods are mostly used with a reduced dimensionality since the number of parti-

cles exponentially grows with the dimension of the state space. Particle depletion

makes loop closure difficult in larger maps and outdoor environments. Hierarchi-

cal SLAM, which is particle filters with smoothing methods, solves the loop closure

limitation as in the Embodied SLAM described in Schwendner et al. (2013), with

an increase in robustness and computational cost. Recent research in modern SLAM

uses the full SLAM paradigms to solve larger maps in outdoor scenarios, Leutenegger

et al. (2015). Full smoothers with graph structures are very suitable to incrementally

adding new measurements. A reader familiarized with visual methods might notice

some similarities of full SLAM smoothers to Bundle Adjustment (BA) and Structure

from Motion (SfM). Both paradigms optimize a 3D structure but smoothers solve the

optimization problem incrementally each time a new measurement is included in the
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graph. Additionally, the measurement model in smoothing methods can be from any

type of sensor while cameras models only lead with projective geometry in SfM. In

addition, smoothers pay attention to the probabilistic nature of the problem.

In summary, EKF-SLAM filters appear beneficial for small processing costs in

confined environments, Particle methods are applicable for problems with a small

state dimension, whereas smoothing methods are superior in large environments

with promising results towards long-term SLAM.

2.2 Localization and Mapping for Planetary Rovers: A

Historical Evolution

Planetary mobile robots, planetary rovers or space exploration vehicles are complex

systems designed to perform a main task: to move across the surface of a celestial

body or planet. The motivation behind to equippping a spacecraft on wheels with such

capability widely varies from scientific purpose to cargo support or crew transporta-

tion in a human spaceflight mission. A historical evolution of flown planetary rovers

is briefly introduced from two perspectives with relevance for this thesis: navigation,

and therefore localization and mapping, and operations.

2.2.1 Lunokhod

The series of Soviet robotics mobile vehicles, Lunokhod-1 and Lunokhod-2 explored

the Moon surface during the early 1970s. On 17 November 1970 Lunokhod-1 landed

on the Moon surface and covered a distance of 10.5 km in teleoperation beaming thou-

sands of images back to Earth. Less than three years later, on 15 January a replica

landed in the Monnier crater covering 39 km, between 16 January 1973 and 22 April

1973. Lunokhod rovers marked the longest distance of any vehicle on the lunar sur-

face. Together they traveled about 50 km in 414 days on the Moon surface, and a

third vehicle on the series was designed but never flew due to funding issues, Carrier

(1992); Kemurdjian et al. (1993); Malenkov (2013).

Rovers are 170 cm long, 160 cm wide, 135 cm high and have 30 cm ground clearance

with a total mass of 756 kg. Lunokhod’s principal scope was to support future manned

missions and to explore the Moon surface, since not much information existed at that

time. The chassis has a mass of 105 kg and consists of eight wheels, independent sus-

pension, motor and brake, Carrier (1992). The rover only requires three wheels to re-

main operational. The wheel diameter, including the cleats, is 51 cm and 20 cm width.

No steering capabilities are designed on the rover and skid steering was necessary

during the traversal. The rover is equipped with two slow-scan television cameras

attached to the front and several scientific instruments as telephotometers, spec-
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trometer and X-ray telescope. The PROP (a Russian acronym for Surface Evaluation

Instrument) is the most relevant instrument on board. Although it is a scientific in-

strument, the PROP is also used as part of the safety system to determine the degree

of wheel slippage and to forecast further motion (i.e. dead reckoning). The PROP

system consists of a extra free-rolling wheel and a penetrometer. Informally called

the ninth wheel, it has spikes on its rim so that it could roll without slipping. Wheel

odometry coming from the freely rotating wheel provides information on the distance

traveled. This wheel is attached to a lever so it could move up and down freely. Its

vertical movement provides information on the unevenness of the terrain that the

Lunokhod covered (see Fig. 2.2b). The rovers are powered by batteries which were

recharged during a lunar day using the solar panel. The opened solar panel provides

energy during the two weeks of moon day, and when the lunar night approaches the

lid closes down to protect the vehicle from the harsh environmental conditions. Over-

all the chassis power consumption for moving the rover on Moon surface is 320 W,

and a system of gears provided the rover with two speeds, 0.22 m/s and 0.56 m/s, Ke-

murdjian (1990). From the learning experience in Lunokhod-1, the second version

of the rover has a third television camera mounted high on the front for navigation

purposes, since the two front cameras in the first rover design are located too low for

a correct guidance.

Operators remotely operated the rover using a joystick and TV images from the

cameras on board. Therefore, the navigation-control loop was closed by the opera-

tors on Earth. A delay of three seconds in transmitting commands and receiving a

response, in addition to the complexity of determining sizes of surface features and

distances, required nonstandard modes of driving. The operators had to acquire new

habits and Lunokhod driver candidates were carefully trained in simulated condi-

tions, which took account of the psychological and physiological characteristics of

every member. As a result, the driver remotely controlled the Lunokhods and they

avoided accidents.

Lunokhod-1 was designed for 90 days of operation and explored the lunar sur-

face for 11 months and Lunokhod-2 did it for four months. However, Lunokhod-2

covered seven times the distance of Lunokhod-1, which enhances the contribution

of the third camera by improving the navigation-control experience and capabilities

to the operator. Lunokhods were equipped with photodetectors to correct its dead

reckoning position using a laser supplied from Earth. By the end of the Lunokhod-1

mission, the rover’s location was uncertain by at least 5 kilometers and stabs at get-

ting laser returns all failed since early in the mission. Lunokhod-1 location remained

unknown for nearly four decades, until the Lunar Reconnaissance Orbiter snapped

photographs of the robot’s tracks in 2010. Lunokhod-2’s reflector is still functional to-

day and its position is known to sub-meter accuracy, Western-Ontario (2010). Fig. 2.2
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were considered to be forward by the navigation system, under the assumption that

this introduced some error but simplified the design and minimized cost weight and

complexity.

Overall the LRV navigation system was simple but sophisticated enough to pro-

vide valuable information allowing the astronauts to travel beyond sight of the LM.

The exploration vehicle operated with success on the three separate lunar missions,

showing that a exploration vehicle truly entails a complete navigation system.

2.2.3 Mars Pathfinder

On December 1996 the National Aeronautics and Space Administration (NASA)

launched the Mars Pathfinder spacecraft, carrying a 10.5 kg microrover to explore

the immediate vicinity of the lander. The wheeled robotic vehicle, named Sojourner,

landed together with the Carl Sagan Memorial Station on July 1997 on Mar’s Alles

Vallis. The place was chosen because expected past floods channeled and deposited

in this area. A tetrahedron lander of 1.5 m wide and 1.0 m high was designed, with

a mass of 264 kg, including the rover, a mast with stereo cameras and other science

instruments. The cameras were mounted on a pan and tilt unit on top of the mast,

located 1.5 m above the ground. The cameras on board the lander were essential to

perform rover navigation. They have a baseline of 0.15 m, Charge-Coupled Device

(CCD) with 256 × 256 pixels, with 0.001 radian per pixel, which results on a Field of

View (FOV) of approximately 14.6◦, Matthies et al. (1995); Cooper and B. (1998).

The rover is 630 mm long, 480 mm wide and 300 mm high with 170 mm ground

clearance. Sojourner’s principal mission was to use the Alpha Proton X-ray Spec-

trometer (APXS) to determine the composition of rocks. A reliable localization sys-

tem was required to precisely locate the rover close to the rock to analyze. A passive

rocker-bogie chassis with six motorized wheels of 13 cm diameters, and four motor-

ized steering mechanisms formed the locomotion system. As a result, Sojourner was

able to traverse obstacles about 1.5 times the wheels diameter. The primary power

system for the rover came from the solar panel and non-rechargeable Lithium batter-

ies provided power through the night. The power budget had a peak of 16 W at noon,

drove the performance of the navigation system and limited rover operation for about

one to two hours around noon. Rover speed was 0.67 cm/s and turning maximal speed

of 7 ◦/s. The rover communicated to the lander over a UHF antenna with a range of

500 m, and the lander directly to Earth. The rover computer on board was a 100 kHz

Intel 80C85 with 0.5 MB of RAM with no operating system (100 Mill Instruction Per

Second or KIPS). The computer performs I/O to some 90 sensor channels and services

the motors, instruments and cameras. The software was a custom executive with a

single thread written in C. Therefore, only one major function among driving, steer-
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(a) (b)

Figure 2.6: (a) Screenshot of the navigation software for the Mars Pathfinder mission.

Lander petals in a deployed configuration are at the center defining the origin of

the navigation frame. (b) Detail of Sojourner front wheels and bogie. Image credit:

NASA/JPL.

ing, transmitting hazard detection was able to be performed at a time. Sojourner

was a semi-autonomous rover and the GNC system could be decomposed into the

following:

• Guidance is divided into three main functions. Goal designation, which iden-

tifies the desirable target position. Hazard detection, performing hazard and

obstacle identification. Path selection, selecting the most convenient path to

reach the goal.

• Rover control performs the appropriate motor commands base on the Guidance

and Navigation inputs. Basic movements consist of straight driving and turn-

on-spot. The rover motion was commanded by one command at a time: Turn,

Move, Go to Waypoint, Find Rock and Position APXS were the programmed

commands.

• Navigation or rover localization deduces and propagates real-time rover pose.

The mission operator on Earth designed the goal for the Sojourner rover using

stereo imagery from the lander. Goal designation specified 3-D waypoints using

stereo cameras on the lander limited to range to 15 −20 m and designation error cor-

related to the distance from the lander. Sojourner was operated on the basis of a

unique local coordinate frame (Navigation or Site frame) centered on the origin of

the lander. X and Y axes pointed to Martian North and East respectively forming

a right-hand coordinate system. Fig. 2.6 depicts some details of the navigation and

locomotion systems.

Sojourner was equipped with two front black and white CCD cameras(768 × 484

pixels) and one rear color CCD camera close to the APXS instrument for science



38 Chapter 2. State of the Art

imaging. The Hazard detection was performed in a minimalistic manner but with

good results. Coupled with the front cameras, five infrared laser stripe projectors

were available to provide an array of 20 measurement of terrain elevation (four points

along each stripe), named active triangulation. On level ground the farthest point on

a stripe projected about 30 cm and 13 cm centrally in front of the rover and laterally

beyond each side of the rover respectively. Sojourner scanned for hazards once every

wheel radius of forward motion (6.5 cm), having a direct impact on the effective rover

velocity, slowing it down to 0.22 cm/s (instead of the 0.65 cm/s mentioned).

Path selection was a simple control behaviour using steering logic based on the

obstacle detected by hazard detection. Briefly, the logic commands the robot to move

forward and turn toward the designated goal if any hazard is detected during the de-

tection phase. In case of hazard detection, sojourner turned in spot right or left, de-

pending on the obstacle location, until no hazard was detected. The logic worked well

as long as obstacle frequencies are not too high. The definition of high was a key issue

during the navigation system design. Performance evaluations were tested using the

side rock frequency distribution of Viking Lander 2 (VL2) and Pathfinder’s candidate

landing site. The path selection perfectly worked for terrain between 0.28 and 0.57

obstacles/m2 (full success) and with difficulties at 0.85 obstacles/m2 (66 % of success).

Pathfinder landing site surface was in a range between 0.65 and 2.0 obstacle/m2, in-

dicating difficulties to safely drive with the proposed methodology, Matthies et al.

(1995).

The rover localization uses the dead reckoning and a daily localization update sent

to Earth. Dead reckoning was performed counting wheel turns and on board sensors.

The navigation sensors consisted of a heading gyroscope and three accelerometers for

sensing the X, Y and Z axis motion and wheels encoders in all six wheels for odometry.

Passive articulation and wheel steering angle were sensed using potentiometers. A

kinematics modeling of the Sojourner chassis was computed on board, processing

the chassis configuration information. Sojourner pose was propagated at 2 Hz by

integrating the encoder counts and the gyroscope angular rate. The accelerometers

continuously provided tilt and roll information of the rover platform, Mishkin et al.

(1998).

Significant heading errors (> 5◦) and the associated error in lateral (y) and for-

ward direction (x) limited the maximum distance to traverse between 5 m and 10 m.

Dead reckoning had a nominal error of 45 cm in forward and 15 cm in lateral direction

depending on wheel slip. Sojourner traversed a total of 100 m with 2.7 m of average

distance per locomotion day, having important difficulties maintaining its heading

knowledge. The turn errors were greater when the vehicle makes right turns, drift-

ing to the left while turning. In an 8 m run, up to 15◦ heading error was observed.

The result suggests that the turn rate was miscalibrated with a dominant scale fac-
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tor and its performance degraded when terrain interactions induced vibration in the

vehicle, Matthies et al. (1995).

One of the technologies demonstrated was the reconstruction of the actual path,

and comparison to the commanded path. The Sojourner mission gave insight for

the design and operation of the Mars Exploration Rovers (MER). The mission easily

covered the primary and extended mission duration of one and four weeks respec-

tively and exceeded all the expectations and design goals. Mars Pathfinder ended

after 83 sols of operations, when the lander lost communication with Earth, most

likely due to lander battery failure. In comparison with previous missions, Sojourner

marked an important lesson learned in what is called rover autonomy and navigation

(being the first rover to navigate on the Mars surface). Some remarkable facts can be

learned and are described in the following:

• Limitations on revealed heading estimation and position uncertainty, with

typical errors in position and heading of 0.69 m and 8.0◦ respectively at the end

of the trial, representing a 5 % of distance error.

• Autonomy is a key limitation on the number of science operations per day as

well as on the distance to navigate.

• Hazard scanning and path selection is directly connected to the net traversal

speed of the rover.

• Goal designation on board the lander limited the distances beyond 20 m due to

systematics errors caused by cameras angular resolution, mast and pan and

tilt angle miscalibration, as well as noisy estimation of the stereo disparity of

the waypoints. Future needs for rover autonomy were already identified at this

point.

• Sojourner marked the importance of having quantitative information of

navigation in order to estimate robotic vehicle performance in the future.

Mars Pathfinder had planned a successor to duplicate the Sojourner rover as part

of the Mars Surveyor 2001 mission. The mission was canceled in May 2000, however

two rovers succeeded Sojourner, the Mars Exploration Rovers (MER). One of these

rovers landed at Mars Surveyor’s target site, known as the Meridiani Planum.

2.2.4 Mars Exploration Rovers

MER-A (named Spirit) and MER-B (Opportunity), marked a milestone in space ex-

ploration vehicles. Those two twin rovers represent the longest planetary exploration

thus far. Spirit landed on Mars on 4 January 2004 on crater Gusev, and its twin
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three weeks after on the Meridiani Planum. The mission objectives of the Mars Ex-

ploration Rovers were to characterize rocks looking for clues of past water on Mars

surface. Interesting samples to analyze were minerals deposited by water-related

processes. Those objectives drove rover autonomy requirements and mobility capa-

bilities to be able to navigate a considerable minimum distance per Mars day or Sol

in complex terrain. The propagation of the rover’s pose within a small percentage

error of traversal was also necessary. This required a level of intelligence on board,

establishing a new benchmark and state-of-the-art on the field. At the time of writ-

ing this document, the mission of the rover Opportunity continues with more than

44.66 km traveled. The mission of the rover Spirit was redefined as a stationary re-

search platform after several months attempting to free the rover, since the rover had

only four operational wheels. Afterwards, the last communication with the rover was

on 22 March 2010 and on 25 May 25 2011 NASA announced the completion of the

mission. Spirit did not survive the Martian winter, having excessively cold internal

temperatures due to energy inefficiency running the heaters. Independently of the

coming news regarding Opportunity, both rovers successfully completed the primary

mission which was defined per 90 sols, Maimone et al. (2007b).

In brief, both vehicles are six-wheeled and solar powered rovers, as their pre-

decessor Sojourner. They have six aluminum wheels with a rocker-bogie system in

which four of them, front and back wheels, have steering abilities. Therefore, Ack-

ermann steering and turn-on-spot maneuvers define the turning capabilities. Rovers

are 1.5 m in height including the camera mast, 2.3 m wide and 1.6 m long. Rover’s

main body structure called Warm Electronics Box weighs 145.6 kg, and the mass of

the rover mobility system is 34.5 kg, making the total mass of the whole rover ap-

proximately 180.1 kg. The rover has a ground clearance of 29 cm on a flat surface

with 25 cm in diameter per wheel. The mobility system is theoretically capable of

negotiating hazards over 35 cm tall. However, due to ground clearance, a hazard is

defined an obstacles whose nominal value is 20 cm. Both rovers are statically stable

at 45◦ and capable of traversing slopes as high as 30◦, Maimone et al. (2006).

The rovers’ sensing ability includes wheel encoders for dead reckoning, poten-

tiometers for the joints of the chassis, inertial attitude sensing and absolute head-

ing determination using cameras and gyroscopes. The Inertial Measurement Unit

(IMU), the LN-200 Northrop-Grumman Corporation (2000), is equipped with three

accelerometers and three fiber optic gyroscopes. The rovers propagate pose estima-

tion at 8 Hz while driving Maimone et al. (2007a). The position is first estimated

using wheel odometry from the encoders. Rover attitude is computed using the

accelerometers (during static regimen) and the integration of the gyroscopes (dur-

ing traversal). High accuracy and low drift have been experienced (less than 2 ◦/h)

in heading. It has entailed a significant improvement in performance with respect
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(a) (b)

Figure 2.7: (a) Spirit, MER-A’s hazard camera with a 120◦ FOV (b) Opportunity, MER-

B’s traversal with almost 2 km for six months of exploration inside Endurance Crater.

December 2004. Image credit: NASA/JPL/MSSS/OSU

to their predecessor Sojourner. Heading drift correction is performed using the

cameras by looking at the sun once per sol, using the Panoramic cameras (Pan-

cams). Several cameras are on board in order to allow high rover autonomy and

sensing for navigation. Two navigation and two panoramic cameras are mounted

on a pan and tilt unit on top of the mast at a height of 1.3 m above the ground. The

Navigation cameras (Navcams) have a wider Field of View (FOV) than the Panoramic

cameras, 45◦ FOV and 16◦ FOV respectively. The reason is that Navcams are used to

perform path planning in a short range during traversal, while the Pancams are used

for scanning the horizon and resolving far-field terrain in long plan, in which higher

resolution is desirable. In addition, two pairs of Hazard detection cameras (Hazcams

see Fig. 2.7) are mounted on the rover body closer to the ground, one at the front and

one at the back in order to perform obstacle detection and avoidance.

As Sojourner, the rovers have semi-autonomous navigation capabilities being

commanded from ground. The GNC system can be decomposed in the following:

• Guidance, divided in two main functions, terrain assessment and path selection.

• Navigation, estimates the rover position and orientation in a full 6 DoF using

the sensing capabilities previously mentioned. Moreover, visual odometry is

remotely triggered when expecting to navigate challenging terrains.

• Control. The rover is commanded using different control modes. The low-

level control commands the steering and driving actuators. The rover is ca-

pable of driving on straight lines, Ackermann and turn-on-spot. Autonomous

commands, in which the inputs come from the guidance, are dictated by the

navigation, closing the loop in an autonomous manner.
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Terrain assessment gives the rovers the capability to estimate the conditions of

the nearby terrain in order to evaluate a priori the difficulties of the traversal. Ter-

rain assessment is based on the GESTALT system, Grid-based Estimation of Surface

Traversability Applied to Local Terrain (GESTALT), described in Howard and Ser-

aji (2001). The system uses stereo-generated 3D geometric data and evaluates the

roughness of the terrain on the grid map. Terrain assessment is beneficial not only

during long drives but also in approaching science targets, Biesiadecki and Maimone

(2006).

2.2.5 Mars Science Laboratory

Mars Science Laboratory (MSL) or Curiosity rover is nowadays the last launched

operational rover on Mars. The rover was launched on November 2011 and success-

fully landed on Mars on 6 August 2012 with a primary mission time of one Martian

year. The rover design inherits much of mobility technologies from the Mars Explo-

ration Rovers, having six-wheel drive, a rocker-bogie suspension, robotic arm and

autonomous navigation abilities. The locomotion system is essentially the same but

with larger size. Curiosity is twice as big as the MER, weighs 900 kg, has a 50 cm

wheel diameter, and is 3 m long and 2.7 m wide allowing the carriage of more scien-

tific instruments on board than its predecessors, Arvidson et al. (2016).

Curiosity has seventeen cameras overall, twelve engineering cameras (Hazcams

and Navcams) and five science cameras (see Fig. 2.8a). Similarly to MER, the Haz-

cams pairs are located on each of the four corners on the body and the Navcams

are mounted on the mast at 2.2 m from ground. The Navcams allow the rover to see

further with a 42 cm stereo baseline, which produces almost a 100 m disparity map in-

stead of the 25 m for the MER. Curiosity shares with the MER its IMU and orientation

estimation software, the hazard detection system and most of the autonomous soft-

ware. The main update is the visual odometry software which improves robustness,

makes multiresolution tracking and reduces the computational time from 2 −3 min in

MER to 40 s mainly because the processor on board is 10 times faster than the MER’s

processor.

Similar to the MER localization capabilities, Curiosity primarily relies its pose on

wheel odometry and attitude based on the IMU, triggering visual odometry only when

necessary. As of today, Curiosity uses visual odometry with more frequency than in

previous missions thanks to the improvements in computational time. Curiosity used

visual odometry during 34 of the first 40 sols, predicting slip checks every 20 m and

autonomously deciding whether to use visual odometry. This technique allows visual

odometry to be used when necessary and partially mitigates its impact in operations

since the decision is made by the rover. Another navigation improvement on Curiosity
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(a) (b)

Figure 2.9: (a) Hi-res image taken by China’s Yutu lunar rover, showing the lander

and the surroundings of Mare Imbrium. (b) Picture of Yutu rover executing a point

turn maneuver, taken from the lander. Image credit: Chinese Academy of Sciences/

China National Space Administration/ The Science and Application Center for Moon

and Deepspace Exploration

rover was unable to move but the scientific instruments were working normally, How-

ell (2014). The rover was unable to fully charge its batteries and with each lunar

night the rover was less functional, Xinhua (2014). Though the scientific instru-

ments were functional, their usability was limited to making the same observations,

due to immobile conditions. CNSA mission control kept the rover transmitting data

until December 2015, and on 3 August 2016 the mission finished all operations, Aron

(2016).
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Chapter 3

Attitude and Heading Reference

System Design

The estimation of a vehicle’s attitude is an important task for navigation since it

describes the direction of motion. Robots are becoming increasingly more competent

at performing autonomous tasks in places and situations where human interven-

tion was the only alternative. Tasks such as autonomous docking, localization in

unstructured environments and instrument deployment, to name a few, call for a

high-performance Attitude and Heading Reference System (AHRS). Planetary explo-

ration and underwater robots rely solely on onboard localization means due to the

absence of global localization in space, Backes et al. (2005); Maimone et al. (2006,

2007b); Ali et al. (2005); Hidalgo-Carrio et al. (2012b, 2014) and underwater Troni

and Whitcomb (2013); Hildebrandt et al. (2014), and as such require a particularly

good understanding of sensor error sources. For that reason space and underwater

robotics share common interests in terms of AHRS.

Inertial sensors are based on different operating principles and fabrication

methods, which influence their error characteristics and the dominance of each er-

ror source in the final measurement. Traditionally, optical principles of operation

senses changes in orientation using the Sagnac effect using an optical fiber. Re-

cent advancements in micro-fabrication and in microsystems technology in general,

have led to high quality Micro Electro-Mechanical Systems (MEMS) with improved

performances, something that has made them particularly attractive for aerospace

and underwater systems. While the use of traditional optical gyroscopes are dom-

inant in both sectors. The use of MEMS-based inertial sensors has made Inertial

Navigation Systems (INS) more affordable, with smaller footprints and modest power

consumption figures, something that has spawned a new generation of robust, small-

scale sensors with great potential for robotic applications, Rehrmann et al. (2011);

Schwendner and Hidalgo-Carrio (2012).

47
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Figure 3.1: Schematic representation of the End to End (E2E) approach for AHRS

design. Figure adapted from Hidalgo-Carrio et al. (2012b).

Different techniques can be applied to identify sensor error sources and derive a

model which then can be incorporated in the filter. The general concept behind these

methods is to analyze the sensor signal in order to characterize the error source. The

most popular among them is the Fast Fourier Transform (FFT) of the noise signal,

which identifies and distinguishes errors at different frequencies of the spectrum.

Another approach is to employ the autocorrelation function to find repetitive patterns

in the time-domain of the signal and subsequently using the FFT to derive the Power

Spectral Density (PSD). The Fourier transform of the autocorrelation function allows

the identification of stochastic processes. When investigating the stability of atomic

clocks, David Allan proposed a methodology to separate noise forms of time series

measurements, an approach that did not require the conversion of the signal to the

frequency domain, Allan (1966). Later this method was adopted by the inertial sensor

community due to its simplicity and its capability to identify the long-term noise. In

essence, the Allan variance provides direct information of the underlying stochastic

processes and has gained momentum due to its computational simplicity and ease

of adaptation to a variety of noise types, Allan (1987). Though there are certain

limitations in the mapping from the Allan variance to the frequency spectrum, still

the method remains powerful and has become an IEEE Standard Specification and

Test Procedure for inertial sensors, IEEE (2008).

INS in general, and AHRS in particular, are widely used in aerial, terrestrial and

underwater applications, and various techniques for characterizing inertial sensor er-

rors are available in literature as Xiyuan (2003); Aggarwal et al. (2008). N.El-Sheimy

et al. (2008) present a thorough methodology for using the Allan variance for the

characterization of the noise coefficients of inertial sensors. Their work establishes a

relationship between the Allan variance and the noise Power Spectral Density (PSD).

Several approaches have also been proposed for modeling inertial sensors and their

error behaviour. Xing and Gebre-Egziabher (2008) describe the sensor model for low-

cost inertial sensors and in Zhang et al. (2008) the Allan variance is applied to provide

a sensor error characterization in detail. Merwe et al. (2004); Han and Knight (2009);

Suh (2010); Quinchia et al. (2013b) show that incorporating inertial data in a correct

manner in a sensor fusion filter is a challenging process.

The Allan variance Allan (1966) was originally developed to characterize the sta-

bility of atomic clocks and has also been successfully applied for the characterization
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(a) (b)

Figure 3.2: Two robotic platforms used to validate the AHRS design. (a) ExoMars

Test Rover (ExoTeR) at the ESA Planetary Robotics Laboratory. (b) Underwater ve-

hicle Dagon at the DFKI Maritime Exploration Hall.

of inertial sensors. Inertial navigation systems can provide accurate results over

short time but might rapidly degrades with time. During the last decade performance

of inertial sensors has significantly improved, particularly in terms of signal stabil-

ity, mechanical robustness and power consumption. Mass and size of inertial sensors

has also been significantly reduced, offering system level design and accommodation

advantages. This chapter presents a complete methodology for the characterization

and modeling of inertial sensors using the Allan variance, with direct application

in navigation systems. Although the concept of fusion is relatively straightforward,

accurate characterization and sensor information filtering is not a trivial task, and

they are essential for good performance. A complete and reproducible methodology

utilizing the Allan variance, including all the intermediate steps is described in this

chapter.

A schematic overview of this E2E methodology is shown in Fig.3.1. The steps of

utilizing an inertial sensor for attitude estimation are addressed: starting from the

characterization of the dominant sensor errors, then deriving a suitable sensor error

model and finally designing an adequate filter. Two different inertial sensors are used

to validate the approach, sensors based on Microelectromechanical systems (MEMS)

and a classical optics-based inertial sensor. MEMS are mounted on a planetary rover

(Fig. 3.2a) and the optics-based gyroscopes on an underwater vehicle (Fig. 3.2b). The

reason is because the optics-based sensor oversizes the allocated space in the plane-

tary rover and requires extra power. The methodology equally applies to both vehi-

cles. It is also important to test the approach with both IMU technologies since both

are currently used in modern spacecrafts.
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Figure 3.3: Typical Allan variance plot for data analysis. The cluster time of length

τ could take different units in time (e.g. microseconds, seconds, minutes or hours)

and the standard deviation σ(τ), (e.g. angular velocity rad/s or acceleration ◦/h, g or

m/s2) depending on the sensor type. Figure adapted from IEEE (2008).

3.1 Background

The Allan variance σ2(τ) extracts information on the form and magnitude of distinct

noise terms. First, the method separates static measurement values into clusters.

Second, a statistical variance is computed among the clusters of equal dimension.

The variance of a cluster time of length τ , is estimated by Allan (1966)

σ2(τ) =
1

2(N − 2n)

N−2n
∑

k=1

[Ω̄k+1(t) − Ω̄k(t)]2 (3.1)

where N is the complete amount of samples and Ω̄(t) is the cluster average value

of the output for a cluster which starts at the kth data point and contains n samples

depending on the length of τ . The Allan standard deviation is plotted in a logarithmic

scale (log-log plot) versus the cluster time τ where different noise terms might show

in the plot (see Fig. 3.3). The identification of the Power Spectral Density (PSD)

function of the stochastic process is required to model the stochastic error. This is

done by the unique relationship between the Allan variance (time domain) and the

PSD (frequency domain). Such relationship SΩ(f) is defined by

σ2(τ) = 4

∫ ∞

0
SΩ(f)

sin4(πfτ)

(πfτ)2
df. (3.2)

The different stochastic processes are identified at various frequencies by simply

varying the cluster time τ . Further explanation of typical errors present in inertial

sensors is available at IEEE (2008). It is possible to relate the Allan variance and
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the PSD of a stochastic error using this approach. It is important to note that the

Allan variance does not always determine a unique noise spectrum since the mapping

from the spectrum to the Allan variance is not bijective (one-to-one). This mapping is

given by equation (3.2) and there is no inversion formula. Table 3.1 summarizes these

derived relationships for the most dominant inertial sensor errors. The quality of the

estimation of the variance is proportional to the number of computed independent

clusters. Consequently, the confidence of the estimation improves as the number of

cluster increases. It is computationally efficient to calculate the Allan variance at

different cluster terms using n as a power of 2.

Modeling sensor errors benefits the overall AHRS performance. A model can be

accurate and specific to a particular sensor but lose general applicability. The pro-

posed sensor model is a balance between accuracy and generality and consists of both

deterministic and stochastic sensor errors. The sensor model encompasses determin-

istic errors like the scale factor and the misalignment, while others, like the thermal

drift, are assumed to be directly compensated by the transducer. The model does not

include scale factor asymmetry, g-sensitive bias, or other errors which mostly appear

on a specific sensor and are usually insignificant for most applications Titterton and

Weston (2004); Rogers (2003). The sensor model equation is

ω̃(t) = (I3×3 +M(c,m)) · ω(t) + ns(t) (3.3)

where ω̃(t) is the 3 × 1 continuous time sensor measurement (i.e: [p, q, r]⊺ angular

velocities from gyroscopes), M is the deterministic error matrix corresponding to the

misalignment m and scale factor c and ns(t) is the stochastic noise process.

The derivation of a stochastic error model requires the identification of the PSD

function for which the Allan variance is useful. The model is a linear and time in-

variant system which uses an input unit white noise to shape itself to the desired

output by knowing the PSD function of the stochastic process. This technique is

known as the shaping filter approach from Brown and Hwang (2012). Different noise

Table 3.1: Dominant stochastic errors in inertial sensors.

Noise type Allan variance σ2(τ) PSD Coef.

Quantization 3Q2

τ2 (2πf)2Q2τ Q [◦]

Random walk N2

τ
N2 N [◦/

√
h]

Bias instability ≈ 2B2ln2
π

(B2

2π
) 1

f
B [◦/h]

Rate rand.walk K2τ
3 ( K

2π
)2 1

f2 K [◦/h/
√
h]

Rate ramp R2τ2

2
R2

(2πf)3 R [◦/h2]
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Table 3.2: Accelerometers noise coefficients for the FOG-based IMU.

Coefficient Acc X Acc Y Acc Z Datasheet

N [m/s/
√
h] 0.0618 0.0802 0.0583 0.0705

K [m/s2/
√
h] 0.00147 0.00083 0.00073 n/a

B [m/s2] 0.00057 0.00058 0.00053 0.00049

types can be modeled using the Table 3.1, and the spectral function is unique for

each stochastic noise type. However, there are certain limiting factors in the deriva-

tion of the shaping filter linear equations. For instance, quantization noise cannot be

modeled since Kalman filter theory only performs on differential equations driven by

white noise, and it will have a noise source which is the derivative of the white noise.

In this particular limitation a different approach could be taken using acceptable ap-

proximations, like the one presented in Savage (2002). However, it is out of the scope

of this chapter to further analyze such limitations since most of the stochastic errors

appearing in inertial sensors can be directly incorporated in a Kalman filter.

3.2 Sensor Error Characterization

Two different Inertial Measurement Units (IMU) have been characterized using

the Allan variance: a miniaturized IMU based on Double-Ended Tuning Fork

(DETF) MEMS gyroscopes and a small Fiber Optic Gyro (FOG) based IMU. Both

IMUs are equipped with MEMS accelerometers, temperature sensors and the digital

electronics on board to acquire sensory data using a serial RS-422 connection.

The Allan variance analysis 1 for the FOG-based IMU is depicted in Fig. 3.4.

The plot shows the angle random walk for gyroscopes and velocity random walk for

accelerometers as the dominant error for the short cluster times. The curve fits a

straight line of slope −1
2 . The angle random walk coefficient N is obtained by reading

the slope line at τ = 1. The coefficient value is solved according to equations in

Table 3.1. A straight line of slope +1
2 fits the part of the plot for long cluster times.

1The allanvar package for R is used: http://cran.r-project.org/package=allanvar

Table 3.3: Gyroscopes noise coefficients for the FOG-based IMU.

Coefficient Gyro X Gyro Y Gyro Z Datasheet

N [◦/
√
h] 0.01055 0.01140 0.01032 0.012

K [◦/h/
√
h] 0.0881 0.6446 0.1193 n/a

B [◦/h] 0.0589 0.1078 0.0492 0.1 − 0.05

http://cran.r-project.org/package=allanvar
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ω̃(t) = ω(t) +M(c,m) + bg(t) + nNg (t) (3.4a)

ã(t) = C(q(t))g + a(t) +M(c,m) + ba(t) + nNa(t) (3.4b)

bα(t) = bBα(t) + bKα(t); α = a, g (3.4c)

ḃBα(t) = − 1

τBα

bBα(t) + nBα(t); ḃKα(t) = nKα(t) (3.4d)

where ω̃(t) is the gyroscope readout, ω(t) is the angular velocity, ã(t) is the

accelerometers readout, C(q(t)) is the rotation matrix associated to the attitude

quaternion q(t), g is the local gravitational vector, a(t) is the acceleration, bα(t) is

the sensor bias (i.e. for gyroscopes or accelerometers), τBα is the correlation time

for the Gauss-Markov process and nNα(t), nBα(t) and nKα(t) are independent zero-

mean Gaussian noises of an inertial sensor α, meaning g for gyroscopes or a for

accelerometers. These noises are defined by

E¶nNα(t)n⊺
Nα

(ι)♢ = I3×3σ
2
Nα
δ(t− ι) (3.5a)

E¶nBα(t)n⊺
Bα

(ι)♢ = I3×3σ
2
Bα
δ(t− ι) (3.5b)

E¶nKα(t)n⊺
Kα

(ι)♢ = I3×3σ
2
Kα
δ(t− ι) (3.5c)

where E denotes expectation, δ(t− ι) is the Dirac delta function, σNα is the uncer-

tainty associated to the random walk coefficient N , σBα is the uncertainty associated

to the bias instability coefficient B and σKα is the uncertainty associated to the rate

random walk coefficient K. The aforementioned uncertainties are actually the stan-

dard deviations σ of the associated probability density functions (pdf) and depend on

the signal bandwidth ∆bn and the noise coefficients of Tables 3.2-3.5.

3.4 Filter Design

Fusing inertial sensors to estimate a vehicle’s attitude is a common practice in

navigation systems. State-of-the-art sensor fusion strategies are commonly based

on, as described in Chapter 2, the Bayesian approach. The algorithms are, in fact,

statistical techniques that offer state estimation by modeling static and dynamic un-

certainties. Setting the right values for those uncertainties is important and the

stochastic models derived with the Allan variance analysis serve in the filter design.

This work employs the Indirect Kalman Filter (IKF), Lefferts (1982); Park (1996),

due to its fast response and the fact that the attitude kinematic equations are inde-

pendent of the filter state. The advantage of IKF is that it has a smaller state vector
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Figure 3.6: Schematic representation of the AHRS using the IKF approach

dimension than the conventional Kalman filter (see Fig. 3.6).

The filter estimates the vehicle’s attitude using the error quaternion proposed

by Lefferts (1982). The attitude is defined by first applying the current estimated

attitude q̂ and then is corrected by a small error rotation qe expressed in the vehi-

cle’s body frame. The attitude is computed using the composition (product) of two

quaternions ⊗ while the state vector estimates the small attitude error so that

q = q̂ ⊗ qe (3.6)

qe only depends on the sensor error model and is a three element vector assum-

ing that the scalar part is 1 ≈ cos(θ/2) for small θ rotations. The error quaternion

dynamics are estimated in the filter and the prediction step is determined by the

following equation from Creamer (1996)

q̇e(t) ≈ −ω̃(t) × qe(t) − 1

2
(bg(t) + nNg (t)). (3.7)

The filter state is defined by x = [qe bBg bKg bKa ]⊺ which contains the bias of gy-

roscopes and accelerometers. The following prediction equation is used to propagate

the state

ẋ(t) = Ax(t) +B (3.8)
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with

A =

⋃

⎢

⎢

⎢

⎢

⎢

⨄

−[ω̃×] −0.5I3×3 −0.5I3×3 03×3

03×3 −βI3×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

⋂

⎥

⎥

⎥

⎥

⎥

⎦

(3.9a)

B =

⋃

⎢

⎢

⎢

⎢

⎢

⨄

−0.5nNg

nBg

nKg

nKa

⋂

⎥

⎥

⎥

⎥

⎥

⎦

(3.9b)

where [v×] represents the cross product matrix of the vector v and β is the inverse

of τBg , the correlation or cluster time associated to the bias instability. The equations

rely on the bias instability and rate random walk to estimate the gyroscope bias with

bBg and bKg respectively. The accelerometer bias is simply modeled as acceleration

random walk bKa . The process noise nNg , nBg , nKg and nKa are set using the noise

coefficient identified by the Allan variance analysis. The filter process covariance is

Q = E¶BB⊺♢ ≜ diag(0.25QNg , QBg , QKg , QKa) (3.10)

where Q is a variance matrix with block matrices as diagonal entries. The stan-

dard deviation σNg in QNg depends on the random walk noise coefficient and the

signal bandwidth fbn = ∆−1
bn defined as

QNg = I3×3σ
2
Ng
δ(t− ι) (3.11a)

σNg = N/
√

∆bn. (3.11b)

The noise covariance of the Gauss-Markov process for the gyroscopes bias insta-

bility model is obtained from the following equation

QBg = I3×3σ
2
Bg
δ(t− ι) (3.12a)

σBg = B
√

2β. (3.12b)
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The angle rate random walk and acceleration random walk are computed by

QKα = I3×3σ
2
Kα
δ(t− ι) (3.13a)

σKα = K
√

∆bn. (3.13b)

A zero-order hold assumption is selected for discretization where the inertial sen-

sor output is sampled periodically with period ∆t and is assumed constant over the

time interval. The discrete prediction equations propagate the discrete state xk using

x̂−
k+1 = ϕkx̂k+1 (3.14a)

P−
k+1 = ϕkPk+1ϕ

⊺
k + Q̂ (3.14b)

where ϕ ≜ eA∆t. The discrete form of the noise is assumed to be continuous white

noise with variance Q as follows

Q̂ ≜
∫ (k+1)∆t

k∆t
eAtQeA⊺tdt. (3.15)

The integral can seldom be solved analytically, however a simple approximation

can be obtained by applying the Taylor expansion. The solution gives

Q̂ ≈ Q∆t+ 0.5AQ∆t2 + 0.5QA⊺∆t2 (3.16)

The measurement updates of the filter use the accelerometers to compensate the

pitch and roll angles. The static measurement covariance RNa is defined here as

zero-mean Gaussian noise. The standard deviation is computed similarly to equa-

tion (3.11), by applying here the accelerometer random walk noise coefficient N from

Table 3.2 or Table 3.4 depending on the sensor.

The accelerometers naturally measure the accelerations exerted on the vehicle,

which are considered perturbations when it comes to the estimation of the grav-

ity vector and therefore the gravity model (see Fig. 3.6). The filter estimates the

accelerometers residual in order to compensate for these perturbations, as described

in detail in Suh (2010). This technique brings better performance in dynamic envi-

ronments and does not interfere the filter design process described in this work.
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3.5 Experimental Results

The first experiment using the presented AHRS was performed by manually moving

the DEFT-based IMU (i.e. not on board a vehicle) in a laboratory environment. The

DEFT-based is lighter than the FOG-based IMU and therefore easier to manually

move with one hand.

Objective. In order to evaluate the added value of the sensor characterization in

the approach, three filter instances are compared against the measured ground truth.

The three instances are identical to each other, with the only difference being that

one encompasses the results obtained by the sensor characterization in Section 3.2,

while the others do not. The three filter instances run in parallel, having the same

system of equations except for the uncertainty values. The objective is to estimate

and evaluate the impact of different inertial error models.

Setup. A set of infrared emitting and sensing cameras were used, which covered the

testbed area and could track reflective markers attached to the IMU. These cameras

are part of a ground truth tracking system, which can deduce the position and ori-

entation of objects equipped with such markers. The IMU was freely moved during

several minutes starting from and finishing at static position. The algorithm im-

plemented works as follows: the AHRS estimates the initial attitude by computing

the gravity vector during the first few seconds and calculates the relative orientation

with respect to the local horizontal plane. This process provides the best heading

estimation with respect to the Geographic North at initialization time, i.e. Gyro-

compassing, Rogers (2003). Once the initial attitude is estimated, the AHRS fuses

the information from the accelerometers and gyroscopes using the filter scheme de-

scribed in Section 3.4. The filter then estimates the error quaternion and inertial

sensors bias in order to correct the attitude quaternion as in equation (3.6).

Table 3.6: Attitude Root Mean Square Error (RMSE) for the experimental results

Filter scheme Roll [◦] Pitch [◦] Yaw [◦]

Filter w/ Allan data 0.2875 0.2951 1.7010

Filter w/i Allan data 0.3709 0.3148 5.1360

Filter w/o Allan data 1.2788 1.6265 23.9185
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Evaluation. The results, together with the ground truth reference, are depicted in

Fig. 3.7 using Euler angles (i.e. roll, pitch and yaw). The instance labelled as filter w/

Allan data used the results from Section 3.2 and shows the 2σ confidence interval.

The filter w/i Allan data used incomplete sensor error model. It means there is not

value for the bias drift, which is model by the bias instability and rate random walk,

β = 0, σ2
Bg

= 0.00 and σ2
Kg

= 0.00. It alters equation (3.9) setting the I3×3 entry of the

bias to zero. The initial bias is not used to correct the gyroscopes information. The

filter w/o Allan data uses the sensor error model but with wrong uncertainty values,

β = 1, σ2
Bg

= 0.001 and σ2
Kg

= 1 · 10−06. It alters the model of the bias drift with a

higher correlation time and therefore negatively affecting the evolution of the bias.

The pitch and roll angles performed more accurate at dynamic regime when using

the values from the Allan variance analysis since a precise sensor bias estimation

is computed by the filter. This is critical for INS in highly dynamic environments.

Heading suffers from drift in all the filter instances, mainly due to the fact that no

other compensating mechanisms exist in the IMUs (e.g. magnetometers). However,

the drift is more pronounced for the filter w/o Allan data, as it does not include the

noise coefficients deduced from the Allan variance analysis. A noticeable drift also

appears in the heading angle of the filter w/i Allan data which is expected since the

filter does not estimate the bias evolution as in equation (3.12) and (3.13). The Root

Mean Square Error (RMSE) calculated by comparing the ground truth data versus

the attitude estimated by the filter instances is shown in Table 3.6. For all three

angles the filter w/ Allan data has lower RMSE.

3.6 Navigation Results

The two characterized IMUs are part of the navigation systems of two distinctly

different robotic platforms, see Fig. 3.2. The DETF-based IMU is mounted on the Exo-

Mars Test Rover (ExoTeR) due to restrictions in volume. ExoTeR is a laboratory rover

prototype that resembles the ExoMars rover mobility configuration in scale, Poulakis

et al. (2015). ExoTeR’s sensor suite also includes a stereo camera pair, a Time

of Flight (TOF) camera and the actuator encoders and potentiometers. ExoTeR

weighs 25 kg and has a ground clearance of 20 cm. The track width and wheel base

are 62 cm and 53 cm respectively, see Appendix A for further details. The FOG-based

IMU operates on board the Dagon Autonomous Underwater Vehicle (AUV), which

is also equipped with a stereo camera system, a Doppler Velocity Log (DVL), a me-

chanical scanning sonar and a pressure sensor. Dagon has a mass of 75 kg, a length

of 110 cm and is equipped with six thrusters to provide high maneuverability. The

information from the DVL, the pressure sensor and the IMU are fused to obtain a

dead reckoning pose as described in Hildebrandt et al. (2012, 2014).
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Specifically, this chapter focuses on the End to End approach for AHRS design

using the Allan variance methodology. The work describes the design aspects of a

general AHRS which can be adapted to any inertial sensor in order to improve the

performance, independently of the sensor technology and its application. The gene-

rality of the approach is evaluated by integrating two different inertial measurement

units, a DETF-based and a FOG-based IMU, on the AHRS of two robotic platforms.

A set of reproducible steps from the inertial sensor characterization until the AHRS

design and final evaluation is presented. The influence of the sensor noise model on

the filter equations is described. The results show and improvement of 1◦ RMSE in

attitude, pitch and roll, and by several degrees in heading during a freely moving ex-

periment (see Table 3.6). The chapter also presents the effect of partial sensor error

modeling on the final accuracy. The delta in attitude estimated by the AHRS is of

importance in a 6 DoF odometry as it will be mentioned in Chapter 4.

In future work, low-cost inertial sensors might have noises with complex spectral

structures since several random processes are superimposed. A solution based on

nonlinear fitting with constraints is proposed by Quinchia et al. (2013a). Their work

describes a nonlinear least squares fitting on the log-log plot of the Allan variance.

The integration of this nonlinear modeling in a GPS/INS is subject to a future applied

research for low-cost navigation.
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Chapter 4

Enhanced 3D Odometry

Articulated mobile robots have complex chassis and require a complete model in com-

parison to skid-steer models (planar assumption). This chapter presents the neces-

sary steps to develop a complete motion model for real-time inertial-aided odometry.

The presented methodology relates normal forces with the probability of a contact

point to slip. This work uses the mathematical principle of the general transforma-

tion approach, first introduced by Muir and Neuman (1986). The method is applied

in two wheel mobile platforms with a significantly diverse locomotion system, the

ExoMars Test Rover: a research planetary rover and Asguard: a simple yet capable

leg-wheel hybrid robot. The performance of the approach is demonstrated during ex-

tensive field testing within different unstructured environments. The results show

that the accuracy is increased by weighting the least squares solution using static

force predictions. Error analysis and comparison with state-of-the-art planar and

contact point odometry are discussed, resulting in a richer modeling technique and a

more accurate localization.

4.1 Introduction

Localization focuses on determining the pose (i.e. position and orientation) with res-

pect to a global coordinate frame and typically within a map. Probabilistic locali-

zation frameworks, as variants of Bayes filters, have been used to solve the locali-

zation problem, Montemerlo et al. (2002); Thrun et al. (2005); Schwendner et al.

(2013). Those frameworks fuse sensory data to propagate robot’s pose while moving.

The process is separated into prediction and correction of the pose using propriocep-

tive and exteroceptive sensors respectively.

The estimation of motion in the prediction step is commonly performed using a

motion model. Motion models are means for mobile robot odometry, have real-time ca-

pabilities and are inexpensive in comparison with sophisticated map matching tech-
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niques. The inheritance from indoor robotics, which operated in structured and pla-

nar environments, brings efficient and simple techniques like the skid-steer methods,

see Chapter 29, Inertial Sensing, GPS and Odometry at Siciliano and Khatib (2016).

However, this simplicity causes a performance degradation specially while localiz-

ing on complex uneven terrains like planetary surfaces. As a consequence, exten-

sive sensing capabilities have to overcome poor odometry performance, but before

applying sensing means, the evaluation of a complete 6 DoF motion model in a 3D

unstructured environment is worthy of investigation.

In this chapter a method that is able to optimally 1 combine the motion induced at

each contact point is presented. The approach is motivated by the observation that

the robot has different normal forces at each contact point while moving. The pri-

mary contribution of the work is fusing, in a unified framework, normal forces with

the probability of each contact to slip. A performance analysis also demonstrates

that a complete motion model is more accurate than skid-steer and previous contact

point models as Schwendner et al. (2013). The influence of using normal forces is

also investigated. This chapter structures as follow: related work is presented in

the next section. The details of the proposed technique are described in Section 4.3.

Section 4.4 contains the results from challenging large-scale unstructured environ-

ments. The method is applied in two rovers, the Asguard platform, a capable but

simple skid-steer leg-wheel robot, Joyeux et al. (2011), and the ExoTeR, a laboratory

rover prototype that resembles the ExoMars rover in scale, Poulakis et al. (2015).

Conclusions and limitations of the approach are mentioned in brief at the end of this

chapter.

4.2 Related Work

Odometry has been widely studied since many robots only rely on dead reckoning

processes for basic localization. Starting from a known pose, odometry involves the

calculation of a robot’s body configuration from encoder readings. The disadvantage

of dead reckoning systems is very well-known. The localization uncertainty grows

unbounded due to accumulation of errors. Considerable research has been done in

order to reduce the undesirable effect of poor odometry performance. The literature

focuses on three specific types of errors, Borenstein and Feng (1996b) and Siciliano

and Khatib (2016):

• Systematic errors, such as misalignment of actuators and uncertainty about

effective link dimensions.

1Optimally here refers to the best mathematically achievable from a nonlinear least squares

perspective.
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• Non-systematic errors, which include slippage, dragging, forces and multi-point

wheel contact models with the ground.

• Numerical drift and linearization errors, due to discrete-time integration of

delta poses.

The elimination of systematic errors is described from early research in Boren-

stein and Feng (1996b). Calibration methods were applied for specific trajectories

in order to reduce the effect of unequal wheel diameter and uncertainty about the

wheelbase (i.e. deterministic errors). A general method based on least squares is

proposed in Antonelli et al. (2005) with no limitation to a particular predefined path.

Differential-drive platforms are commonly discussed for indoor scenarios because

they are mechanically simple to build. Position tracking in challenging terrains was

also investigated in Lamon and Siegwart (2007). Simulations results are investigated

for the Rocky7 rover in Tarokh and McDermott (2005) defining the wheel contact an-

gle and slip vector.

Slippage correction has been the main non-systematic error as it causes bad re-

sults affecting the final pose. Visual odometry techniques are used to overcome the

effect of slippery terrains, Helmick et al. (2004a); Rehder et al. (2012). Fuzzy logic has

also been used to detect wheel slippage by comparing the motor current on the Flex-

Nav architecture, Ojeda and Borenstein (2002). Their work corrects wheel-slippage

based on motor current measurements. They introduce a linearized function to relate

electric current and wheel-terrain interaction, Ojeda et al. (2006). Rogers-Marcovitz

et al. (2012) present a delayed state filter technique in combination with a vehicle

system model to correct wheel slip. Adaptive odometry by means of terrain classifi-

cation using inertial data has been investigated in Reinstein et al. (2013). A regres-

sion function is trained offline to directly output the adaptive correction coefficient of

the odometry model. Terrain classifiers are presented in Giguère and Dudek (2008)

based on clustering methods with field testing results using the hexapod robot. Per-

formance analysis for omnidirectional robots in rough terrain is available in Ishigami

et al. (2011). Slip compensation based on wheel velocity differences is analyzed for a

traditional skid-steer kinematics in circular trajectories.

Despite all efforts, the dead reckoning problem requires a more elaborate analy-

sis and understanding to identify the impact of motion models. A complete motion

model cannot correct non-systematic errors, which require sensing means as visual

odometry. However, systematic errors, e.g. one single wheel slips, can be mitigated

by effectively modeling the robot’s locomotion system. As of today, the improvement

evaluation of such impact is still an open question. A field testing comparison of a

more sophisticated motion model for robot odometry motivates the research described

in this chapter.









4.3. Odometry Motion Models 75

In practice TB̄,C̄il
is independent of time and the derivative simplifies as ṪB̄,B =

TB̄,C̄il
ṪC̄il,B

. It is appreciable that ṪB̄,B has the form of a free body in motion with

linear and angular velocities, Tarokh and McDermott (2005).

ṪB̄,B =

⋃

⎢

⎢

⎢

⎢

⎢

⨄

0 ψ̇B̄ θ̇B̄ ẋB̄

ψ̇B̄ 0 −ϕ̇B̄ ẏB̄

−θ̇B̄ ϕ̇B̄ 0 żB̄

0 0 0 0

⋂

⎥

⎥

⎥

⎥

⎥

⎦

. (4.2)

It is possible to obtain the rover configuration rates u̇ expressed in term of joints

quantities by substituting equation (4.1) into the skew-symmetric matrix of equa-

tion (4.2). After rearranging the terms and equating the elements on both sides of

the equation the mapping is obtained. The resulting Jacobian matrix Jil, related to a

contact point il, has the form

[

ẋB̄ ẏB̄ żB̄ ϕ̇B̄ θ̇B̄ ψ̇B̄

]⊺
= Jil

[

q̇ ε̇il δ̇il

]⊺
(4.3)

It defines the contribution of each kinematic chain to the body motion allowing

the analysis of each chain and contact point to the resulting final velocity in u̇. Con-

sidering a single contact angle the Jil matrix size is 6 × (n + 4) where n corresponds

to the DoF of the mechanism and 4 to the slip vector and contact angle. The compos-

ite rover equations are obtained combining the Jacobian matrices for all kinematics

chains (i.e. contact points) into a sparse matrix equation of appropriate dimensions.

⋃

⎢

⎢

⎢

⎢

⎢

⨄

I6×6

I6×6

...

I6×6

⋂

⎥

⎥

⎥

⎥

⎥

⎦

⋃

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⨄

ẋB̄

ẏB̄

żB̄

ϕ̇B̄

θ̇B̄

ψ̇B̄

⋂

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= J

⋃

⎢

⎢

⨄

q̇

ε̇

δ̇

⋂

⎥

⎥

⎦

≡ Su̇ = J ṗ (4.4)

Navigation kinematics relates the rover pose rates to joints and sensed rate quan-

tities. The navigation kinematics is the input for statistical motion models and the

basis for dead reckoning estimation. Robots’ sensor availability defines sensed and

non-sensed quantities and equation (4.4) separates into the following form

[

Ss Sn

]

⎟

u̇s

u̇n

]

=
[

Js Jn

]

⎟

ṗs

ṗn

]

(4.5)

Rearranging into non-sensed (left-side) and sensed (right-side) quantities, the re-
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sulting equation is obtained

[

Sn −Jn

]

⎟

u̇n

ṗn

]

=
[

−Ss Js

]

⎟

u̇s

ṗs

]

≡ Ων = b (4.6)

where Ω is the matrix whose dimensions depend on the sensing capabilities of the

rover and directly influence the existence of a solution. The solution to the overde-

termined system above is based on minimizing the error vector E = e⊺We, where W
encodes the individual contribution of each kinematics chain to the estimated solu-

tion

E = e⊺We = (b − Ων)⊺W(b − Ων). (4.7)

The least squares solution of the system in equation (4.7) provides a minimum

error vector e. However, poor traction from a single wheel might influence the so-

lution by increasing the resulting error. The solution is weighted (adapted) in order

to minimize such influence in the final estimate. The weighting matrix is computed

based on the normal force sensed at each wheel. Planetary rovers do not always

have a force sensor at the contact point. Consequently, the motor current signal is

proportional to the torque and therefore related to the traction force. However, the

traction force relation from the torque is not straight forward since in the case of

Asguard multiple wheels and foot locations affect the measurement. A dedicated

identification model would be required in order to estimate such complex relation, in

the direction of the work described in Ojeda and Borenstein (2002). Alternatively,

quasi-static forces are simpler to compute, and precise in static regimen with less

accuracy at dynamic range. Therefore, in order to overcome such limitations a quasi-

static force estimation is explained in the following. In addition, the lowest point

along the wheel circumference is assumed to be always in contact with the ground as

depicted in Fig. 4.4. The assumption is valid for most of the cases. However, it does

not always hold on highly uneven terrains. Accurate estimations are only possible

with additional sensors added to the wheels or feet in order to detect contact and

forces more realistically, Fondahl et al. (2012).

4.3.2 Quasi-Static Forces Estimation

Computation of odometry is highly influenced by the amount of wheel slip, which in

turn depends on the maximum usable tractive force between ground and the wheel.

The maximum available traction, assuming a simple friction model is proportional to

the normal force on each wheel, Wong (2001). The normal force distribution among

the wheels of the robot is based on static reaction forces caused by the robot’s weight.

The computation is performed every sample time, based on the contact point positions
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position vector pBCoM i be given by

RBCoM B′

CoM
=

⋃

⎢

⎢

⨄

r00 r01 r02

r10 r11 r12

r20 r21 r22

⋂

⎥

⎥

⎦

,pBCoM i =

⋃

⎢

⎢

⨄

pîı

piȷ̂

p
ik̂

⋂

⎥

⎥

⎦

, (4.9)

Using equation (4.9), the relationship between nB′

CoM
i and nBCoM i is given by,

nBCoM i = RBCoM B′

CoM
nB′

CoM
i =

⋃

⎢

⎢

⨄

r02

r12

r22

⋂

⎥

⎥

⎦

ni (4.10)

Computing torques from equation (4.9) and equation (4.10),

τ BCoM i = pBCoM i × nBCoM i =

⋃

⎢

⎢

⨄

pîı

piȷ̂

p
ik̂

⋂

⎥

⎥

⎦

×

⋃

⎢

⎢

⨄

r02

r12

r22

⋂

⎥

⎥

⎦

ni (4.11)

τ BCoM i =

⋃

⎢

⎢

⨄

piȷ̂rik̂
− p

ik̂
riȷ̂

p
ik̂
rîı − pîırik̂

pîıriȷ̂ − piȷ̂rîı

⋂

⎥

⎥

⎦

ni (4.12)

Using equation (4.12) let,
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ik̂
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ik̂
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⋂
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⎦
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⎢

⎢

⨄

tîı
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t
ik̂

⋂

⎥

⎥

⎦

(4.13)

Since the actual force calculation at each contact point is highly dependent to

the chassis and number of contact points, the equations for the ExoTeR planetary

platform and the Asguard robot are described separately in the following.

4.3.2.1 ExoTeR Equations

The free body diagram for computation of static forces is depicted in Fig. 4.5a. The

objective is to derive the equations for the values of ni in the case of the ExoTeR

kinematics. The equations are developed based on the fact that the robot has three

passive links and these joints cannot transmit any torque. Therefore, the torques in

the passive links of the chassis along the free joints are independent. When the robot

is quasi-static the following equations apply.
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1. Sum of forces along k̂B′

CoM
equals the weight of the robot.

Σni = mg (4.14)

2. Sum of torques along ı̂BCoM
for wheel i = 0, ..., 3 is zero.

Σ
⎞

pBCoM i × nBCoM i

)

♣̂ıBCoM
= 0 (4.15)

3. Sum of torques along ı̂BCoM
for wheel i = 4, 5 is zero.

Σ
⎞

pBCoM i × nBCoM i

)

♣̂ıBCoM
= 0 (4.16)

4. Sum of torques due to n0 and n2 along ȷ̂BCoM
is zero.

⎞

pBCoM 0 × nBCoM 0 + pBCoM 2 × nBCoM 2

)

♣ȷ̂BCoM
= 0 (4.17)

5. Sum of torques due to n1 and n3 along ȷ̂BCoM
is zero.

⎞

pBCoM 1 × nBCoM 1 + pBCoM 3 × nBCoM 3

)

♣ȷ̂BCoM
= 0 (4.18)

6. Sum of torques along ȷ̂BCoM
for all wheels is zero.

Σ
⎞

pBCoM i × nBCoM i

)

♣ȷ̂BCoM
= 0 (4.19)

Substituting equations (4.11), (4.12) and (4.13) in equations (4.15) - (4.19) and

combining them with equation (4.14) gives,
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The system of linear equations (4.20) can be solved for ni by,
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(4.21)

The reaction forces computes at every time step using equation (4.21) and inputs

to the weighted matrix W (see Section 4.3.3).

4.3.2.2 Asguard Equations

The free body diagram for computation of static forces is depicted in Fig. 4.5b. The

objective is to derive the equations for the values of ni in the case of the Asguard

kinematics. The equations are developed based on the fact that the robot has a free

joint in the rear axis and this joint cannot transmit any torques. Therefore, the

torques in the front and the rear part of the robot along this free joint are independent

when the robot is quasi-static. In the following the equations for the Asguard robot

are derived. When the robot is quasi-static the following equations apply.

1. Sum of forces along k̂B′

CoM
equals the weight of the robot.

Σni = mg (4.22)

2. Sum of torques along ȷ̂BCoM
is zero.

Σ
⎞

pBCoM i × nBCoM i

)

♣ȷ̂BCoM
= 0 (4.23)

3. Sum of torques due to n0 and n1 along ı̂BCoM
is zero.

⎞

pBCoM 0 × nBCoM 0 + pBCoM 1 × nBCoM 1

)

♣̂ıBCoM
= 0 (4.24)

4. Sum of torques due to n2 and n3 along ı̂BCoM
is zero.

⎞

pBCoM 2 × nBCoM 2 + pBCoM 3 × nBCoM 3

)

♣̂ıBCoM
= 0 (4.25)

Substituting (4.11), (4.12) and (4.13) in (4.23), (4.24) and (4.25), and combining
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them with (4.22) gives,
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The set of linear equations (4.26) can be solved for ni by,
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The reaction forces computes at every time step using equation (4.27) and inputs

to the weighted matrix W (see Section 4.3.3).

4.3.3 Weighted Least Squares Optimization

A limitation of the kinematic model comes from the residual error of the least squares

in equation (4.7). Bad measurements might have a big penalty when minimizing the

sum of the square of the errors. The measurements that are more informative are

given more weight, and those that are less informative are given less weight. This

case, e.g. a wheel is producing bad measurements because of poor traction, can be

minimized by adjusting the matrix W in equation (4.7). The solution might suffer

from heteroscedasticity due to different units of SE(3) in the W matrix. However, it

is not too impacted by heteroscedasticity since the information is computed at every

delta pose for a small period of time. A rule of thumb in heteroscedasticity for least

squares is that the influence is small as long as the maximum variance is not greater

than four times the minimum variance.

The W matrix in equation (4.7) is a diagonal matrix which comprises block matri-

ces. Each 6 × 6 block matrix is a single diagonal matrix associated to each wheel and

defines the contact points which are more likely to contribute to the motion of the

robot. These block matrices are selected to have the structure Wil = wilI where wil is

the contribution of the ilth contact point to the resulting body motion. In the ideal case

of a balance configuration, all wheels have equal contribution to the robot motion, the

value 1/N is equally set at each contact point. In practice, the quasi-static force es-

timator combines the attitude information coming from the Inertial Measurement

Unit (IMU) and estimates the forces. The estimated forces are computed every delta

pose and the instantaneous likelihood of each contact point is calculated accordingly

with
√

i

√

l wil = 1.
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4.4 Experimental Results

The methodology is applied in two platforms, Asguard and ExoTeR. Asguard is a sim-

ple yet highly capable leg-wheel system that is intended to serve as the scout rover

unit in a multi-robot exploration scenario. Asguard is able to navigate in complex

obstacles while having a simple locomotion system. It is equipped with optimal en-

coders in each wheel and an absolute potentiometer for the passive joint, Joyeux et al.

(2011).

ExoMars Test Rover (ExoTeR), is a laboratory rover prototype for the ExoMars

mission. ExoTeR is equipped with a stereo camera pair, a Time of Flight (TOF)

camera, actuator encoders and potentiometers in the three passive joints. Both plat-

forms are equipped with GPS and a Sensonor STIM300 IMU (DETF-based IMU)

including inclinometers, accelerometers and gyroscopes as described in Chapter 3. A

reference trajectory was acquired using an absolute measurement system, Vicon for

the tests at indoor and GPS in outdoor scenarios. When possible, GPS readings were

corrected with a base station for more accurate ground truth, applying Real Time

Kinematic (RTK).

Joint measurements and inertial readings are sensed quantities in equation (4.6).

The slip vector ε̇ and contact point angles δ̇ are non-sensed values. Non-sensed or

unknown quantities of the vector u̇ are ẋ, ẏ and ż, which are the variables of interest

for odometry. The slip vector ε̇ is simplified and modeled as only rotation along its k̂Cil

axis (ζil) since it is assumed that contact points slip with non-holonomic constraints.

The rearrangement of the system of equations is obtained as in equation (4.6). The

solution of the enhanced 3D odometry is computed by solving equation (4.7).

4.4.1 ExoMars Test Rover

The experiments consisted of two different odometry calculations, 3D odometry and

skid odometry, Siciliano and Khatib (2016), using data information from encoders

and the AHRS while driving on uneven terrains. A comparison with the simple con-

tact point odometry is left for the Asguard robot, because the technique implemented

in Schwendner et al. (2013) does not adapt to wheeled robots like ExoTeR. Their

methodology does not apply the transformation approach for general motion models.

The lack of modeling makes it impossible to adapt such contact point odometry to a

robot moving on wheels. The only alternative would be to reformulate the method

in Schwendner et al. (2013) using the transformation approach from Muir and Neu-

man (1986) which ultimately will result in the methodology presented here except for

the quasi-static forces estimation.
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(a) (b)

Figure 4.7: Trajectories of the 3D odometry and skid odometry model with ExoTeR

for (a) Test#1 and (b) Test#2 at the ESA’s Planetary laboratory.

perform a figure eight trajectory connecting two consecutive circles. A bigger circle

along the main crater and another circle bordering the ground depression. The skid

and 3D odometry models run in two separated Rock 2 tasks onboard of ExoTeR’s main

computer.

Evaluation. Mars-like terrain. The odometry trajectories produced by the dead

reckoning pose from both odometry models are shown in Fig. 4.7. They are compared

with the ground truth from the Vicon system and resulting errors are given in Ta-

ble 4.1. It is appreciable that any dead reckoning accumulates errors unbounded but

a 3D odometry model performs more accurately in both tests. The final error is not

always the maximum error, due to the circular shape of the trajectory. The root mean

square error (RMSE) is the most accepted metric to evaluate the performance and

the value is lower for the 3D odometry model. In addition, Median E. defines the

statistical median of the error, Max E. depicts the maximum error in meters along

the path, Final E. is the error at the end of the trajectory and Max E. [%] is the per-

centage error per distance traveled by taking the maximum error. The Distance is

the total distance of the traversal in meters.

Evaluation. Decos terrain. Similarly to the test in the Mars-like terrain, the stand

alone dead reckoning uses the 3D odometry model and compares it with a classical

skid odometry implementation. Fig. 4.8 shows the trajectory for the dead reckoning

for both odometry models. Dead reckoning accumulates errors unbounded, but due

to the double circle trajectory the maximum error does not appear at the end of the

2The Robot Construction Kit (Rock) http://www.rock-robotics.org

http://www.rock-robotics.org
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Figure 4.8: Resulting trajectories of the 3D odometry and skid odometry model with

ExoTeR on the Decos terrain.

drive. Metric information is given in Table 4.2. Skid odometry is an extensively

used odometry averaging left and right wheel velocities. This simplification entails

inaccuracies in the pose and motivates the effort to fully model the chassis. The

metrics show that a complete model of the chassis reduces the percentage error per

distance traveled by half at the Decos test.

Table 4.1: Mars-like terrain pose results for the different odometry models with

ExoTeR

Odometry model Test case RMSE [m] Median E. [m] Max E.[m] Final E.[m] Max E. [%] Distance [m]

skid odometry Test#1 1.81 1.18 4.34 3.25 9.54 45.5

3D odometry Test#1 1.14 0.38 2.96 2.84 6.51 45.5

skid odometry Test#2 1.14 0.78 2.75 2.20 5.50 50.0

3D odometry Test#2 0.87 0.29 2.64 2.14 5.20 50.0

Table 4.2: Decos terrain pose results for the different odometry models with ExoTeR

Odometry model RMSE [m] Median E. [m] Max E. [m] Final E. [m] Max E. [%] Distance [m]

skid odometry 7.90 6.17 16.44 1.17 9.28 177

3D odometry 3.17 2.08 7.32 2.80 4.13 177
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Table 4.3: Sandfield results for the different odometry models with Asguard

Odometry model RMSE [m] Final E.[m] Final E. [%] Distance [m]
x y z x y z

skid odometry 0.94 3.39 0.93 1.43 4.65 1.95 6.15 85

contact point odometry 0.89 1.59 2.14 0.73 1.47 3.18 4.21 85

3D Odometry. 0.84 1.08 0.39 1.18 1.10 0.78 2.11 85

dominant at DFKI’s test track, however the impact in position is still less dominant

for the enhanced 3D odometry. Table 4.3 and 4.4 show the Root Mean Square Error

(RMSE) and final error values for the sandfield and motocross tests. These results

show that the 3D odometry has a more accurate estimate.

The error is reduced because the robot kinematics is completely modeled instead

of implementing a planar assumption, i.e. skid odometry, with less accurate estimate.

The weighted 3D approach decreases the RMSE in all directions in the sandfield, see

Table 4.3. Contact point odometry is more accurate than skid odometry for x-y direc-

tion but less accurate in the z direction. The reason is because the skid odometry only

estimates translation velocities in the x-y directions, i.e. planar assumption. There-

fore, only the drift in attitude influences the error in elevation. However, the error

is significantly reduced in the 3D odometry by weighting the composite equations

using quasi-static forces. It is important to mention that RTK was not available at

the motocross test and only GPS signal was available. Conversely, as a matter of the

Geometry Dilution of Precision (GDOP) in the GPS, the error in altitude is difficult to

evaluate in the motocross test. Therefore, the error in z direction show in Table 4.4

appears difficult to analyze due to the poor quality of the measurements.

However, an accurate ground truth was acquired at the sandfield test where RTK

Table 4.4: Motocross track results for the different odometry models with Asguard

Odometry model RMSE [m] Final E.[m] Final E. [%] Distance [m]
x y z x y z

skid odometry 7.38 11.78 1.37 5.96 12.55 1.46 8.33 167

contact point odometry 4.05 5.64 1.44 2.83 4.78 1.82 3.48 167

3D odometry. 4.32 5.15 1.99 2.55 2.56 2.90 2.78 167

Table 4.5: DFKI’s test track results for the different odometry models with Asguard

Odometry model RMSE [m] Final E.[m] Final E. [%] Distance [m]
x y z x y z

skid odometry - - - 2.12 3.48 4.67 5.06 120

contact point odometry - - - 2.10 3.13 4.42 4.74 120

3D odometry - - - 1.74 2.72 3.95 4.17 120
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(a) (b)

(c) (d)

Figure 4.15: ExoTeR performing a wheel walking maneuver (left) versus normal

driving (right) during an entrapment situation. (a) staring time, (b) situation

after 15s, (c) 30s and (d) 45s. Figure from Azkarate et al. (2015).

document in Chapter 7.

In addition, the presented motion model can be inverted and used for controlling

the robot. An accurate and complete robot control strategy at body level can only be

achieved with a 6 DoF motion model. This is the case of the wheel walking 3, a set

of sophisticated but very efficient locomotion strategies that optimally combine the

movement induced at each joint to achieve a peristaltic motion. The development of a

complete motion model is the guarantee of a correct and synchronized motion. Such

advanced maneuvers are of great advantage during entrapment situations as shown

in Fig. 4.15. The pictures show how ExoTeR did not escape from the entrapment

situation using a normal driving while escaping in less than 45 s using wheel walking.

Further development of the subject is available in Azkarate et al. (2015) and Wiese

(2017).

3ExoTeR wheel walking video online: https://youtu.be/qkOKzFq1SpY

https://youtu.be/qkOKzFq1SpY
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Chapter 5

Gaussian Process Estimation of

Odometry Errors

Since early in robotics, the performance of wheel odometry has been of constant re-

search for mobile robots. This is due to its direct influence in localization. The pose

error grows unbounded in dead reckoning systems and its uncertainty has negative

impacts on localization and mapping (i.e. SLAM). The dead reckoning performance

in terms of residuals, i.e. the difference between the expected and the real pose state,

is related to the statistical error or uncertainty in probabilistic motion models. A

novel approach to model wheel odometry errors using Gaussian processes (GPs) is

introduced in this chapter. The methodology trains a GP on the residual between

the nonlinear parametric motion model and the ground truth training data. The re-

sult is a GP over wheel odometry residuals which provides an expected value and

its uncertainty in order to enhance the belief with respect to the parametric model.

The localization and mapping benefits from a comprehensive GP model of the wheel

odometry error. The approach is applied to a planetary rover in an unstructured

environment. This work shows that the presented approach predicts wheel odometry

errors towards the enhancement of a visual SLAM system.

5.1 Introduction

The use of proprioceptive and exteroceptive sensors to localize a robot and map its

surroundings is a common practice in robotics. The technique is mathematically well

established in robotics and has received special attention in GPS-denied environ-

ments, such as planetary robotics. The design of Inertial Navigation Systems (INS)

have been investigated in Chapter 3 and the work shows the generality of the de-

sign approach in two different IMU technologies. Measuring and counting the joint

displacement of the locomotion system gives an initial guess to derive the pose as

95
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gression model.

The parametric model for computing the 3D odometry was introduced in Chap-

ter 4. Section 5.2 reviews the related work in the context of odometry for localization

and mapping and GPs applied in robotics. The Gaussian process regression is ex-

plained in Section 5.3. Afterwards, prediction quality of the learned process is pre-

sented in Section 5.4 in order to address the feasibility of the approach. The Gaussian

process is used in a state-of-the-art visual simultaneous localization and mapping to

estimate the robot pose. Experiments with a planetary rover in a representative

environment are presented. Finally, Section 5.5 describes a conclusion about this

part of the work.

5.2 Related Work

Odometry errors are investigated comprehensively in literature. Borenstein and Feng

(1996b) investigate the elimination of systematic odometry errors. Their work fo-

cuses on calibration methods to reduce the effect of unequal wheel diameters and

uncertainty about the wheelbase. Those systematic errors are also well character-

ized in the literature, Borenstein and Feng (1996a); Ojeda and Borenstein (2004).

However, non-systematic errors are complex, difficult to predict and not possible to

fully correct unless other perception means are present. Slippage has been the main

non-systematic error as it causes bad results affecting the final pose. Visual odometry

is commonly used to overcome the effect of slippery terrains in Helmick et al. (2004a)

and Rehder et al. (2012). Fuzzy logic is used to detect wheel slippage by comparing

the motor current on the FlexNav architecture in the work presented by Ojeda and

Borenstein (2002). They introduce a linearised function to relate electric current and

wheel-terrain interaction, Ojeda et al. (2006). Rogers-Marcovitz et al. (2012) presents

a delayed state filter technique in combination with a vehicle system model to correct

wheel slip. Their work shows the viability and value of slip modeling.

Wang (1988) studies the uncertainty modeling and analysis for wheel odometry.

Their solution is motivated by the lack of any exact method for calculating the

covariance matrix. Their research finds a good approximate covariance matrix for the

location estimator, limited to two-wheeled systems in planar environments. Basically,

their work presents an adjustment factor to approximate the covariance matrix. La-

mon and Siegwart (2007) associate odometry covariance with body acceleration. Kelly

(2004) studies linearised techniques for error propagation. Their work is concerned

with the nonlinear problem of propagating the uncertainty from a moving body

frame to a fixed world frame, but it does not focus on the uncertainty modeling.

Schwendner et al. (2013) defines a fixed configuration matrix for the odometry
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model in the novel Embodied localization and mapping technique, see Chapter 2

in Schwendner (2013). Learning methods are applied in Abbeel et al. (2005) to esti-

mate the covariance of Kalman filters. A more sophisticated approach is presented

in Kummerle et al. (2011a). Their research simultaneously calibrates the kinematic

parameters into SLAM in order to adapt to different robot configurations. Uncer-

tainty estimation is also investigated for aerial robots in Muller et al. (2012). A

probabilistic velocity estimation uses flow sensors in autonomous airships. The tech-

nique fuses the information in a particle filter, with approximately 500 particles. The

identification of process noise parameters of process models for mini drones is also

discussed in Bry et al. (2012). Their method projects the process noise forward over

multiple time steps. The process model only includes inertial sensors, which are suf-

ficient for flying robots but not directly applicable to ground vehicles.

Machine learning is used in SLAM to increase the robustness and it seems just

the beginning of a new perception era. For example, an EKF-SLAM with machine

learning image processing is described in Casarrubias-Vargas et al. (2010) to increase

robustness. GPs provide a probabilistic approach for learning kernel machines, pro-

ducing promising results in robotics, but are not exploited further. The probabilistic

nature of GPs makes them attractive to integrate with Bayes-based approaches, ei-

ther Kalman-based or smoothers. Ko et al. (2007) and Ko and Fox (2008) apply a GP to

learn the residuals of the dynamic model of a robotic blimp. The work is afterward ap-

plied to dynamic state estimation and control of the blimp with an Unscented Kalman

Filter (GP-UKF). In general, GPs have several advantages for robotics since they are

a practical tool for solving a diverse set of problems. Mukadam et al. (2016) applies

GPs in robotic arm motion planning. In contrast to considering discrete time trajec-

tories the method represents a continuous time trajectory as a sample from a GP. The

use of GP for mapping is described in Wang and Englot (2016). The technique collects

sensor observations and estimates the occupancy map using an octree. Peretroukhin

et al. (2016) use Gaussian kernels to predict visual feature uncertainty. Their work

shows the application of generalized kernel estimation to improve the uncorrelated

and static Gaussian error models in stereo visual odometry. As a result, the fea-

ture tracking estimation and robustness improve in localization by inferring a more

accurate error model.

GPs have been used for nonlinear regression, but to the best of the author’s

knowledge their application to modeling the odometry error as residuals between the

parametric model and a realistic wheel odometry output has not yet been addressed

in the literature. This chapter introduces a novel manner to model wheel odometry

errors based on the interaction with the ground.
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5.3 Gaussian Processes for 3D Odometry

Odometry accuracy is highly influenced by the amount of wheel slippage, which in

turn depends on the maximum usable tractive force between the ground and the

wheel. This section describes the application of GPs to model a nonlinear regression

function between the parametric model and the real odometry output.

5.3.1 Gaussian Processes

GPs are a powerful, non-parametric tool for learning regression functions from sam-

ple data. GPs are flexible, work nicely with missing and noisy data and therefore are

very practical for solving real world scenarios. A GP is a probability distribution over

functions. It can be considered a Gaussian distribution over an infinitely long vector

of data, Rasmussen and Williams (2006). However, an infinite vector is impractical

because computer memory is finite. Marginal likelihood or marginalization allows

work in statistics with a finite subset without losing generality. Fig. 5.2 shows the

train and test schematics of the odometry error model.

Assume we have a training set of data, D =< X,Y >, where X = [x1,x2, ...xn]

is a matrix containing d-dimensional input examples xi and Y = [y1,y2, ...,yn] is a

matrix containing o-dimensional training set yi (i.e. multidimensional output). The

GP assumes that data are illustrated with a noisy function such as

yi = f(xi) + ϵ (5.1)

where ϵ is a zero-mean Gaussian noise with variance σ2, i.e. N (0, σ2). The predic-

tion over the noisy output y is a multivariable Gaussian of the input matrix X.

p(Y ♣X) = N (0,K(X,X) + Σ) (5.2)

where K ≡ K(X,X) is the kernel matrix with elements Kij = k(xi,xj) defined by

the kernel function and Σ = diag(σ2
1I, ..., σ

2
nI). The kernel function k(x,x′) measures

the closeness between inputs. The most widely used kernel function is the squared

exponential also know as Radial Basis Function (RBF) kernel

k(x,x′) = krbf (x,x′) = σ2
fe

− 1

2
(x−x′)W(x−x′)⊺ (5.3)

with hyperparameters Θ = [W,σ2
f ,Σ]. The matrix W contains the length scale per

input dimension and σ2
f characterizes the signal variances.

Learning a GP is an inductive process that makes a particular reasoning

(function) from a set of data. The process of learning defines a finite set of train-

ing data to define a function f that makes predictions for all possible inputs in the
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5.3.2 GP Modeling of Discrete Time Dynamic Processes

Generally, a discrete-time dynamic process can be understood as a series of states at

a certain time-stamp which evolve over time as

s(k + 1) = s(k) + g(s(k), ŭ(k)) (5.8)

where k is the time index and g is the function which describes the dynamics of the

system (e.g. rover pose rates) given a certain state s and the input vector ŭ = [u̇s, ṗs]

(e.g. odometry inputs). A Gaussian process can be used to learn the dynamic process

described by the function g. The result will be a GP which predicts the delta between

two consecutive states yk = s(k + 1) − s(k) given a vector of inputs. To perform such

prediction, the output for the parametric model should be part of the training data.

This is because the Gaussian process assumes a zero-mean function in equation (5.2)

and the robot odometry is clearly not a zero-mean. This is related to the modeling,

which appears in the covariance function. Instead of using the parametric model as

input to the GP regression, the GP learns the residual between the parametric model

and the expected data. This is because the residual or odometry error is the value of

interest and has a mean close to zero in the ideal case.

5.3.3 Odometry Residuals from Gaussian Processes

Because the parametric 3D odometry model gives reasonably good estimates under

reliable ground-traction conditions. A zero-mean function better models the odometry

residual (the difference between estimates and ground truth). The dynamic system

equation for the GP is

s(k + 1) = s(k) + g(s(k), ŭ(k)) + f(s(k), ŭ(k)) (5.9)

where the function g describes the change in state given by the parametric

3D odometry model and the function f is modeled by the GP which describes the

odometry residual. The training set D for the GP is a sequence of observed states

and inputs. They are used to learn the parameters of the nonlinear function f .

The input training data are of the form xk = [s(k), ŭ(k)] and the output residual

yk = s(k + 1) − s(k) − g(s(k), ŭ(k)).

5.4 Experimental Results

As in previous experiments, the ExoMars Test Rover (ExoTeR) a laboratory rover

prototype that resembles in scale the ExoMars rover, is used to evaluate the

methodology Azkarate et al. (2015); Poulakis et al. (2015). ExoTeR’s sensor suite
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includes a stereo camera pair, an Inertial Measurement Unit (IMU) and actuator

encoders and potentiometers. The experiments take place on a Mars-like testbed

in the Planetary Robotics Laboratory (PRL) of the European Space Research and

Technology Centre (ESTEC) - the largest site of the European Space Agency (ESA).

The testbed is a 9 × 9 m test area with different soil types as described in Chapter 4.

A set of reflective markers are located on the ExoTeR in order to track its posi-

tion and orientation during the training experiments. The Vicon system captures

the ground truth data. The accuracy of the system is around 1 cm in position and

0.2 degree in orientation depending on the number of cameras tracking the markers.

ExoTeR is remotely driven in the testbed area describing all possible maneuvers, e.g.

forward, backward, turn-on-spot and Ackermann, at widely different inclinations and

terrain characteristics. Training data are collected by driving the rover at different

speeds, possible maneuvers and a diverse set of terrain conditions such as ground,

soft carpet, loose soil and rocky terrain, see Fig. 5.3. The absolute position and head-

ing are eliminated from the training data. The input vector xk is composed by pitch

and roll orientation angles, joints position and speed, angular velocities sensed by

gyroscopes and linear accelerations from the accelerometers. The error in robot’s lin-

ear velocities is the training vector of outputs yk. The Vicon system delivers rover

position at a frequency of 100 Hz. Training data are calculated from the rover’s linear

velocities by low-pass filtering the delta position readings from the Vicon system. The

hyperparameters of the Gaussian process are optimized using conjugated gradient

optimization to solve equation (5.6), i.e. the Levenberg–Marquardt algorithm, Ras-

mussen and Williams (2006). The GP estimates a three dimensional output vector

y∗ of the velocity error in each direction of motion [µẋı̂
, µẏȷ̂

, µż
k̂
] (odometry error). A

different set of collected data, the test data, is used to evaluate the accuracy of the

estimated residuals.

Figure 5.3: Photographs during the tests for collecting training data with ExoTeR on

the Mars-like terrain at ESA’s planetary robotics laboratory. The training data are

used to learn the kernel function of the Gaussian Process nonlinear regression.
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Table 5.1: Error per kernel evaluated with the test data.

Kernel RMSE[m/s] MAE[m/s]

rbf: [krbf ] 0.004494 0.002127

rbf + linear: [k̆rbf ] 0.004909 0.002588

matern 5/2: [km52] 0.005562 0.002635

matern 5/2 + linear: [k̆m52] 0.004909 0.002588

The Gaussian process is trained offline using GPy (2012). First, several kernels

are evaluated in order to select the kernel which best predicts the regression model.

The results are described in Section 5.4.1 using some test data from the Mars-like

terrain. The test data are a subset of the training data not used during the GP

learning process.

5.4.1 Kernel Selection

Three kernels, linear, squared exponential and Matern 5/2, Rasmussen and Williams

(2006), are trained to determine which combination of kernels fits the regression

more accurately. The kernels are separated and combined as k̆ker = kker + klin where

kker is a squared exponential (rbf) or Matern 5/2 kernel and

klin(x,x′) = σ2
l x · x′. (5.10)

Objective. The purpose is to select the kernel function that better fits the regres-

sion model among a set of different kernel combinations.

Setup. The kernels are fitted with normalized training data. This enforces feature

scaling, making gradient descent converge more easily. Four training tests were con-

ducted in a representative scenario. Fig. 5.3 shows pictures of the filmed laboratory

setup. Test data, not included in the training data, are used to verify the prediction

quality of the Gaussian process odometry residuals.

Evaluation. Table 5.1 shows the error metrics for each of the kernels. The squared

exponential fits the residuals with lower root mean square error (RMSE) and mean

absolute error (MAE) than the Matern 5/2. In addition, the metrics shows that

the linear kernel klin does not improve the estimates of the squared exponential or

Matern5/2. The square exponential kernel is selected for the rest of experiments in

the thesis.



http://www.rock-robotics.org
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Table 5.2: ExoTeR’s pose results for the different SLAM schemes.

Scheme #Frames #Keyframes RMSE [m] Max E.[m] Final E.[m] Final E. [%] Distance [m]

SLAM 2.5fps 2582 182 0.144 0.455 0.204 0.48 42.35

SLAM 0.5fps 500 150 0.204 0.729 0.520 1.22 42.35

SLAM with GP 484 135 0.145 0.468 0.264 0.62 42.35

Evaluation. The information gained by the GP is used to inform the localization

and mapping system to compute visual odometry only when necessary. It further-

more reduces the keyframes in the optimization back-end. This technique applies

to any full SLAM approach. Table 5.2 shows the results of calculating ExoTeR’s

pose running three different SLAM schemes for a test data trajectory. SLAM 2.5

fps computes the localization and mapping by processing a new image frame at a

rate of 2.5 fps. SLAM 0.5fps computes the localization and mapping with a lower fre-

quency of 0.5 fps. Without the GP prediction the image frames are equally distributed

along the trajectory, which is not a desired feature since the wheel odometry performs

accurately except for highly slippery areas. SLAM with GP is the modified approach

using the GP between the front-end and the back-end to select the keyframes and

frame frequency accordingly, see the schematic in Fig.5.1. The GP provides extra in-

formation to the SLAM and allows unequally distributing the image frames along the

path, having better performance with the same computational effort. It means that

with the same size of graph and number of processed image frames the SLAM with

GP is superior in accuracy. Fig. 5.8 visually depicts the trajectory for the evaluated

approaches together with the map from the testbed. The number of frames and

keyframes can be seen along the path with the total traversal of 42.35 m. SLAM with

GP adapts to the wheel odometry reducing the number of image frames in the visual

odometry. The SLAM with GP approach computes five times fewer of frames without

a significant penalty in accuracy, see Table 5.2, and augmenting graph sparsity.

5.5 Conclusion

This formulation describes the first insight into using GPs to model odometry er-

rors and its first application in localization and mapping. This work is the first

demonstration that wheel odometry errors, slippage and poor traction performance

can be predicted by training a GP using robot propioceptive data. The outcome en-

tails a significant result because the expected wheel odometry error is finally un-

derstood and the localization and mapping system can adapt to it. The chapter fo-

cuses on modeling the odometry error, selecting the kernel function, identifying the

hyperparameters, training the GP regression model and demonstrating the impor-

tance of keyframes selection in SLAM.
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GPs, as Support Vector Machines (SVMs), use kernel functions which satisfy the

Mercer’s Theorem, see Chapter 4 in Rasmussen and Williams (2006) for further read-

ing. The selected kernel is the RBF function due to slightly more accurate perfor-

mance that Matern 5/2. The test results also show that a linear kernel does not

improve the accuracy of the regression model (see Table 5.1), showing the nonlinear-

ity of the problem. It is worthwhile to mention that the presented GP training uses

feature scaling which accelerates the gradient optimization to solve in equation (5.6).

This is due to the wide range in scale of different features in data, e.g. acceleration

vs joints position. Finally, the methodology has been demonstrated using a planetary

rover navigating on an unstructured environment and loose terrain. The GP infor-

mation is used to selectively identify the image keyframe in visual odometry and

preintegrate the delta displacement given by the wheel odometry.

Though simple, this chapter shows the first results towards a more efficient com-

putation of frames and keyframes and serves as an introduction to further develop

the adaptive SLAM in Chapter 6. Until now, the adaptation rate for image frames

processing and selection of keyframes is set as fixed parameters. Following methods

describe a SLAM architecture with dense map reconstruction, loop closure, adap-

tive visual odometry and selection of highly informative keyframes. Localization and

mapping with adaptive graph sparsity is developed in next, based on navigation per-

formance, adaptive criteria and further analysis.
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Chapter 6

Localization and Mapping with

Adaptive Graph Sparsity

The Gaussian Process (GP) complements the parametric solution by adding an es-

timation of the odometry error. The information gained by the non-parametric GP

model serves to adapt the localization and mapping solution to the current navigation

demands. An adaptive strategy is selected to adjust the image frame rate (active

perception) and to influence the optimization back-end by including highly informa-

tive keyframes in the graph (adaptive information gain). Following this strategy,

the resources adapt to the navigation demands providing an adaptive SLAM driven

by the navigation performance and conditions of the interaction with the terrain.

The proposed methodology is experimentally verified on the ExoTeR, a representa-

tive planetary rover, under a realistic field test scenario. The results examine the

benefits of the approach, bring adaptive sparsity to the graph and provide insightful

aspects towards a long-term solution.

6.1 Introduction

SLAM optimizes a robot’s pose and builds a consistent representation of the

environment. A globally consistent map is required to locate and store useful samples

as well as to return to the lander. SLAM provides the framework to study efficient

sensor fusion (e.g. full smoothers) and interprets the environment as a whole, provid-

ing loop closures. Without SLAM the rover interprets the world as an infinite corridor

making long-term autonomous systems inefficient with partly human intervention.

Future rovers require data fusion solutions (e.g. SLAM) to deduce rover position

and orientation in a prolonged, optimal and adaptive manner. Mars missions have

demonstrated that the geometric and non-geometric hazards could stop the motion of

a rover. Those potential hazards are difficult to detect remotely from Earth, calling

111
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for an on board solution, Maimone et al. (2007b). In this aspect, the future of SLAM

will combine machine learning techniques with optimization approaches and hard-

ware improvements (e.g. FPGAs and GPUs) in order to enable more reliable and fast

surface navigation.

A typical architecture for SLAM has two parts: the front-end and the back-end.

The front-end perceives the environment to translate data into models in order to

estimate the state. The back-end uses the models to perform Maximum a Posteri-

ori (MAP) estimation and inference. The SLAM community often identifies robotics

as the application to hinder advances in SLAM since robots are complex systems to

work with. However, robotics benefits from SLAM and SLAM benefits from robotics.

Mobile robots are mobile perception systems which might enrich the SLAM solution.

The information collected by the platform can be used to complement the typical vi-

sual SLAM. In summary, robotics helps to tackle the following open issues in SLAM.

• Performance. Wheeled mobile robots are in permanent contact with the terrain

through the locomotion system. The information acquired from the interaction

with the ground can be modeled using machine learning techniques in order to

brings high levels of understanding. Robotics can benefit SLAM.

• Resources. Robots are embedded systems with limited computational resources.

SLAM is limited by perception means and the computational load available on-

board. Active perception in robotics provide means to adjust the computational

load according to the navigation demands.

• Inference. The connection of SLAM with other systems, e.g. path planning or

trajectory control, produces more useful information. The information might be

used for risk-awareness and operations.

• Testing. Robotics brings the possibility for SLAM to leave the laboratory

environment, collect enormous amounts of real data and test the approach un-

der demanding situations. Robotics provides the platforms to connect percep-

tion with control actions.

This thesis proposes several techniques in accordance with the research goals

described in Chapter 1. The techniques developed in this thesis are integrated in an

adaptive SLAM and presented in this chapter as the following.

• The enhanced 3D odometry model developed in Chapter 4 is integrated in

SLAM. The reason is that indoor robotics, which traditionally operates in a

structured or planar environment, has brought inefficient and simple tech-

niques to the field of odometry in outdoor robotics. The estimation of delta
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displacement through complete motion models produces a more accurate a pri-

ori estimate.

• Machine learning in SLAM. The GP regression model in Chapter 5 is used as a

non-parametric error model. The model identifies hazardous areas by learning

Bayesian kernels from the previous experiences.

• Adaptive data association. The SLAM is influenced by the odometry error al-

lowing adaptivity to the solution, i.e. adaptive localization and mapping. The

design, development and verification testing of the adaptive SLAM is the sub-

ject of this chapter.

The chapter is organized as follows. A dedicated review of SLAM systems is ad-

dressed in Section 6.2 with special attention in graph sparsity and data association.

Section 6.3 gives an overview and describes the adaptive SLAM system. Field test-

ing experiments with the ExoTeR planetary rover under representative environment

conditions are shown in Section 6.4. The potential benefit of the adaptive SLAM on a

real planetary mission is described in Section 6.5. Conclusions are discussed in brief

at the end of this chapter.

6.2 Related Work

Originally, SLAM was developed by using filtering approaches. Filtering provides

an efficient estimation of the latest state, Civera et al. (2008). However, Kalman-

based or particle filter SLAM becomes intractable in real-time applications. EKF

complexity grows quadratic with the number of features. An alternative is pre-

sented in Mourikis et al. (2007a) with an augmented-state EKF. Their approach

keeps the complexity linear with the number of features by marginalizing them out

of the state vector. The method implies the clone of past states in the state vector,

called stochastic cloning. The solution has a computational cost of cubic complexity

with the number of states and is capable of accurately estimate the pose. The cloning

does not affect the real-time behaviour since the number of states is much lower than

the number of features. However, marginalization is a source of errors and outliers

can corrupt the filter very easily with irreversible results. Such inconsistency in

the filtering estimators entails to develop an observability analysis in vision inertial

navigation systems, Hesch et al. (2014). The analysis provides modification of the

measurement Jacobian matrix in the observable direction of the system as described

in Dong-Si and Mourikis (2011).

The state dimension of a particle filter requires an exponential increase of the

number of particles. Research in particle filtering SLAM was introduced by Mon-
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temerlo et al. (2003) to handle the nonlinearity of the SLAM problem. The high

dimensionality makes particle filters intractable for real-time applications. The Rao-

Blackwellization variant reduces the sample space, making it more suitable for mo-

bile robotics and real-time constraints. Nevertheless, each particle still carries an es-

timation of the environment making the approach difficult to scale up for long-term

applications.

Smoothing is an alternative to filtering. Fixed-lag smoothers estimate the state

within a window of measurements. Smoothing approaches relinearise past measure-

ments providing more accurate estimates. Smoothers are more robust in case of out-

liers, which make them suitable for long-term localization, Mourikis and Roumeliotis

(2008). However, the fixed-lag smoother needs to take care of consistency analysis

and accumulated linearization errors as in filtering methods.

In order to overcome the limitation mentioned above, full smoothers estimate the

complete robot trajectory and features as in Kummerle et al. (2011b). This is the

full SLAM which solves a large optimization problem. The optimization imposes

the highest accuracy but the computation cost quickly grows with time. Incremen-

tal smoothing techniques by means of factor graphs and Bayes trees allows fluid

relinearization and updates only affected nodes in the graph, Grisetti et al. (2010a)

and Kaess et al. (2011b). Forster et al. (2015) and Forster et al. (2017) propose preinte-

gration of IMU measurements in order to reduce the number of nodes while preserv-

ing the manifold structure of the SO(3) rotation group. Carlone et al. (2014) defines

a set of target variables to deal with smaller graphs. The solution enhances compu-

tational efficiency and robustness in the back-end. However, the relation with the

perception front-end and robot navigation demands is still missing in robotics. This

is the proposed research in this chapter of this thesis. A keyframe-based approach

is proposed in Leutenegger et al. (2015) in order to select graph nodes and improve

sparsity in visual-inertial odometry.

Multithreading is the common architecture in modern SLAM. One of the first

real-time modern SLAM architectures is the Parallel Tracking and Mapping (PTAM)

described in Klein and Murray (2007). PTAM is a dual threading architecture,

one thread for feature tracking and other thread for mapping. CD-SLAM Pirker

et al. (2011) and ORB-SLAM Mur-Artal et al. (2015) includes a third thread for loop

closing. Engel et al. (2015) introduces LSD-SLAM, a monocular direct (feature-less)

SLAM, which minimizes the photometric error between consecutive frames and it

is also able to detect large-scale loop closures. The method is informally known as

direct approaches and they have been gaining popularity in the last couple of years.

Embodied SLAM combines particles filters and graph optimizers in a Hierarchical

multi-process SLAM architecture, Schwendner et al. (2013). A Particle filter fuses

embodied information in a multimodal probability distribution. A graph optimizer
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overcomes the limitations of particles filters for dense map reconstruction and loop

closure.

Most of the time SLAM operates on open loop. The error propagates unbounded

unless a solution to close the loop by revisiting a place is given. Standard matching

algorithms fail when areas which are not observed for long are revisited afterward.

Several techniques have been investigated in the past. Loop closures using features

in the map are investigated in Clemente et al. (2007). The method looks for a set

of similar features, i.e. geometry and appearance, between pairs of non-consecutive

sub-maps. Williams et al. (2007) finds camera poses using the features in previous

keyframe maps, similar to a relocalization event. A probabilistic approach to the

problem of recognizing places based on their appearance is described in Cummins

and Newman (2008). Their work detects and compares visual words between im-

age pairs. Though not perfect, the method scales well in large datasets and long

trajectories. Alternatively, the bag of words results in an effective solution. The tech-

nique converts an image into a numerical vector using a visual vocabulary previously

created offline, Galvez-Lopez and Tardos (2012). Embodied localization and map-

ping uses contact point robot information to build local segments in a global graph

SLAM, Schwendner et al. (2013). However, the challenges of a robust loop closure

remain open.

Introducing highly informative nodes and non-redundant poses improves compu-

tation cost, guarantees consistency, produces accurate results and speeds up data

association. Within this context, heuristic strategies based on the distance traveled

are investigated in Konolige and Agrawal (2008). The paper shows how the RMSE

increases as a function of the distance between image frames. However, a distance-

based criterion does not adapt to rover turning maneuvers and the characteristics

of the terrain. Alternatively, active SLAM solutions prevent wrong measurements

by selecting a maximal informative motion command in the control of the plat-

form, Vidal-Calleja et al. (2006). Other strategies such as information-based Pos-

eSLAM use interval arithmetic and provide informative links and relevant poses in

the graph, Ila et al. (2010). Their strategy exploits the benefits of using an error

function in the graph back-end. The error function determines the distance between

two poses using a predefined and fixed threshold. Their work emphasizes but does

not develop the benefits of adjusting such a threshold according to the situation de-

mands. Adaptive SLAM proposes a novel architecture and the methodology to ex-

plore this solution. The methodology of this thesis identifies relevant keyframes and

adapts the localization and mapping solution to the current navigation demands, dic-

tated by the interaction with the ground. Adaptive SLAM uses more resources when

the robot might get lost, avoid unnecessary computation and select the right moment

to incorporate a new node in the graph.
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6.3 Methodology

This section expounds the methodology of the research on adaptive localization and

mapping in unstructured environments. The design starts from the odometry model

followed by the error model propagation until the final SLAM solution. Each con-

tribution has been previously described in a dedicated chapter of this document.

However, for the sake of consistency, the general overview is outlined here.

6.3.1 Overview

The estimation of motion in the prediction step is commonly performed using an

odometry model. As previously mentioned, odometry combines motion models and

inertial information in order to compute variations of the pose. Indoor robotics, which

operates in a structured or planar environment, entails simplifications in the model.

The simplicity causes a performance degradation, especially when porting the so-

lution into planetary rovers. The 3D odometry model of an articulated chassis is

described in Chapter 4. The relative delta displacements are computed. The parame-

tric model is also enhanced with an adaptive odometry technique. This is based on

a weighted least squares optimization which combines the delta displacement for all

wheels. A simple friction model is assumed since many planetary rovers lack force

sensors. The technique assumes the normal force on each wheel is proportional to

the traction. The distribution of normal forces among the wheels of the robot is based

on static reaction forces caused by the robot’s weight.

The accuracy of the odometry is highly influenced by the amount of wheel slip-

page, which depends on the maximum usable tractive force between ground and the

wheel. Odometry errors are modeled as the difference between the expected and the

real delta poses, i.e. odometry residuals. Machine learning is used to train a Gaussian

Process offline to estimate odometry errors, as defined and validated in Chapter 5.

Finally, the robot state prediction model is obtained with a realistic estimation

of the uncertainty. The accuracy of the odometry is used by the SLAM architecture:

the front-end adaptively acquires image frames depending on the dead reckoning

performance (active perception) and adjusts the criterion to select keyframes in the

back-end (adaptive information gain). Traction demands dictate the results based on

the characteristics of the terrain. This methodology and the SLAM architecture is

explained in the following.

6.3.2 Adaptive Visual Odometry and Graph Node Selection

In the context of localization and mapping, adaptivity is the act of adjusting SLAM

to the system demands. More specifically in this work, it is the capability to adjust
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(a) (b)

Figure 6.1: Comparison of three possible equations for the RoA (a) visual odometry

period (b) feature matching ratio.

the localization and mapping to the current navigation demands. The adaptivity

influences the front-end and back-end during operations. A method adapts the front-

end in order to overcome poor wheel odometry. Another method adapts the selection

of graph nodes or keyframes at the back-end. Therefore, two strategies are selected.

The former method is an active perception strategy to compute visual odometry. The

second method is a keyframe selection policy based on feature matching in order to

determine graph sparsity. It defines graph sparsity or graph node selection with an

adaptive information gain.

The Rate of Adaptation (RoA) is defined here as how fast the system reacts to

changes of the wheel odometry error. RoA is the response of the system to change

or adapt to new circumstances. RoA can be a constant function chosen at design

phase. However, RoA does not necessarily need to be constant with a fixed gradi-

ent. The gradient can increase or decrease with the value in the odometry error. A

faster adaptation is a higher RoA and here means higher gradient or slope function.

Consequently, one solution can be that the bigger the odometry error, the faster the

SLAM system adapts. As an illustration, Fig. 6.1 depicts three possible equations to

define RoAs. A linear curve maintains a constant slope along the plot which defines

a linear RoA. The exponential and quadratic RoA have similar gradient for small

odometry errors, but the exponential curve increases the RoA at higher values of the

odometry error. The quadratic equation is the chosen method for the adaptive SLAM,

as equation (6.1) and equation (6.2) have a quadratic gradient (explained later). The

reason is to maintain a sufficient frequency in visual odometry without drastically

increasing the computational load during high wheel odometry errors. The choice for

one or another equation defines the RoA, which affects the visual odometry load and

sparsity of the graph. Ultimately, RoA affects how fast the SLAM system reacts to

errors introduced by the wheel odometry.
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Adaptive Visual Odometry. Selecting the image frame rate adapts the visual

odometry computational load. A high frame rate produces unnecessary computa-

tional load when the odometry model correctly estimates the pose. However, a low

frame rate might cause inadequacy in feature tracking, which implies to trigger relo-

calization in order to maintain a functional visual odometry. Relocalization computes

by an extensive search in the features space of the last keyframe. The balance be-

tween an excessive visual odometry load and lost of tracking is given in equation (6.1).

Therefore, the sample period τ to compute visual odometry is given by

τ =
τ − τ

(γ − γ)2
∥y̆∗∥2 + τ (6.1a)

y̆∗ = y∗ + Σy
∗

(6.1b)

where τ = [τ , τ ] are the minimum and maximum period allowed by the camera

sensor, γ are the minimum and maximum of the accepted wheel odometry error, ac-

cording to a threshold explained later, and y∗ is the predictive mean of the wheel

odometry error given by the Gaussian Process GPµ(x∗, D) with variance Σy
∗

=

diag(GPΣ(x∗, D)). Fig. 6.1a depicts the quadratic curve of equation (6.1).

Adaptive Graph Node Selection. Keyframes are the selected frames to take as

reference in the feature tracking and local bundle adjustment. They are also incor-

porated as nodes in the graph for global optimization. A distance criterion is the sim-

plest method to select a keyframe. However, distance does not perform well during

drastic movements, bumps or turning maneuvers. The criterion to select a keyframe

is based on feature tracking instead of traversed distance. The criterion establishes

a minimum number of features which must change in the scene in order to insert a

new keyframe, and consequently a new node in the graph. The following equation

defines the adaptive strategy related with the predicted wheel odometry error, as

ρ =
ρ− ρ

(γ − γ)2
∥y̆∗∥2 + ρ (6.2a)

y̆∗ = y∗ + Σy
∗

(6.2b)

where ρ are the minimum and maximum ratio of feature matching respectively. ρ

defines a [0, 1] interval where 0 means no features overlap and 1 defines overlap of all

the features between consecutive keyframes. A value near zero reduces the number

of features with the resulting loss in tracking. On the contrary, a high ratio imposes

a new keyframe for each new image frame. The adaptive feature matching defines a
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minimum visual change depending on wheel traction performance. Fig. 6.1b depicts

the quadratic curve of equation (6.2). A novel method to relate the performance of

the wheel odometry to graph node selection in the back-end.

The thresholds for the wheel odometry error γ are defined as a percentage of

the commanded rover velocity. The threshold changes between a hypothetical per-

fect odometry solution, 0 % slippage, to a worst case scenario with no forward move-

ment, 100 % slippage. In addition, two intermediate threshold values are selected

for evaluation. Generally, a successful localization system for planetary rovers has

an error between 1.0 % to 2.5 % of the total distance traveled. For this reason the

selected thresholds in velocity are 10 % and 25 % respectively. Those two values with

the lowest and upper bounds are the threshold of interest. To summarize, a total

of four thresholds are selected, 0 % to compute SLAM without adaptiveness, 100 %

to analyze whether adaptive SLAM could lose the trajectory in the worst case sce-

nario and two intermediate values, 10 % and 25 %. The following equation defines the

accepted wheel odometry error according to such slippage threshold by

γ =
[

γ = 0, γ = p̂v
]

(6.3a)

p̂ = 0, 0.10, 0.25, 1.0 (6.3b)

where p̂ is the desirable percentage among those four values explained above and

v is the commanded rover velocity.

The adaptive localization and mapping is depicted in Fig. 6.2. The diagram shows

four different blocks which comprise the SLAM architecture. The block (a) describes

the image features tracking module which computes a rough visual odometry using

the initial guess from the delta pose estimated by the wheel odometry. The visual

tracking uses a constant velocity model in order to estimate the rover displacement.

The visual tracking computes ORB features which are multi-scale FAST keypoints

and BRIEF visual descriptors, Rublee et al. (2011), see Fig. 6.3. The visual odometry

uses RANdom SAmple Consensus (RANSAC) to remove outliers. A local Bundles Ad-

justment (BA) optimizes the delta pose, depicted as optimized odometry estimation

lines in Fig. 6.2. The visual odometry rate changes depending on the wheel odometry

error using equation (6.1), depicted in a red colored bar in Fig. 6.2. The block (b)

performs stereo dense reconstruction with the stereo camera pair and builds a lo-

cal dense map. Stereo dense uses an efficient large-scale stereo matching technique,

so-called Libelas, 1 Geiger et al. (2010). A local map is processed in an EnviRe 2

item and stored in an EnviRe graph. EnviRe is a representation model that facil-

1Library for Efficient Large-scale Stereo Matching http://www.cvlibs.net/software/libelas
2Environment Representation https://github.com/envire

http://www.cvlibs.net/software/libelas
https://github.com/envire


https://github.com/RainerKuemmerle/g2o
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Figure 6.3: Camera images along the Mars-like terrain, revisiting locations to detect

loop closures.

vides the orientation and inertial readings required by the odometry model. Joint

positions and velocities are collected by the sensor drivers and dispatched together

to the odometry model, as described in Chapter 4. Angular velocities [ϕ̇B, θ̇B, ψ̇B] and

joint measurements q̇ are sensed rate quantities of equation (4.5). The vector q̇ has

dimension 25 × 1, six for driving, six for wheel walking, four for steering and nine

passive joints for the triple bogie. Linear velocities [ẋB, ẏB, żB], slip vector ε̇ and con-

tact angles δ̇ are non-sensed quantities. The complete vector ṗ in equation (4.4) has

a dimension of 49 × 1. A system of equations is obtained by rearranging non-sensed

(left-side) and sensed (right-side) quantities as in equation (4.6). ExoTeR has a vector

of sensed ν and non-sensed b quantities with dimension 28×1 and 27×1 respectively.

The solution of the parametric model for 3D odometry is obtained by finding the least

squares in equation (4.7) and setting the weighting matrix W from equation (4.21).

Those computations run in a dedicated Rock 5 task and deployed as a single process

on the operating system.

Once the parametric model for the 3D odometry outputs the estimated delta

poses, a dedicated process computes the error model. First, the learning of the non-

parametric odometry error model is computed offline. Gaussian Process inference is

performed by finding the set of hyperparameters. The training data D are collected

from driving the ExoTeR in a number of training experiments, described in Chap-

ter 5. The training data inputs X are the pitch and roll angles (attitude) computed

by the AHRS, the filtered inertial gyroscopes and accelerometers data and the po-

sition and speed joint measurements. In order to reduce the input dimensionality

the wheel walking joints are not used for training the GP. The training outputs Y

are obtained by comparing the estimated delta pose output (velocity) with the delta

pose from the ground truth. This is yk = s(k + 1) − s(k) − g(s(k), ŭ(k)) solved for

equation (5.9).

The adaptive SLAM runs on a multithreading architecture in a Rock single de-

ployment or process. One thread runs the stereo visual odometry, a second thread

runs the graph optimization, a third one executes the loop closing and a final one com-

5The Robot Construction Kit (Rock) http://www.rock-robotics.org

http://www.rock-robotics.org
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bogie system is able to keep the rover body almost at a horizontal position when

driving over rocks. ExoTeR’s locomotion formula is 6+6+4 which includes six driving,

six walking and four steering motors. The wheel walking motors are part of the

deployment mechanism to stow the rover in a compact configuration. The wheel

walking motors also serve for research on peristaltic motion modes, as the wheel

walking in Azkarate et al. (2015). There are no steering motors in the middle wheels,

making the chassis lighter but preventing the rover from crabbing.

The STIM300 IMU measures accelerations and angular velocities which are

filtered using a Kalman-based Attitude and Heading Reference System (AHRS)

described in Chapter 3. The stereo camera setup has a baseline of 12 cm with a reso-

lution of 1024 × 768 pixels per image. ExoTeR runs the Rock real-time framework on

a Linux operating system installed on a Core2 Duo at 1.86 GHz.

6.4.1 Mars-like Terrain

These tests are conducted at the Planetary Robotics laboratory of ESA. They are

described in the following.

Objective. The purpose is to evaluate the performance of the adaptive SLAM in

the Mars-like terrain, a realistic and versatile testbed for planetary rovers. The goal

is to understand how the adaptive thresholds alter the SLAM solution and to identify

which values bring successful results.

Setup. ESA’s planetary robotics laboratory comprises, among other facilities, a

9 m × 9 m Mars-like terrain that resembles a planetary surface. As in previous ex-

periments, the area is equipped with a set of twelve infrared emitting and sensing

cameras mounted to the walls, which sense reflective markers on the rover platform.

These cameras are part of the Vicon tracking system which can deduct and track

position and orientation of objects with such reflective markers. The Vicon system

tracks rover’s pose with centimeter accuracy in position and few tenths of a degree

in attitude. Two experiments, Test#1 and Test#2, are conducted to evaluate the fea-

sibility of the approach. Fig. 6.5 shows the real-time VizKit 3D 6 visualization of the

dense map reconstruction during one of the experiments.

The GP kernel runs in a single Rock task and predicts the current odometry error

for each new input data x∗ that arrives at the communication port. GP prediction is

the trigger mechanism for the camera driver and the visual odometry module. Delta

poses are incorporated by the SLAM system in order to track the features in the

63D Vizualization Kit https://www.rock-robotics.org/stable/documentation/

graphical_user_interface/index.html

https://www.rock-robotics.org/stable/documentation/graphical_user_interface/index.html
https://www.rock-robotics.org/stable/documentation/graphical_user_interface/index.html
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Figure 6.5: Real-time visualization of ExoTeR and the 3D map reconstruction during

Test#1 at the Mars-like terrain of ESA’ planetary robotics laboratory.

VO module, see Fig 6.2. The tracking module uses a constant velocity model calcu-

lated by the delta poses of the wheel odometry. The adaptive equation (6.1) decides

whether an image frame has to be included in the VO tracking. In the meantime the

odometry delta poses are pre-integrated between frames. When the adaptivity pol-

icy decides to trigger the image frame, the pre-integrated delta pose is used to track

the correspondence features in the image. Afterwards, a more accurate and refined

delta pose is computed by the VO module. Concurrently, equation (6.2) separately

adapts the necessity to incorporate a keyframe in the SLAM back-end and perform

an optimization step in the G2O graph.

Evaluation. Several maximum odometry errors γ are selected in order to test the

feasibility of the approach. γ depends on the maximum allowed threshold in equa-

tion (6.3). The threshold is a percentage of the nominal rover velocity resulting in a

maximum odometry error or slippage. For instance, a 25 % slippage threshold in a

rover driving at 0.063 m/s (6.3 cm/s) results in γ equal to 0.016 m/s. Fig. 6.6 depicts

the localization and mapping trajectory of four different cases depending on the max-

imum slippage allowed during the traversal. The first case shows the solution by

running SLAM without adaptivity, 0 % slippage threshold. This case uses the max-

imum amount of sensory data and resources available and turns out to be a fixed

classical SLAM system with an image frame rate τ = τ = 0.4s and a constant feature

matching ratio ρ of 75 % overlapping. The other three cases show the SLAM solution
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threshold has an impact on the quality of the estimates. Table 6.1 summarizes the

error value of each approach. Note that the number of frames and keyframes re-

duces as the threshold increases. It can also be noted how the number of keyframes

is almost three times less in the 25 % slippage (111 keyframes) than in the fixed

SLAM without adaptivity 0 % slippage (291 keyframes). However, the reduction of

keyframes does not have a significant penalty in the error since any of the computed

errors are three times higher than the solution without adaptivity. From 0 % to 25 %

slippage, only an increase of 0.14 % in the percentage error per distance traveled is no-

ticeable, see Table 6.1. This is because the adaptivity equation reduces image frames

when wheel odometry performs reasonably well and eliminates redundant keyframes

resulting in a sparser graph.

The same thresholds are selected to study the influence in the adaptivity and the

impact on the quality of the solution in Test#2. Fig. 6.7 depicts the localization and

mapping trajectory of four different cases depending on the maximum slippage al-

lowed during the traversal. It is appreciable in the figures that the keyframes have

a higher spatial frequency during turning maneuvers than in straight parts of the

trajectory. The keyframe selection criteria previously mentioned in Section 6.3.2 ap-

ply as in Test#1. The criterion is based on feature matching ratio instead of distance

traveled, which generates more keyframes when ExoTeR is turning. The equation

also adapts the density in areas with poor wheel odometry results and reduces the

number of keyframes when ExoTeR drives with good wheel odometry conditions. It

can also be noted that the ground truth trajectory interrupts at the top-right area of

the maps. The Vicon systems could not properly reconstruct the rover pose at that lo-

cation due to partial occlusion of the reflective markers. ExoTeR does not encounter,

in term of absolute numbers, as much slippage as in Test#1. The rover does not

reach 100 % slippage during Test#2. Nevertheless, slippage always occurs on sandy

terrains with metallic wheels and as long as there is a certain amount of slippage

the GP model is able to predict the traction performance. Such information is inter-

preted by the adaptive SLAM and adapts the parameters online as depicted in the

plots. Table 6.2 summarizes the error value depending on the adaptive criteria.

It is important to mention that the camera during the Test#2 is looking forward

and not being tilted as in Test#1. It penalizes the accuracy in visual odometry but

increases the robustness in the loop closure. The number of loop closures decreases in

the Test#1, from a maximum of three in the SLAM without adaptivity to one detected

loop closure at 100 % slippage threshold. The number of loop closures in the Test#2

is two and stays constant independently of the adaptiveness threshold. The reason

is that the camera is looking 30◦ downwards in Test#1. The lesson learned from

these two experiments in relation to loop closure is that adaptivity negatively affects

the number of detected loops but it is not a key factor. The camera configuration







6.4. Experimental Results 129

Figure 6.10: Adaptive map quality for different odometry error thresholds in Test#1

(a) colored reference dense map reconstruction, (b) error map with respect to the

reference map for 10 % threshold in adaptiveness, (c) error map for 25 % threshold

in adaptiveness and (d) error map for 100 % threshold in adaptiveness. The colored

error legend in meters is depicted on the right side.

surroundings. The dense map reconstruction, see Fig. 6.2, takes the stereo frame

images and performs a disparity image to estimate the depth per pixel. The depth

value is combined with the color information to produce a colored point cloud. The col-

lection of point clouds, one point cloud per frame pair, is locally merged at the latest

keyframe. Afterwards, the set of local maps is combined together using the EnviRe

graph structure to generate the global map of the environment. It is expected to have

some distortion and inaccuracies in the map as the adaptivity threshold increases.

Fig. 6.10 depicts the resulting error map for the adaptive localization and mapping

approach with different thresholds. An error metric is defined here, which is the ab-

solute Euclidean distance of each point in the voxel to the ground truth map. The

ground truth map is created by the same dense map reconstruction technique but



130 Chapter 6. Localization and Mapping with Adaptive Graph Sparsity

using the ground truth position (e.g. the Vicon system). It is worth noticing how the

map error is affected by the threshold. The heading drift is the main factor for point

cloud misalignment (ground truth vs SLAM). The drift originates from the IMU and

increases as the threshold in SLAM increases. Also, the error does not uniformly af-

fect all points in each local map. The error in the point cloud is directly proportional

to the distance from the sensor focal point. Therefore, the pose error affects points

further from the camera more than points closer to it. So, in mapped areas far from

where the rover has been the Euclidean distance error is higher. The biggest map

error of 1.92 m with respect to the ground truth map is encountered by the adaptive

SLAM with 100 % slippage threshold, see Fig. 6.10, at the middle left zone of the map.

This is coincident with the highest slippage occurring at the sandy dune, denoting the

penalty of odometry errors in the quality of the final map.

6.4.2 Decos Terrain

Objective. The purpose is to test the performance of the adaptive SLAM outdoors,

on a different terrain from the Mars-like terrain. The goal is to conduct a longer

drive, in a different environment with sunlight conditions. For that reason the Decos

terrain is selected due to its resemblance to a Mars landscape. However, the diversity

of the Decos terrain and variety of soil types is not as realistic as in the PRL testbed

which mimics Martian soil.

Setup. Decos terrain is located in Noordwijk, The Netherlands, in proximity to the

European Space Research and Technology Center (ESTEC). It is a terrain imitating

a rocky Mars environment with one prominent crater in the middle and a smaller

ground depression next to it. The test zone with dimensions 50 m × 80 m comprises of

medium size rocks and red broken bricks. ExoTeR is equipped with a GPS antenna

in order to acquire ground truth measurements along the drive. The stereo camera

sensor is also tilted 30◦ downwards as in Test#1. An autonomous drone is used to cap-

ture high-resolution aerial images and produce a Digital Elevation Map (DEM) of the

target zone. The generated DEM is used to render the ground truth map and contour

lines for the resulting figures of the experiment. Fig. 6.11 shows the ExoTeR located

at the base camp with the necessary equipment and the remote control station.

Table 6.3: ExoTeR’s pose results for the different SLAM schemes at Decos terrain.

Adaptiveness #Frames #Keyframes RMSE [m] Max E. [m] Final E. [m] Max E. [%] Distance [m] #Loops

w/o adaptivity 6133 797 1.06 5.41 0.48 3.05 177 0

10 % threshold 2982 530 1.07 5.56 0.53 3.14 177 0

25 % threshold 1352 243 1.29 5.61 0.67 3.16 177 0

100 % threshold 1224 215 1.63 6.30 1.19 3.56 177 0
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Figure 6.15: Adaptive map quality for different odometry error thresholds in Decos

terrain (a) colored reference dense map reconstruction, (b) error map with respect to

the reference map for 10 % threshold in adaptiveness, (c) error map for 25 % threshold

in adaptiveness and (d) error map for 100 % threshold in adaptiveness. The colored

error legend in meters is depicted on the right side.

rest of the visuals shows the resulting maps colored with error information with res-

pect to the digital model. The error is more pronounced at the left part of the bigger

circle, which is the end of the trajectory.

6.5 Influence in a Planetary Mission

This section analyses the impact of including the adaptive SLAM into the navigation

system of a potential planetary rover. The argumentation connects the motivation of

this thesis in Chapter 1 to the final results of the adaptive SLAM. The purpose is to

elaborate an analysis on how the adaptive SLAM influences a real mission scenario.

Fig. 6.16a shows the influence of adaptive SLAM in the number of image frames
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Figure 6.17: The navigation system for the autonomous driving of the ExoMars rover.

The average distance per sol for past, current and future Mars rovers is intro-

duced in Chapter 1. ExoMars rover has a maximum requirement of 50 m/sol during

Phase-B2. The navigation system requires 25 navigation image pairs every sol in

order to compute a DEM every two meters of traversal. The computational time

is tnav = 1.7min, which involves a total of 42.5 min every sol in order to compute the

map and perform the path planning on a LEON 2 processor. Similarly, the com-

putational time to process a stereo pair of localization images for visual odometry

is tvo = 1.5min. The following equation calculates the total time T required to drive a

certain distance d as a function of the percentage of image frame usage pus calculated

from Fig. 6.16a.

T =

[

d

lloc

tnav

]

+ [nf · pus · tvo] + tloc (6.4)

where d is the distance to navigate (50 m), lloc is the locomotion & localization

part (2.0 m), nf is the number of localization image frames in a distance d (151 image

pairs for 50 m), tloc is the time to traverse a distance d at the nominal rover velocity

of 2.0 cm/s and pus changes according to the values depicted in Fig. 6.16a. The result

for maximum pus = 1.0 (100 %) is a total time T of 5.19 h in order to navigate 50 m.

A minimum pus = 0.194 (19.4 %) gives a total time T of 2.13 h for the same distance.

These values give a clear insight about the benefit of adaptive SLAM to the effective

traversal.

An interesting comparison is to analyze the consequences of the adaptive SLAM

system to the average rover velocity per sol. A Mars planetary rover has a nominal

driving time of 2.25 h. This is used to define a locomotion sol in Chapter 1 and to cal-
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Figure 6.19: Camera images along the Decos terrain showing a perceptual aliasing

which entails difficulties to detect a loop closure.

the adaptive SLAM at 100 % is 1.44 m. The deducted analysis is performed with the

available data from the conducted ExoTeR experiments on Earth, i.e. terrain, gravity

and illumination conditions. Nevertheless, it gives a valuable information on how it

could result in a real mission scenario on Mars.

6.6 Conclusion

This chapter introduces a novel method to positively influence the SLAM with an

adaptive graph sparsity. The adaptive SLAM is possible due to optimization and

machine learning techniques which bring to the next step the interpretation of raw

information generated by the rover. The technique is based on the rover interaction

with the traversed terrain by means of odometry errors. The research demonstrates

that the information from the interaction with the terrain provides valuable data

which are useful in order to adapt the localization and mapping solution. Fig. 6.18a

shows how the rover velocity increases as a function of adaptiveness with a small

penalty in the localization error, see Fig. 6.18b. More specifically, the average rover

velocity doubles in the adaptive SLAM with 25 % slippage threshold in comparison

with a state-of-the-art SLAM (without adaptivity).

Perceptual aliasing can influence the loop closing under certain situations in a

planetary scenario using sensors with a limited field of view. Fig. 6.19 shows image

frames during the Decos test with similar appearance. The perceptual aliasing pro-

duces indistinguishable bag of word vectors with multiple candidates in the dataset.

It makes multiples options without a clear candidate to determine when a place is

revisited. A solution investigated here is to increase the view of the cameras by not

tilting the sensor unit, see results for Test#2 at the Planetary Robotics laboratory.

Further ideas and alternatives to minimize the perceptual aliasing are given in Chap-

ter 7.

Future long-term SLAM systems will require adaptive graph sparsity, such as

the method presented here. The technique improves scalability. Ideally, an adaptive

SLAM system should be complemented with faster computational hardware, such
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as FPGAs or GPUs, in order to boost the computational speed, increase paralleliza-

tion and reduce the value for the slippage threshold. With such hardware improve-

ments a moderate value between 10 % and 25 % percentage threshold in equation (6.3)

should allow a non-stop, accurate and faster traversal. Future planetary missions can

benefit from adaptive SLAM to fulfill the requirements of a Sample Fetching Rover

(SFR) with 200 m/sol as nominal velocity.
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Chapter 7

Conclusions and Discussion

This chapter summarizes the results of this thesis and presents the lessons learned

during the process. Some insights for future work regarding long-term localization

and mapping are described at the end.

7.1 Thesis Summary

This thesis is at the conceptual line between an adaptive data association in modern

SLAM systems and the mission requirements for planetary rovers. Within this

context the thesis contributes to the improvement of dead reckoning processes and

the adaptiveness in SLAM. This thesis develops a bottom-up approach to solve the

localization and mapping problem in planetary rovers. It starts from basic means

in an attitude and heading estimation, continues with a 3D odometry, defines a

Gaussian Process (GP) regression and finishes with integration in a modern SLAM

system. Each block builds on top of its predecessor to develop a novel SLAM solu-

tion which serves the needs of a potential planetary rover. The thesis statements

described in Section 1.3 of Chapter 1 identify the missing gaps in four different do-

mains: attitude estimation, motion models, machine learning and full SLAM sys-

tems.

Part I focuses on dead reckoning as the elementary technique to localize the rover

from a starting position. An inquisitive reader might question the dedication of a

complete part in this thesis to dead reckoning processes. Mainly because a full SLAM

is the state-of-art solution. One could directly implement a tightly coupled nonlinear

optimization-based SLAM as a monolithic approach where all sensory information is

optimized at once. This could be a valid approach, except for the fact that planetary

rovers are very constrained systems where autonomy diverges from mission to mis-

sion or from operation to operation mode within the same mission. The autonomous

capabilities are remotely selected from Earth depending on mission demands. There-

141
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fore, a rover could operate in dead reckoning mode for a period of time, when scien-

tific analyses are more relevant that navigation performance, and switch to a modern

SLAM approach when a longer traversal distance is required. The second reason to

have a dedicated section to dead reckoning, is that a modern SLAM should not pre-

vent to full characterization and analysis of the unbounded errors. This helps to

better understand the benefits of sensor fusion, the contributions of SLAM, mapping

and loop closure versus dead reckoning in a particular platform, such as a planetary

rover. Conclusions for Part I are summarized in the following.

The research in the AHRS design studies the impact of inertial sensor errors

in the estimated robot’s attitude. Nowadays, the characterization of inertial sen-

sors cannot be understood without the use of the Allan variance. The work extends

previous research on time series analysis and incorporates the technique into the in-

direct form of a Kalman filter. The presented research describes a process to follow

in order to design a robust AHRS. The design, depicted in Fig. 3.1, is divided into

three steps: error characterization, model derivation and filter design. This research

provides an End to End approach that directly relates stochastic errors with the inac-

curacies in the estimation of the robot attitude. The methodology provides a general

design which adapts to most of the inertial sensors used in the aerospace sector. This

is the reason why the methodology is applied in two complete different set of inertial

sensors, a DETF-based and a FOG-based IMU. The presented methodology provides

a design process for AHRS with improvements in accuracy.

Investigations on enhanced 3D odometry describe the basics of a generic and com-

plete odometry model for outdoor robots. The method fuses information from the

locomotion system and uses it in the dead reckoning of a localization scheme. The

research is motivated in Chapter 1 by describing how MER rovers accumulated only

3 % position error over 2 km of driving on soil, flat and level ground using conven-

tional odometry. The primary objective of the wheel odometry is to capture the whole

kinematics of the locomotion system by using a complete model. A skid odometry

model might be attractive to compute due to the simplicity of the solution. However,

the motivation for this research was to demonstrate that this simplicity has a penalty

in accuracy. Nevertheless, independently of the performance, the use of transforma-

tion matrices is more convenient, practical and generic than previous ad-hoc contact-

point approaches as in Lamon and Siegwart (2007) and Schwendner et al. (2013)

which does not easily adapt to wheeled robots. The technique described in this thesis

is generic and adapts to any open kinematic chain by means of transformation ma-

trices. The set of contact points is combined in a least squares optimization, which

minimizes the error. Despite non-systematic errors, a 3D odometry model shows im-

provements in accuracy. The absolute improvement might depend on the rover tra-

jectory and maneuvers but always benefits on uneven terrains. The odometry is able
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to propagate the movement taking into consideration the full kinematics constraints

and the expected traction forces. The methodology is a 6 DoF motion model which

decreases the percentage error per distance traveled from 8.3 % to 2.7 % on uneven

and soil terrains during test with the Asguard rover and from 9.54 % to 6.51 % with

the ExoTeR. The model reduces by half the percentage error per distance traveled

in ExoteR in trajectories with considerable turning maneuvers as shown in the De-

cos scenario, see Table 4.2. In addition, the benefits of developing a complete motion

model are also significant to control the rover. Azkarate et al. (2015) and Wiese (2017)

apply the motion model approach to control the rover with the wheel walking maneu-

vers.

Though the results in Part I are already an achievement in the field, it does not

fit the navigation requirements for planetary rovers (robust against slippage, loop

closure, adaptivity, etc..). Machine learning and sensor fusion techniques are ap-

plied to combine with visual odometry at a higher level of data fusion (SLAM). Visual

odometry is an important piece of work in localization and mapping. The enhanced

3D odometry aims to complete the visual odometry rather than substitute it. Parallel

computing, either running in a GPU or FPGA, will bring the technique to a faster

computational mean. The enhanced 3D odometry exploits the information available

from the locomotion system and the contact with the ground to fuse meaningful infor-

mation from the kinematics. The question raised here is how to fuse visual and wheel

odometry in order to take the most from both techniques, minimizing redundancy and

computational cost and maximizing efficiency and robustness. The answer given in

this thesis is adaptive SLAM. A methodology to predict the odometry error in order

to dynamically adapt the visual odometry load and influence the system back-end.

Such research constitutes Part II and builds on top of the methodologies developed in

Part I. The conclusions of Part II are summarized in the following.

Gaussian processes (GPs) are a practical machine learning tool for robotics and

are investigated and applied in this thesis. The modeling of non-systematic odometry

errors, affected by a poor traction performance, is an open research problem in

robotics. The reason is the direct impact on robot control, planning and localization.

Instead of modeling the odometry of the rover, the approach model the error with res-

pect to the estimation from a parametric model. This is very convenient for GPs since

all the modeling is in the covariance function. The odometry error model does not re-

quire extra sensors beyond what is usually available in planetary rovers (inertial

sensors and joint encoders). The results have shown reasonably good predictions on

representative terrains as shown in Fig. 5.4 and Fig. 5.6. GPs are able to learn the

hyperparameters of a kernel function in order to derive a non-parametric model of the

odometry error. GP predictions have an accuracy of 70 % in the worst case scenario

as shown in Test#1 on a Mars-like terrain. Even though the model cannot predict
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the absolute value in some extreme cases, i.e. 100 % slippage. The model predicts

the odometry error with extraordinary results. Contrary to a high odometry error, a

low odometry error might be inestimable by the method due to a low signal to noise

ratio. This situation might occur when the minimum sensing level of the proprio-

ceptive sensors overlaps with the odometry error. Finally, it could be interesting for

future work to entirely model the wheel odometry using GPs instead of the residuals.

It would entail inserting the output of a parametric odometry as input data into the

nonlinear regression model. However, this thesis proposes the solution to model the

error and do not become dogmatic about learning. Why to learn an odometry model

when there is an accurate parametric motion model available? Specially, when the

values of interest are the errors or inaccuracies of the model.

An offline learning approach is presented in Chapter 5, where the model is learned

on training runs and evaluated in a test environment. The capability of the rover to

predict the odometry error using proprioceptive data is an important achievement

not only for SLAM but for machine learning. However, the strategy can be improved

since online learning might be required on highly dynamic terrains, where traction

performance change significantly from one location to another. Future work includes

online learning and using visual odometry as target inputs instead of ground truth

data. Initially visual odometry will be queried frequently, and as model uncertainty

decreases the frequency of visual odometry can be reduced and computational effort

can be saved. The learning step, which is more computationally expensive, can be

computed over night, when the rover is stopped, waiting for new commands for the

next day. Techniques such as Incremental Local Gaussian Regression, Meier et al.

(2014), would allow online learning and adapting the localization and mapping, as

well as the visual odometry, to the dynamics of the environment. Odometry errors

might also provide a cue to identify the terramechanics of the terrain and inform the

path planning component about potential hazards.

Adaptive SLAM in Chapter 6 finally encompasses the efficiency and purpose of

this thesis. Wheel and visual odometry are supplementary techniques that accu-

rately complement each other to estimate the rover pose. It has been demonstrated

that under good traction conditions wheel odometry has the same accuracy as visual

odometry (approx 1 −2 % error). Errors in both techniques increase unbounded unless

a loop closing strategy applies. The ability to use the odometry error to encompass

the classical visual SLAM approach is interesting for planetary rovers. The ability

to adapt the SLAM solution autonomously and in real-time as the rover navigates

the environment, is the contribution of adaptive SLAM. This contribution allows to

adapt SLAM computational load to the current navigation demands. Table 5.2 shows

how SLAM with GP can double the accuracy in comparison to SLAM without GP with

a graph which has the same number of nodes, approximately 150 nodes. The require-
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ments depend on a design criterion, and the criteria are driven by the mission. This

thesis presents two criteria, an active perception and an informative keyframes se-

lection strategy. Firstly, active perception autonomously adapts the visual odometry

computational load to the situation’s demands. This minimizes the computational

cost while still providing reliable results. Secondly, informative keyframes selection

provides an efficient distribution of keyframes and therefore nodes in the graph. The

adaptive SLAM with 10 % threshold reduces the computational cost of VO by half

(from 2619 frames to 1206 frames) with respect to a classical SLAM and with 100 nodes

fewer in the graph, obtaining similar RMSE in position, see Table 6.1. An average

error of approximately 35 cm in the quality of the point clouds in mapping is achieved

for the adaptive SLAM with 10 % threshold. In addition, Fig. 6.18a shows how the

rover velocity increases as a function of the adaptiveness with a small penalty in the

localization error. This analysis extrapolates the benefit of using adaptive SLAM into

a potential planetary mission.

7.2 Lessons Learned

The goal of this thesis is to design, develop and evaluate an adaptive localization and

mapping solution driven by the demands of a planetary rover. Several lessons have

been learned during this journey.

• Dead reckoning. When possible, mitigate errors at the dead reckoning level. A

bad dead reckoning process will negatively affect the complete SLAM system

with catastrophic results. This applies to the Attitude and Heading Reference

System, the wheel odometry and the visual odometry.

• Wheel odometry. A 3D model has pros and cons. Mobile robots with a simple

locomotion system, e.g. skid robots, do not justify the development of a more

complex 3D odometry approach; especially when the robot only navigates on

flat surfaces. A 3D odometry primarily captures the 6 DoF delta displacement

induced by the locomotion system but the justification for its development re-

quires a minimum of complexity in the locomotion system as well as by the

unevenness on the terrain. Planetary rovers definitely justify the approach as

evaluated in Chapter 4.

• Data is king. The information gathered by the robotic platform in general and

the locomotion system in particular, is an effective manner to achieve graph

SLAM sparsity. The process requires machine learning techniques, such as the

GP regression described in Chapter 5. This will be a key aspect for long-term

SLAM systems of the future.
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• SLAM scalability. Graph sparsity is a fundamental property for the accuracy of

the final SLAM solution. Table 5.2 shows that with the same number of frames

and keyframes the final error can be reduced by selecting highly informative

nodes. This emphasizes the importance of graph node selection or sparsity for

adaptive SLAM.

• Dense perception. Sparse SLAM should not prevent a dense perception. Dense

map and 3D world reconstructions are required for path planning and science

operations. The combination of dense perception and sparse optimization is the

desired solution, see Chapter 6.

• Loop closure. The number of loop closures is affected by the adaptiveness in

the SLAM. Adaptive SLAM is capable of closing the loop several times in the

Mars-like terrain. The number of detected loops is influenced by the adaptivity

threshold as shown in Table 6.1. However, perceptual aliasing and sensor ori-

entation, as shown in Fig. 6.19, becomes the big issue due to the surroundings,

especially when the rover is only equipped with a stereo camera pair.

Mars-like terrain experiments show that the adaptivity threshold affects the

loop closing. However, the threshold does not play a prominent role when the

perceptual aliasing is a main factor. The Decos terrain experiment in Sec-

tion 6.4.2 shows that adaptiveness does not play a prominent role when there

is aliasing. Perceptual aliasing is primarily affected by the environment and

adaptivity only emphasizes its impact. Decos environment shows a perceptual

aliasing which is not affected by any of the adaptive SLAM schemes. In this

context active perception can minimize perceptual ambiguities as described in

the work by Forster et al. (2014).

• SLAM needs robotics as much as robotics needs SLAM. Robots enrich the SLAM

solution by the information gained from their interaction with the environment.

A robotic platform complements a typical visual SLAM approach. This is a

key issue, since under bad conditions, both visual odometry or wheel odometry

perform equally badly. Vision is very sensitive to texture, image blur and light

conditions, and the locomotion system is sensitive to the traction performance.

A rover is a perfect platform to combine both approaches, and adaptive SLAM

is presented in this thesis as a feasible, robust and scalable approach.

• System evaluation. A SLAM system needs to be evaluated at application level.

The performance and requirements of a SLAM system are diverse from appli-

cation to application. The design of a SLAM solution for a planetary rover is a

good exercise.
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• The future of space exploration will depend on the performance of modern

SLAM systems. Autonomous robots in space will require SLAM in order to

work for longer runs in outdoor environments.

• Learn to adapt. Adaptation, ignorance and awareness based on prior robot

knowledge increase the robustness of a SLAM system. This thesis investigates

adaptation, showing a small step ahead in long-term SLAM. Learning to adapt

reduces parameter tuning and increases the lifelong of the system.

• The limit of learning. SLAM should not become dogmatic about learning ev-

erything, but pragmatic in its use. Learning is a general term which involves

an optimization problem. The right question is what to optimize using learning

methods. This thesis proposes that when there is a formalization of the problem,

machine learning should not substitute it. It means that machine learning

should only overcome the limitation of the mathematical model to adapt to the

real word and it should never substitute the complete formalization. Other-

wise, machine learning becomes hard to address challenges, difficult to detect

failures and the number of data required to learn the optimization function in-

crease considerably, making the learning process unmanageable.

7.3 Future Work

We are at the beginning of the era of autonomous robots, an era where intelligent

machines will coexist with humans at work, at home and to explore the universe.

The development is based on three pillars: data, artificial intelligence and classical

robotics. This thesis combines those pillars with the belief that a modern SLAM sys-

tem will be one day on board a planetary rover. There are very interesting following

lines of research for future development.

• Regarding Attitude and Heading Reference Systems (AHRS), improvements in

the direction of dynamically fusing magnetic information are desired for fu-

ture work. The research will be more relevant in terrestrial application, since

celestial bodies not always have a reliable magnetic field that could serve for

navigation purposes. Some recent research in this direction is in Christensen

et al. (2017).

• In the context of wheel odometry, the estimation of how much each contact point

contributes to the rover movement can be significantly improved in the future.

The contribution of each contact point is currently estimated using a quasi-

static calculation of reaction forces. An improvement of the 3D odometry is

expected by incorporating force-torque sensor at the contact point. However,
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most existing planetary rovers lack such sensors in the wheels due to mass and

power restrictions. It is foreseen to have such sensors in the future when they

become smaller, lighter and more efficient.

• A Gaussian Process estimation of odometry errors might have several

applications in robotics, not only for localization and mapping. The odometry

error model can assist rover motion control, path planning and online terrain

characterization in remote environments. Future techniques to improve the

accuracy of the model include correlating the predictions with visual odometry

from the cameras instead of using offline ground truth data. The technique

combines well with image segmentation in the direction of semantic SLAM

which would make the necessary solution for on board traversability prediction

in planetary rovers. Recent work with GPs in this direction is done by Cunning-

ham et al. (2017).

• Adaptive SLAM. In this thesis the quadratic equations for visual odometry

adaptivity and graph node selection are studied. Other form of equations is

interesting to consider in future work.

• Semantic reasoning. Open issues, such as robust loop closure will require a

semantic understanding of the scene. High level object recognition, geometry

and semantics will be part of future SLAM. This might eventually mitigate the

penalty of perceptual aliasing induced by the environment.

• Long-term SLAM. Learning techniques, such as Bayesian inference or deep

learning, exploit the information sensed by the rover. Deep learning brings ro-

bustness in the future of perception systems. Online learning and adaptiveness

will be essential to the new perception era.

• Event-based vision will entail a significant change in visual localization and

SLAM. Recent development in Dynamic Vision Sensors (DVS) will allow visual

odometry in the harshest environments with a higher level of robustness. DVS

have faster response, lower latency, do not suffer image blur and automatically

adapt to different lighting conditions. The sensor works based on events instead

of frames, imitating the visual system of animals. This characteristic brings a

new concept to perform localization and mapping based on events. The SLAM

community is already adapting to the new paradigm, Censi and Scaramuzza

(2014); Rebecq et al. (2017). There is substantial research to pursue in the

field. The adaptation of the technology into the aerospace sector is an exciting

development with great potential.
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• Active SLAM. A coupled SLAM system between perception, optimization and

control of the robot is still far from providing actionable and compact models of

the environments as used by humans. This remains an open question in this

line of research. An inquisitive reader might find recent results using quadro-

tors in Vidal et al. (2017).



150 Chapter 7. Conclusions and Discussion



Appendix A

ExoMars Testing Rover - ExoTeR

Figure A.1: ExoMars Testing Rover at the

Planetary robotics laboratory in 2015

The rover platform used for most of the

described experiments is an ExoMars-

like scaled down laboratory prototype.

The ExoMars Testing Rover (ExoTeR)

mimics the locomotion configuration of

ExoMars (according to its design in

2007), a.k.a. triple-bogie passive sus-

pension, with a parallelogram structure

on top of each bogie Fig. A.1 illustrates

the locomotion system of ExoTeR to-

gether on the descent module. The

locomotion system comprises 6 wheels

and 16 actuated joints, more precisely,

6 driving, 4 steering and 6 deployment

(or walking) motors. Motion control

electronics are a network of servo-drives,

namely Elmo Whistles, connected in a

CAN Bus together with the On Board Computer (OBC). A driver module in the OBC

acts as a CAN Master implementing the CANOpen protocol and sends joint com-

mands timely synchronised to perform a certain locomotion maneuver. Each servo-

drive takes care of the close-loop control of one active joint to reach the commanded

(position and/or velocity) set point.
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Appendix B

Advanced Security Guard -

Asguard

Figure B.1: Asguard III at the DFKI test

track.

Asguard III is a mobile robot with 4

actuated legged wheels and a passive body

degree of freedom, Fig. B.1. The wheel

shape allows the robot to negotiate un-

even terrain and climb stairs. This robot

is based on the Asguard II platform that

was equipped with additional sensors and

a very powerful onboard computer. The

sensor head features a laser scanner, a

stereo camera system and an inertial mea-

surement unit.

Table B.1: Asguard III technical data

Total Mass 14.0 kg

Dimensions L 0.54 × W 0.53 × H 0.9 m

Chassis legged wheels

Locomotion 4 × 80 watts Faulhaber DC motors – planetary gear 46:1

Wheel diameter 42.0 cm

Wheel width 4.0 cm

Computer Embedded PC Core2 Duo

System Ubuntu x86 + Rock

Power supply Lithium Polymer Batteries

Camera 2 × Guppy F-036C / objective: TS4124-4mm Pentax

3D Hokuyo UTM-30LX Laser Scanner

IMU Sensonor STIM300
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