
Poster: Generating Reproducible Out-of-Order Data Streams
Philipp M. Grulich1 Jonas Traub1,2 Asterios Katsifodimos3 Tilmann Rabl4∗

Sebastian Breß1,2 Volker Markl1,2
1Technische Universitat Berlin 2DFKI GmbH 3Delft University of Technology 4Hasso Plattner Institute

ABSTRACT
Evaluating modern stream processing systems in a reproducible
manner requires data streams with different data distributions,
data rates, and real-world characteristics such as delayed and out-
of-order tuples. In this paper, we present an open source stream
generator which generates reproducible and deterministic out-of-
order streams based on real data files, simulating arbitrary fractions
of out-of-order tuples and their respective delays.

CCS CONCEPTS
• Information systems → Stream management.

KEYWORDS
Stream Processing, Benchmarking, Data Generation, Out-of-Order
ACM Reference Format:
Philipp M. Grulich, Jonas Traub, Asterios Katsifodimos, Tilmann Rabl, Se-
bastian Breß, and Volker Markl. 2019. Poster: Generating Reproducible
Out-of-Order Data Streams. In DEBS ’19: The 13th ACM International Con-
ference on Distributed and Event-based Systems (DEBS ’19), June 24–28, 2019,
Darmstadt, Germany. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3328905.3332511

1 INTRODUCTION
With the growing adoption of stream processing systems (SPSs),

it is crucial to evaluate these systems on reproducible and realistic
workloads [5]. To this end, a variety of real-world streaming data
sets from different domains are available, such as the NYC TLC Trip
Record Data [9], the DEBS Grand Challenge data sets [4, 7], and
the UCI Human Activity Recognition data set [2]. An important
characteristic of data streams is the order of events: the order of
events arriving at a stream processing system does not always
match the event-time (the point in time at which an individual
event was generated). Many factors can affect the order of events,
such as slow data sources, clock drifts, or network disconnects and
delays. If the stream processor does not take this out-of-orderness
into account, it can generate incorrect and non-deterministic query
results. I2, for example, relies on the correct event order to visualize
time series [12]. To handle out-of-order events directly in the SPSs
many systems follow the Dataflow Model [1] and implement the
bucket-per-window technique [6]. As processing performance is
crucial for SPSs, recent works focused on efficient aggregation
*Work condcuted while the author was employed at TU Berlin

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’19, June 24–28, 2019, Darmstadt, Germany
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6794-3/19/06. . . $15.00
https://doi.org/10.1145/3328905.3332511

Figure 1: Overview of data generation.
techniques based on aggregate sharing [3, 8, 10, 11]. To evaluate
these techniques and the impact of out-of-order handling on the
system performance, it is necessary to modify real-world data sets in
order to meet specific data characteristics such as out-of-orderness
and the addition of delay in event arrivals.

In this paper, we present an out-of-order stream data genera-
tor, which enables the reproducible modification of out-of-order
characteristics of arbitrary input data sets. This tool was already
used in recent work on efficient window aggregation with Gen-
eral Stream Slicing [10, 11] and is available in a public repository.1
The data generator supports benchmark developers in two aspects.
First, it analyzes the out-of-order characteristics of a given source
data set, such as the fraction of out-of-order events and the mini-
mal/maximal event delay. Second, the data generator modifies the
out-of-order factor of the source data set by introducing delays to
specific events. For this, the generator ensures that the temporal
data distribution remains constant. This guarantees that the results
of an event time stream processing query are independent of the
introduced delay. To enable reproducibility, given a configuration,
we generate experiment data on the fly deterministically.

This paper describes the architecture of our out-of-order data
generator, the design of its configuration files, and its out-of-order
manipulation algorithm. Furthermore, the goal of this poster is
threefold. First, we want to raise attention for our data generator
in the stream processing community at DEBS. Second, we wish to
gather contributions to our open source data generator. Finally, we
aim to establish a novel benchmark for out-of-order stream pro-
cessing; our generator provides a first step towards that direction.

2 DATA GENERATOR
Figure 1 shows the overall data generation process, from the source
data to the final experiment data. Given identical source and con-
figuration files, our generator guarantees to produce the same ex-
periment data to enable reproducibility. Finally, the generated data
set can then be ingested into any SPS. In the following, we describe
the source data, the configuration file, and the out-of-order data
generation algorithm in detail.

2.1 Reusing Existing Streaming Datasets
For the evaluation of SPSs, we usually replay a set of prerecorded
events from a source data file. The events can originally be gen-
erated by any kind of data sources such as sensors or real-time
1https://github.com/TU-Berlin-DIMA/out-of-order-datagenerator

256

DEBS ’19, June 24–28, 2019, Darmstadt, Germany P. Grulich, J. Traub, A. Katsifodimos, T. Rabl, S. Breß, and V. Markl

1 "dataSource": {
2 "file": $path$,
3 "seperator": ","|";"|"\t",
4 "time": {
5 "timeIndex": $field$,
6 "sourceTimeUnit": "ps"|"ns"|"ms"|"s"
7 }
8 },
9 "experimentDataConfigurations": [

10 {
11 "targetOutOfOrderFactor": [0-100],
12 "minDelay": 0,
13 "maxDelay": 2000,
14 "delaySeed": $seed$
15 }
16]

Listing 1: Configuration file for data generator.

applications. Our data generator can process any source file as long
as it is encoded in a flat data format, and its events contain a field
with the event time. Event-time is necessary to reason about the
order and frequency of events.

2.2 Configuring the Data Generator
To generate experiment data we modify the source data set ac-
cording to a configuration file, similar to the one in Listing 1. The
configuration file is structured in two segments. First, it describes
the data source set with its path, its field separator, and how the
event time can be extracted. For this, we support time-units from
picoseconds to seconds. The second component defines a list of
experiment data configurations. Every configuration generates a
separate experiment data set based on the same source data set. An
experiment data configuration defines the targeted out-of-order
factor and the minimal, maximal delay of an event, and an initial
seed to initialize the delay generator.

2.3 Adding deterministic out-of-orderness
It is crucial to follow a deterministic algorithm that generates ex-
periment data, changing delays and the fraction of out-of-order
events. A naïve out-of-order data generation algorithm simply adds
a random delay in the event time of certain events. This approach
introduces out-of-orderness, but it also changes the temporal data
distribution on the event time. For instance, a given event can be
assigned to a different event time window, compared to a previ-
ously generated dataset. To mitigate this problem we propose the
following three-phase data generation algorithm.

2.3.1 Preprocessing. In this step, we analyze the out-of-order factor
of the source file, looking for already existing out-of-order events.
This step is crucial: if a user wishes to alter the out-of-orderness of
a given stream, our generator needs to know in advance what the
characteristics of the original dataset are. To this end, our generator
builds histograms and statistics on the temporal distribution of
out-of-order events, in order to take those into account during the
data generation step.

2.3.2 Generation of out-of-order ingestion time. Instead of modify-
ing the event-time of an event, we pre-define a target ingestion time
as a separate field of the input event. Initially, the ingestion time
equals the event’s event-time and prescribes when an event should
be consumed by the SPSs. If a given event is already out-of-order in

the source data set, we will just copy it to the generated data set. For
every source in-order event, we decide if it will be transformed into
an out-of-order event based on the out-of-order factor, specified by
the user in the configuration file. To transform an in-order event
to an out-of-order event, we alter its ingestion time: the existing
event-time plus an out-of-order delay. In its current version, delays
are uniformly distributed between the minimal and maximal delay
as defined in the configuration file. However, it would be simple to
plugin different distributions in our existing codebase.

2.3.3 Sorting the final data stream by Ingestion Time. After gener-
ating the target ingestion time for every event, the resulting data
stream is still in the same order as the original stream. For existing
SPSs to take advantage of the out-of-orderness without any changes
in how they ingest streams, the generator sorts the resulting data
stream by the event’s ingestion time (the one that the generator
altered to match the configuration’s specification). The resulting
dataset can simply be ingested by a given SPS, in the order that the
events appear in the file. Care has to be taken though, that during
the data ingestion the delays of each event are respected.

2.4 Analyzing Existing Streams
Apart from generating experiment data, it is often necessary to
analyze the out-of-order properties of a given stream. To this end,
we provide a second tool, which just performs the preprocessing
phase of the data generation algorithm. This analysis step extracts
the frequency, out-of-order factor, and a delay histogram.

ACKNOWLEDGMENTS
This work was funded by the EU projects E2Data (780245), DFG
Priority Program “Scalable Data Management for Future Hardware”
(MA4662-5), and the German Ministry for Education and Research
as BBDC II (01IS18025A).

REFERENCES
[1] Tyler Akidau, Robert Bradshaw, et al. 2015. The dataflow model: a practical

approach to balancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. In VLDB.

[2] Davide Anguita, Alessandro Ghio, Luca Oneto, et al. 2013. A public domain
dataset for human activity recognition using smartphones.. In Esann.

[3] Savong BOU, Hiroyuki KITAGAWA, and Toshiyuki AMAGASA. 2018. CBiX:
Incremental Sliding-Window Aggregation For Real-Time Analytics Over Out-of-
Order Data Streams. In DEIM.

[4] Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, et al. 2012. The DEBS 2012
Grand Challenge. In DEBS.

[5] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking distributed stream data
processing systems. In ICDE.

[6] Jin Li, David Maier, Kristin Tufte, et al. 2005. Semantics and evaluation techniques
for window aggregates in data streams. In SIGMOD.

[7] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. 2013. The DEBS
2013 Grand Challenge. In DEBS.

[8] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. 2018. Sub-O (log n)
Out-of-Order Sliding-Window Aggregation. arXiv preprint (2018).

[9] New York City Taxi and Limousine Commission. [n.d.]. Tlc trip record data.
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

[10] Jonas Traub, Philipp M. Grulich, Alejandro R. Cuéllar, Sebastian Breß, Asterios
Katsifodimos, Tilmann Rabl, and Volker Markl. 2018. Scotty: Efficient Window
Aggregation for Out-of-Order Stream Processing. In ICDE.

[11] Jonas Traub, Philipp M. Grulich, Alejandro R. Cuéllar, Sebastian Breß, Aste-
rios Katsifodimos, Tilmann Rabl, and Volker Markl. 2019. Efficient Window
Aggregation with General Stream Slicing. In EDBT.

[12] Jonas Traub, Nikolaas Steenbergen, Philipp Grulich, Tilmann Rabl, and Volker
Markl. 2017. I2: Interactive Real-Time Visualization for Streaming Data.. In EDBT.

257

