13th ACM International Conference on Distributed and Event-based Systems (DEBS), June 24-29, 2019, Darmstadt, Germany

Generating Reproducible Out-of-Order Data Streams
Philipp M. Grulich

grulich@tu-berlin.de

Tilmann Rabl

tilmann.rabl@hpi.de

Experiments with Out-of-Order Streams

We provide a scalable data stream generator, which introduces
configurable out-of-orderness in real-world data streams.
This enables reproducible and realistic experiments.

Apache
Beam

e Handling out-of-order data streams is a key feature of modern 3
stream processing systems [1].

e Research on the support of out-of-order stream
processing requires reproducible, scalable, and
configurable experiments on out-of-order data streams.
For example, research on efficient window aggregation [2,3,4].

Apache Flink

APACHE &
The evaluation of out-of-order capabilities is hard: r K

e Public real-world datasets do not reflect all aspects of p
out-of-order streams (e.g., different delays and fractions of out-of-order tuples).

e Experiments without real-world data can lead to unrealistic results.

Architecture Overview

Source Data —>»{ Data Generator » Experiment Data
Experiment

Stream Processing System

Configuration

A general out-of-order experiment data generator:

e Introduce out-of-order data to real-world input data sets.

e Generic configuration of out-of-orderness to enable full parameter exploration.

e Reproducible generation of experimental data with configurable out-of-orderness.

Generator Configuration

1 | "dataSource": {

2 “File": $paths

3 seeperater™: TeY | TPty

4 "time": {

5 "timeIndex": $field$,

6 "sourceTimeUnit": "ps"|"ns"|"ms"|"s"
7 3

8 |},

9 | "experimentDataConfigurations": [

10 {

11 "targetOutOfOrderFactor": [0-100],
12 "minDelay": 0,

13 "maxDelay": 2000,

14 "delaySeed": $seed$

15 3

16 |]

e Configurable aspects of out-of-order streams:
o Fraction of out-of-order tuples (How many tuples are out-of-order?).
o Minimal/maximal event delay (How late are out-of-order tuples?).
o Qut-of-order delay distribution (How are delays distributed?).

References

[1] Tyler Akidau, Robert Bradshaw, et al. VLDB 2015.
The dataflow model: a practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing.

[2] Jonas Traub, Philipp M. Grulich, Alejandro R. Cuéllar, Sebastian Brel3, Aste-
rios Katsifodimos, Tilmann Rabl, and Volker Markl. EDBT 2019.
Efficient Window Aggregation with General Stream Slicing.

[3] Jonas Traub, Philipp M. Grulich, Alejandro R. Cuéllar, Sebastian Brel3, Asterios
Katsifodimos, Tilmann Rabl, and Volker Markl. ICDE 2018.
Scotty: Efficient Window Aggregation for Out-of-Order Stream Processing.

[4] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. arXiv preprint 2018.
Sub-0 (log n) Out-of-Order Sliding-Window Aggregation.

‘ 5 ’) ——————
| German

Technische .
Universitat

Berlin

Jonas Traub

jonas.traub@tu-berlin.de

Sebastian Brel}

sebastian.bress@dfki.de

Research Center
for Artificial I U Delft
Intelligence

Asterios Katsifodimos

a.katsifodimos@tudelft.nl

Volker Markl

volker.marki@tu-berlin.de

Adding out-of-orderness to Data Streams

Source Data Stream:

P00

Shift Record |

Goal:
e The generation of out-of-order tuples has to be deterministic and must
not change query results.

Naive Solution:
e Generating out-of-order data by adding a random delay to the event time
of certain tuples — changes temporal data distribution.

Our Approach:
e Shift ingestion times of source tuples and keep original event times.

Generator Algorithm

Step 1. Preprocessing:
e Analyze the out-of-orderness of the source data stream to take this
knowledge into account for data generation.

max’l's < O;
for record in sourceFile do
if record.ts < max1's then
‘ RegisterDelayedRecord (record) ;
end
max1's < record.ts;

end

Step 2. Generation of out-of-order ingestion time:

e [f an in-order tuple becomes an out-of-order tuple, we add a random
delay to its ingestion time (based on the configured distribution).

e Finally, we sort the data set by ingestion time.

for record in recordBuffer do
if record.ts < maxT's then
| record.ingestionlime <— record.ts;
else
delay <— createDelay ();
record.ingestionTime < record.ts + delay;

end

end
sort (recordBuffer, r — ringestionTime) ;

Step 3. Ingestion to the stream processing system:
e Only ingest records if ingestion time is reached.

for record in recordBuffer do

if record.ingestionTi1me > now then
| walt (record.ingestionTime-now) ;

end

emit (record)

end

Open Source Repository
TU-Berlin-DIMA/out-of-order-datagenerator

)

