

Generating Reproducible Out-of-Order Data Streams
Philipp M. Grulich

grulich@tu-berlin.de
Jonas Traub

jonas.traub@tu-berlin.de
Asterios Katsifodimos

a.katsifodimos@tudelft.nl

Tilmann Rabl
tilmann.rabl@hpi.de

Sebastian Breß
sebastian.bress@dfki.de

Volker Markl
volker.markl@tu-berlin.de

Adding out-of-orderness to Data Streams

Example Processing Pipeline

13th ACM International Conference on Distributed and Event-based Systems (DEBS), June 24-29, 2019, Darmstadt, Germany

Open Source Repository
TU-Berlin-DIMA/out-of-order-datagenerator

References
[1] Tyler Akidau, Robert Bradshaw, et al. VLDB 2015.
The dataflow model: a practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing.

[2] Jonas Traub, Philipp M. Grulich, Alejandro R. Cuéllar, Sebastian Breß, Aste-
rios Katsifodimos, Tilmann Rabl, and Volker Markl. EDBT 2019.
Efficient Window Aggregation with General Stream Slicing.

[3] Jonas Traub, Philipp M. Grulich, Alejandro R. Cuéllar, Sebastian Breß, Asterios
Katsifodimos, Tilmann Rabl, and Volker Markl. ICDE 2018.
Scotty: Efficient Window Aggregation for Out-of-Order Stream Processing.

[4] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. arXiv preprint 2018.
Sub-O (log n) Out-of-Order Sliding-Window Aggregation.

Architecture Overview

Generator Configuration

A general out-of-order experiment data generator:
● Introduce out-of-order data to real-world input data sets.
● Generic configuration of out-of-orderness to enable full parameter exploration.
● Reproducible generation of experimental data with configurable out-of-orderness.

Generator Algorithm

Goal:
● The generation of out-of-order tuples has to be deterministic and must

not change query results.

Naive Solution:
● Generating out-of-order data by adding a random delay to the event time

of certain tuples → changes temporal data distribution.

Our Approach:
● Shift ingestion times of source tuples and keep original event times.

Step 1. Preprocessing:
● Analyze the out-of-orderness of the source data stream to take this

knowledge into account for data generation.

Step 2. Generation of out-of-order ingestion time:
● If an in-order tuple becomes an out-of-order tuple, we add a random

delay to its ingestion time (based on the configured distribution).
● Finally, we sort the data set by ingestion time.

Step 3. Ingestion to the stream processing system:
● Only ingest records if ingestion time is reached.

Experiments with Out-of-Order Streams

● Handling out-of-order data streams is a key feature of modern
stream processing systems [1].

● Research on the support of out-of-order stream
processing requires reproducible, scalable, and
configurable experiments on out-of-order data streams.
For example, research on efficient window aggregation [2,3,4].

The evaluation of out-of-order capabilities is hard:
● Public real-world datasets do not reflect all aspects of

out-of-order streams (e.g., different delays and fractions of out-of-order tuples).
● Experiments without real-world data can lead to unrealistic results.

● Configurable aspects of out-of-order streams:
○ Fraction of out-of-order tuples (How many tuples are out-of-order?).
○ Minimal/maximal event delay (How late are out-of-order tuples?).
○ Out-of-order delay distribution (How are delays distributed?).

We provide a scalable data stream generator, which introduces
configurable out-of-orderness in real-world data streams.

This enables reproducible and realistic experiments.

