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Abstract

The majority of the existing methods for non-rigid 3D
surface regression from monocular 2D images require an
object template or point tracks over multiple frames as an
input, and are still far from real-time processing rates. In
this work, we present the Isometry-Aware Monocular Gen-
erative Adversarial Network (IsMo-GAN) — an approach
for direct 3D reconstruction from a single image, trained
for the deformation model in an adversarial manner on a
light-weight synthetic dataset. IsMo-GAN reconstructs sur-
faces from real images under varying illumination, camera
poses, textures and shading at over 250 Hz. In multiple ex-
periments, it consistently outperforms several approaches
in the reconstruction accuracy, runtime, generalisation to
unknown surfaces and robustness to occlusions. In com-
parison to the state-of-the-art, we reduce the reconstruction
error by 10-30% including the textureless case and our sur-
faces evince fewer artefacts qualitatively.

1. Introduction

Monocular non-rigid 3D reconstruction from single 2D
images is a challenging ill-posed problem in computer vi-
sion with many useful applications. Such factors as vary-
ing illumination, external and self occlusions in the scene
and lack of texture further complicate the setting. In re-
cent times, dense monocular non-rigid reconstruction was
mostly tackled by shape-from-template (SfT) techniques
and non-rigid structure from motion (NRSfM). SfT re-
quires a template — an accurate geometry estimate cor-
responding to one of the 2D views known in advance
[56, 50, 4, 44, 22, 71] —, whereas NRSfM relies on motion
and deformation cues in the input point tracks over multiple
views [6, 61, 20, 15, 46, 18, 32]. Currently, there is a lack
of approaches supporting real-time processing rates which
is a desired property for interactive applications.

At the same time, convolutional neural networks (CNN)
[34] have been successfully applied in various domains of
computer vision including, among other architectures, fully

Figure 1: Overview of our IsMo-GAN approach. (top) The generator net-
work accepts a 2D RGB image segmented by the object detection network
(OD-Net) and returns a 3D point cloud. The output and ground truth (GT)
are fed to the discriminator network which serves as a surface regulariser.
(bottom) Example reconstructions by IsMo-GAN in different scenarios: a
known texture, an unknown texture, a textureless surface and a reconstruc-
tion of a real image.

convolutional encoder-decoders to convert data modalities,
as in object segmentation and contour detection [3, 7, 8, 24].
Many applications benefit from the properties of differ-
ent modifications of generative adversarial networks (GAN)
[25, 28, 43, 52, 57, 73]. GAN include two competing neu-
ral networks which are trained simultaneously during the
training phase — the generator and discriminator networks.
Starting from arbitrary signals, the generator mimics data
distributions of the training dataset and learns to pass the
discriminator’s test on sample authenticity. The discrimina-
tor estimates the probabilities that given outputs originate
from the training dataset or from the generator. This adver-
sarial manner allows the generator to pursue a high-level ob-
jective, i.e, “generate outputs that look authentic and have
the properties of the representative samples”.
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In this paper, we propose Isometry-Aware Monocular
Generative Adversarial Network (IsMo-GAN) — a frame-
work with several CNNs for the recovery of a deformable
3D structure from 2D images, see Fig. 1 for an overview.
Our approach learns a deformation model, and the individ-
ual CNNs are trained in an adversarial manner to enable
generalisation to unknown data and robustness to noise. In
the 3D reconstruction task, the adversarial training is tar-
geted at the objective “generate realistic 3D geometry”.
This high-level objective improves the reconstruction quali-
tatively because lower Euclidean distances between the pre-
dicted and ground truth geometry do not necessarily imply
higher visual quality.

1.1. Contributions

By combining a CNN with skipping connections for 3D
reconstruction, an adversarial learning (a discriminator and
geometry regulariser) and a confidence map indicator for
object segmentation, we develop an approach that directly
regresses 3D point clouds while consistently outperforming
competing methods [15, 71, 60, 38, 18, 17, 5] quantitatively
by 10-30% across various experiments and scenarios (see
Fig. 2 and Sec. 4). IsMo-GAN enhances the reconstruc-
tion accuracy of real images compared to the competing
methods, including the regression of textureless surfaces.
The demonstrated improvement is due to the key technical
contributions of the method — first, the adversarial reg-
ulariser loss and, second, the integrated object detection
network (OD-Net) for the foreground-background segmen-
tation, as we show in the comparison with the most closely
related previous method [17] (refer to Sec. 4).

IsMo-GAN does not require a template, camera calibra-
tion parameters or point tracks over multiple frames. Our
pipeline is robust to varying illumination and camera poses,
internal and external occlusions and unknown textures, and
all that with a training on light-weight datasets of non-rigid
surfaces [17, 5]. Concerning the runtime, IsMo-GAN ex-
ceeds conventional methods by a large margin and recon-
structs up to 250 states per second. Compared to com-
putationally expensive 3D [41, 9, 53] and graph convolu-
tions [10, 62], IsMo-GAN applies 2D convolutions [31] for
3D surface regression from 2D images. To the best of our
knowledge, our study is the first one for deformation model-
aware non-rigid 3D surface regression from single monocu-
lar images with point set representation trained in an adver-
sarial manner and a masking network in a single pipeline.

1.2. Paper Structure

The rest of the paper is organised as follows. In Sec. 2,
we discuss related works. Technical details and the network
architectures are elaborated in Sec. 3. Sec. 4 describes the
experiments. Finally, we discuss the method including its
limitations in Sec. 5 and summarise the study in Sec. 6.

2. Related Work

In this section, we review the most related model-based
(Sec. 2.1) and deep neural network (DNN)-based tech-
niques (Secs. 2.2–2.3).

2.1. Unsupervised Learning Methods

NRSfM factorises point tracks over multiple views into
camera poses and non-rigid shapes relying on motion and
deformation cues as well as weak prior assumptions (e.g.,
temporal state smoothness or expected deformation com-
plexity) [6, 61, 20, 15, 32]. Only recently NRSfM has en-
tered the realm of dense reconstructions [55, 15, 2, 18].
Dense NRSfM requires distinctive textures on the target ob-
ject during the tracking phase [14, 59, 37]. Even though the
reconstruction can be performed at interactive rates [2], ob-
taining dense correspondences from real images can signif-
icantly decrease the overall throughput of the pipeline. The
recent work of Gallardo et al. [13] can cope with texture-
less objects by considering shading and still, their solution
is computationally expensive. IsMo-GAN reconstructs tex-
tureless objects upon the learned deformation model while
fulfilling the real-time requirement.

SfT, also known as non-rigid 3D tracking, requires a 3D
template known in advance, i.e., an accurate reconstruc-
tion with given 2D-3D correspondences [56, 4, 71]. Sev-
eral approaches enhance robustness of SfT to illumination
changes with the shape-from-shading component [40, 38].
Our method does not require a template — all we need as
an input is a single monocular 2D image during the surface
inference phase. At the same time, IsMo-GAN is trained
in the supervised manner. The training dataset contains a
sequence of 3D states along with the corresponding 2D im-
ages [17]. Thus, our framework bears a remote analogy
with SfT, as IsMo-GAN is trained for a deformation model
with a pre-defined surface at rest (or multiple surfaces at
rest, in the extended version).

2.2. DNN-Based 3D Reconstruction Techniques

Methods for 3D reconstruction with DNNs primarily fo-
cus on rigid scenes [69, 26, 21, 11, 9, 16, 53, 33] while only
a few approaches were proposed for the non-rigid case so
far [17, 51]. Volumetric representation is often used in DNN
based approaches [41, 9, 53]. In most cases, it relies on
computationally costly 3D convolutions limiting the tech-
niques in the supported resolution and throughput. Qual-
itatively, volumetric representations lead to discretisation
artefacts. Our approach directly regresses 3D point coordi-
nates by applying computationally less expensive 2D con-
volutions [34, 31], and surfaces recovered by IsMo-GAN
are smoother and more realistic qualitatively.

Golyanik et al. [17] recently proposed Hybrid Deforma-
tion Model Network (HDM-Net) for monocular non-rigid
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3D reconstruction targeting virtual reality applications. In
their method, an encoder-decoder network is trained for a
deformation model with a light-weight synthetic dataset of
thin plate states in the point cloud representation. Rather
than treating every image as a different rigid instance of a
pre-defined object class [27], HDM-Net associates every in-
put image with a non-rigid surface state imposing the isom-
etry and feasibility constraint upon the learned deformation
model. In addition, its objective function includes a con-
tour loss. We do not use the contour loss as it increases the
training time and does not make a significant difference in
the reconstruction accuracy. We regress 50 states per sec-
ond more on average with a higher accuracy compared to
HDM-Net [17]. Moreover, IsMo-GAN shows more accu-
rate results for occluded and textureless surfaces as well as
when reconstructing from real images.

Pumarola et al. [51] combine three sub-networks for 2D
heat-map generation with object detection, depth estimation
and 3D surface regression. For the real-world scenario, they
have to finetune the pipeline. In contrast, IsMo-GAN auto-
matically segments and reconstructs real images, with no
need for further parameter tuning. Bednařı́k et al. [5] em-
ploy a trident network with a single encoder and three de-
coders for the depth-map, normal map and 3D mesh estima-
tion. For mesh decoding, they use a fully-connected layer.
Similar to [17, 51], our generator consists of 2D convolu-
tional layers and includes multiple sub-networks. In con-
trast, IsMo-GAN uses an adversarial loss which leads to the
consistently improved accuracy across different scenarios.

2.3. Adversarial Learning in Computer Vision

GAN were initially introduced as a generative model
for the sampling of new instances from a predefined class
[19]. In GAN, learning to sample from a training distri-
bution is performed through a two-player game and for-
malised as the adversarial loss. GAN were applied for vari-
ous tasks including image inpainting [49, 70], video gener-
ation [68, 63], 2D image resolution enhancement [35, 64],
image texture transfer [36] and a transfer from texts to im-
ages [72], among others. Several improvements for training
convergence and performance of GAN were subsequently
proposed over the last years [25, 43, 52, 73]. The adver-
sarial loss is also applicable as a fidelity regulariser in rigid
3D reconstruction [26]. In [26], the conditional adversarial
loss demands the inference result to be close to the shape
probability distribution of the training set. Adversarial loss
in IsMo-GAN targets the deformation model of a thin struc-
ture instead of the space of multiple shapes, i.e., the recov-
ered surfaces are constrained to be reasonable with respect
to the probability distribution of the learned space of non-
rigid states. To the best of our knowledge, it is the first time
an adversarial loss is applied in monocular non-rigid surface
reconstruction with DNNs.

3. The Proposed Method

In this section, we first describe the proposed architec-
ture (Sec. 3.1) followed by the loss functions (Sec. 3.2).
Next, we provide details about the dataset (Sec. 3.3) and
IsMo-GAN training (Sec. 3.4).

3.1. Network Architecture

We propose a DNN architecture that consists of a genera-
tor and discriminator networks, see Fig. 2 for the schematic
visualisation. The generator is, in turn, composed of OD-
Net and Reconstruction Network (Rec-Net), both based on
an encoder-decoder architecture with skipping connections
[23]. The input images are of the resolution 224×224. OD-
Net has a U-net structure [54, 42], and it is responsible for
the generation of a grayscale confidence map indicating the
position of the target object. The generated confidence map
is subsequently binarised [45] and the target object is ex-
tracted with the algorithm of Suzuki et al. [58]. Compared
to the customised U-Net [42], the number of downsampling
and upsampling convolutional blocks is reduced by one in
our OD-Net due to the relatively small size of the train-
ing dataset (see Sec. 3.3). Rec-Net is a residual encoder-
decoder network. The encoder extracts relevant features for
3D reconstruction from the given 2D inputs and converts
them into the latent space representation. The decoder in-
creases the dimensionality of the latent space in height and
width and adjusts the depth of the latent space until its ac-
tivation reaches the dimensionality of 73× 73× 3, i.e., the
dimensionality of the ground truth training states.

Our discriminator consists of four blocks — a convolu-
tional layer, leaky rectified linear unit (ReLU) [39], batch
normalisation and a fully-connected layer. To enhance
training stability, the first layer set of the discriminator does
not contain batch normalisation [52]. The output from Rec-
Net is evaluated by several loss functions. First, we penalise
Euclidean distances between the ground truth 3D geometry
and output of the generator with the sum of absolute dif-
ferences (SAD). Next, similar to [17], we assume the ob-
served surfaces to be isometric and introduce a soft isome-
try constraint, i.e., a loss function penalising the roughness
and non-isometric effects (e.g., shrinking and dilatation) of
the predicted 3D geometry in an unsupervised manner. For
more plausible and realistic outputs, we introduce an adver-
sarial loss [19] which targets the deformation model of a
surface. In the following section, all three losses of IsMo-
GAN are described in detail.

3.2. Loss Functions

Suppose I = {Inm}, m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}
denote 2D input images, with the total number of states
M and the total number of images for each state N . Let
SGT = {SGT

m } be the ground truth geometry. G and D
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Figure 2: Architecture of the proposed IsMo-GAN framework. Up Sampling in OD-Net doubles the width and height of the input using binary interpolation.
OD-Net applies padding on the inputs to equalise the input dimensionalities if necessary. Rec-Net accepts images of the size 224 × 224 × 3 (with three
colour channels). The output is a 73× 73× 3 dense reconstruction, with 732 points per frame. The fully-connected layer in the discriminator converts the
dimensionality from 3136 to 1 in order to generate the probabilistic decision about the input authenticity (the activation from the fourth convolutional layer
is of the dimension 7× 7× 64 leading to the dimensionality 3136 when concatenated).

denote the generator (Rec-Net) and discriminator compo-
nents. The total loss of IsMo-GAN reads:

L(I,SGT) = Ladv.(I,S
GT) + Liso.(G(I)) + L3D(G(I),SGT),

(1)
where G(I) stands for the reconstructed 3D surfaces.

3D Loss. The 3D loss is based on SAD function which
penalises the Euclidean distance between ground truth ge-
ometry and the predicted 3D geometry per point:

L3D(G(I),SGT) =
1

MN

M∑
m=1

N∑
n=1

|SGT
m −G(I

n
m)|. (2)

Isometry Prior. The isometry prior penalises surface
roughness. We assume the target object to be isometric
which implies that every 3D point has to be located close to
the neighbouring points. This loss was already effectively
applied in HDM-Net [17]. The corresponding loss function
is expressed in terms of the difference between the predicted
geometry and its smoothed version:

Liso.(G(I)) =
1

MN

M∑
m=1

N∑
n=1

|Ŝn
m −G(I

n
m)|. (3)
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In Eq. (3), Ŝn
m denotes the surface smoothed by a Gaussian

kernel:

Ŝn
m =

1

2πσ2
exp

(
−x

2 + y2

2σ2

)
∗G(I

n
m), (4)

where ∗ is the convolution operator, σ is the standard devia-
tion of the Gaussian kernel, and x and y stand for the point
coordinates.

Adversarial Loss. As an objective function of the adver-
sarial training, we employ binary cross entropy (BCE) [19]
defined as

LG(I) = − 1

MN

M∑
m=1

N∑
n=1

log(D(G(Inm)) (5)

for the generator, and

LD(I,SGT) = −
1

MN

M∑
m=1

N∑
n=1

[
log(D(SGT

m ))+log(1−D(G(Inm))
]

(6)
for the discriminator. The adversarial loss is then comprised
of the sum of both components:

Ladv.(I,S
GT) = LG(I) + LD(I,SGT). (7)

The adversarial loss in Eq. (7) defines the high-level goal
that encourages IsMo-GAN to generate visually more real-
istic surfaces. It is the core component which enables IsMo-
GAN to outperform HDM-Net [17] by 10 − 15% quantita-
tively as well as qualitatively on real images (see Sec. 4.1).

We observed that using SAD as 3D loss tends to propa-
gate the surface roughness from the input to the output. The
isometry prior reduces the roughness, slightly shrinks the
output and smoothes the corners. The adversarial loss com-
pensates for these undesired effects of the 3D loss and the
isometry prior, and serves as a novel regulariser for surface
deformations.

3.3. Training Datasets

In this section, we elaborate on the main datasets [17, 30]
used to train the OD-Net, Rec-Net and the discriminator.
In Sec. 4.2, we extra use the textureless cloth dataset [5]
to train a variation of our pipeline and compare its perfor-
mance on textureless surfaces.

3.3.1 Deformation Model Dataset

We use the synthetic 2D-3D thin plate dataset from [17] for
the training and tests. In total, the dataset contains 4648
states representing different isometric non-linear deforma-
tions of a thin plate structure (e.g., waving deformations
and bending). Due to the original 4:1 training-test split,
M = 3728, and N = 60 (three textures illuminated by

a light source at four different locations, and each combi-
nation of the texture and illumination is rendered with five
virtual cameras). Every 3D state contains 732 3D points
sampled on a regular grid at rest, with a consistent topology
across all states. For each 3D state, there are correspond-
ing rendered 2D images of the resolution 256 × 2561 for
the combinations with five different positions of the light
source, four different textures (endoscopy, graffiti, clothes
and carpet) and five different camera poses. To train IsMo-
GAN and competing methods for the shape-from-shading,
we extend the thin plate dataset [17] with a subsequence of
deforming textureless surfaces (the states are left the same
while the texture is removed). In our dataset extension,
M = 3728 and N = 5 (no texture, five virtual cameras).

3.3.2 OD-Net Dataset

To train OD-Net, we generate a mixed image dataset with
varying backgrounds (sky, office and forest) and the corre-
sponding binary masks. First, we randomly translate the tar-
get object in the images from the deformation model dataset
(Sec. 3.3.1). Next, we combine the first part with a dataset
of real-world RGB images and the corresponding binary
masks from [30]. In total, our mixed dataset contains≈ 14k
images and corresponding binary masks.

3.4. Training Details

We use Adam [29] for optimisation of network param-
eters, with the learning rate of 10−3 and the batch size of
8. OD-Net and Rec-Net are separately trained using the
mixed binary mask dataset (Sec. 3.3.2) and 2D-3D dataset
(Sec. 3.3.1) respectively. In total, we train Rec-Net and OD-
Net for 130 and 30 epochs respectively. The architecture is
implemented using PyTorch [47, 48]. In the 2D-3D dataset,
we extract 20 sequential states out of every 100 consecutive
states for testing and use the remaining data for Rec-Net
training. Likewise, we divide the binary mask dataset in
the ratios 4:1 for the training and testing of OD-Net. We
use mean squared error (MSE) to penalise the discrepancy
between the output and the ground truth binary images.

4. Experimental Evaluation
We evaluate the reconstruction accuracy of IsMo-GAN

with different illuminations, textures and occlusions in the
input images. Our system for training and experiments in-
cludes 256 GB RAM, Intel Xeon CPU E5-2687W v3 run-
ning at 3.10 GHz and GeForce GTX 1080Ti GPU with 11
GB RAM running under Ubuntu 16.04. We compare our
framework with three template-based reconstruction meth-
ods of Yu et al. [71], Liu-Yin et al. [38] and Tien Ngo et
al. [60], two NRSfM approaches based on different prin-
ciples, i.e., variational NRSfM approach (VA) [15] and

1the input images are resized to 224× 224 in our pipeline

5



Yu et al. [71] Liu-Yin et al. [38] AMP [18] VA [15] HDM-Net [17] IsMo-GAN

t, sec. 3.305 5.42 0.035 0.39 0.005 0.004
e3D 1.3258 1.0049 1.6189 0.46 0.0251 0.0175
σ 0.007 0.0176 1.23 0.0334 0.03 0.01

Table 1: Reconstruction times per frame t in seconds, e3D and standard devi-
ation σ for Yu et al. [71], Liu-Yin et al. [38], AMP [18], VA [15], HDM-Net
[17] and our IsMo-GAN method, for the test interval of 400 frames.

illum. 1 illum. 2 illum. 3 illum. 4 illum. 5

HDM-Net [17] e3D 0.07952 0.0801 0.07942 0.07845 0.07827
σ 0.0525 0.0742 0.0888 0.1009 0.1123

IsMo-GAN e3D 0.06803 0.06908 0.06737 0.06754 0.06685
σ 0.0499 0.0696 0.0824 0.093 0.102

Table 2: Comparison of 3D error for different illuminations. The illumina-
tions 1-4 are known, and the illumination 5 is unknown.

endoscopy graffiti clothes carpet
HDM-Net [17] e3D 0.0485 0.0499 0.0489 0.1442

σ 0.0135 0.022 0.0264 0.0269
IsMo-GAN e3D 0.0336 0.0333 0.0353 0.1105

σ 0.0148 0.0208 0.0242 0.0268

Table 3: e3D comparison for differently textured surfaces under the
same illumination (illumination 1).

Liu-Yin et al. [38] Tien Ngo et al. [60] HDM-Net [17] IsMo-GAN

e3D 0.9109 0.0945 0.0994 0.0677
σ 0.0677 0.1170 0.0809 0.0697

Table 4: e3D comparison of the template-based approaches [38, 60],
HDM-Net [17] and IsMo-GAN on the textureless surfaces from the
dataset of Golyanik et al. [17].

Input

GT

Ours
(IsMo-GAN)

Liu-Yin 
et al.

Tien Ngo 
et al.

Figure 3: Selected reconstruction results of Liu-Yin et al. [38], Tien Ngo
et al. [60] and IsMo-GAN on the textureless surfaces from the training set.

Accelerated Metric Projections (AMP) [18], HDM-Net of
Golyanik et al. [17] and monocular surface reconstruction
approach for textureless surfaces of Bednařı́k et al. [5]. [38]
is an extension of [71] with a shape-from-shading compo-
nent. For consistency, we adopt the evaluation setting as
proposed in [17] and report the 3D reconstruction error e3D
along with the standard deviation of e3D over a set of frames
denoted by σ. e3D is defined as

e3D =
1

MN

M∑
m=1

N∑
n=1

‖SGT
m −G(I

n
m)‖F

‖SGT
m ‖F

, (8)

where ‖·‖F denotes the Frobenius norm.

4.1. Synthetic Thin Plate Dataset [17]

Table 1 summarises the accuracy and the runtimes on a
test sub-sequence with 400 frames chosen such that it can
be processed by all tested methods. AMP [18] has the high-
est throughput, and [15] shows the highest accuracy among
non deep learning methods. IsMo-GAN outperforms all

other methods in the reconstruction accuracy. Compared
to HDM-Net [17], the runtime improves by 0.001 seconds
per frame on average which means that IsMo-GAN supports
processing rates of up to 250 Hz compared to 200 Hz of
HDM-Net. As shown in Table 2, our framework also excels
HDM-Net [17] in the test with varying illuminations. We
do not observe a large difference in e3D for different posi-
tions of the light source, which suggests the enhanced prop-
erty of illumination invariance. We report e3D for known
(endoscopy, graffiti and clothes) and unknown (carpet) tex-
tures in Table 3. In all cases, our approach outperforms
HDM-Net [17] reducing the error by> 20% on average. As
expected, e3D is higher for the unknown texture compared
to the known ones. Still, we do not find severe qualitative
faults in the reconstructions. In the textureless case, our ap-
proach shows much lower e3D than Liu-Yin et al. [38] and
≈ 30% lower e3D than HDM-Net, see Table 4 and Fig. 3
with visualisations. Liu-Yin et al. [38] assume the contour
of the target object to be consistent since it uses masking
to distinguish the region of interest from the background.
Therefore, for a fair comparison, we choose predominantly
small deformations from our dataset (see Fig. 3). Tien Ngo
et al. [60] support poorly textured surfaces when the ob-
served deformations are rather small. All in all, this is a sig-
nificant improvement compared to the baseline HDM-Net
approach [17], as IsMo-GAN uses the same training dataset
for the geometry regression as HDM-Net, while relying on
other regression criteria (e.g., adversarial loss).

External Occlusions. Next, we evaluate IsMo-GAN in
the scenario with external occlusions. We select an arbi-
trary 3D state from the test dataset with a comparably large
deformation and introduce random circular noise (grey cir-
cles) into the corresponding 2D images. The size and the
number of occluders vary as shown in Fig. 4-(a). We show
the reconstruction results with five introduced occluders in
Fig. 4-(b). For each combination of the occluder’s size and
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Figure 4: a) Exemplary occluded images with the increasing number of occluders (the top row) and the increasing size of the occluders (the bottom row).
b) Outputs of our network and HDM-Net [17] with five external occluders — ground truth shapes (purple), reconstructions by IsMo-GAN (green) and
HDM-Net (orange). c) 3D error graph for images with external occlusions. In a) and b), R denotes radii of occluders. Best viewed in colour.

Input
(real) 

HDM-Net

IsMo-GAN
(ours)

Figure 5: Selected reconstructions of the textureless cloth dataset [5].

the number of occluders, we generate ten images and report
the average e3D of the IsMo-GAN reconstructions for these
images, see Fig. 4-(c). Unless the input image contains
large occlusions, our network keeps the high reconstruc-
tion accuracy. When the occluder’s size reaches 7 pixels,
the slope of the graph increases which marks the robustness
threshold, with up to 40% of the object being occluded.

4.2. Real Textureless Cloth Dataset [5]

We also evaluate IsMo-GAN on the real cloth dataset [5]
with textureless deforming surfaces with varying shading.
For every frame, the dataset includes ground truth meshes
of the observed surfaces (with 312 points per state) obtained
by fitting a mesh template to the captured depth maps [5].
Similarly to the evaluation with the thin plate dataset [17],
we split all frames in the propotion 80-20% for the train-
ing and test subsets respectively. Since the cloth dataset
contains 6237 samples and is smaller than the thin plate
dataset, we omit two layer blocks in the generator’s encoder
(sets of convolutions, batch normalisation, leaky ReLU and
max pooling) as well as two layer blocks in the generator’s
decoder (sets with deconvolutions, batch normalisation and
leaky ReLU) and adjust the kernel sizes. The dimensional-
ity of the latent space is reduced to 11× 11× 256.

We compare the proposed IsMo-GAN with HDM-Net
[17] and the monocular 3D reconstruction approach for
non-rigid textureless surfaces of Bednařı́k et al. [5]. While
Bednařı́k et al. report the SAD of 21.48mm [5], HDM-Net
[17] achieves 17.65 mm. SAD of our IsMo-GAN amounts
to 15.79mm which is a 26.5% improvement in comparison
to Bednařı́k et al. [5]2, and a 10.5% improvement versus
HDM-Net [17]. Compared to Bednařı́k et al. [5], we use
deconvolutional layers in the decoder instead of the fully-
connected layers. We believe that point adjacencies provide
a strong cue for surface reconstruction. Fig. 5 shows se-
lected reconstructions of challenging states. Even though
SAD of HDM-Net is just 1.86 mm larger as compared to
IsMo-GAN on average, HDM-Net often fails to reconstruct
states with large folds and deformations. Our architecture is
not restricted to globally smooth surfaces and captures fine
geometric details revealed by the shading cue.

4.3. Real Images (Qualitative Results)

Next, we evaluate IsMo-GAN on a collection of real
images. In comparison to HDM-Net [17], the strength of
IsMo-GAN is the enhanced generalisability to real data,
even though the deformation model is trained on the syn-
thetic dataset. Fig. 6 shows several reconstructions from
real images by HDM-Net [17] and IsMo-GAN. We choose
images with a different textures, deformations, illumina-
tions and scene context, i.e., waving flags, a hot air balloon,
a bent paper, and a carpet with wrinkles. The reconstruc-
tions capture well the variety of exemplary shapes. None
of the textures (Fig. 6-(a),(b)) were present in the training
dataset, and IsMo-GAN captures well the main deformation
mode and shape. The scene with the hot air balloon (Fig. 6-
(c)) has an inhomogeneous background. Thanks to the OD-
Net, IsMo-GAN generates qualitatively a more realistic re-
construction than HDM-Net. Fig. 6-(e) is an example of a
deformation state which is the most dissimilar to the states

2note that details on the dataset split are not provided in [5]
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Figure 6: 3D reconstruction results from real images: a German flag [12],
an American flag [1], a hot air balloon [66], a bent surface [65] and a carpet
with a double wrinkle [67]. All input images are unknown to our pipeline.
Note the qualitative improvement in the results of IsMo-GAN compared to
the previous HDM-Net method [17]. Best viewed enlarged.

Figure 7: 3D reconstruction results by IsMo-GAN on the new real origami
video sequence. Best viewed enlarged.

in the training dataset. Remarkably, our approach recov-
ers the rough geometry of the object in the scene whereas
HDM-Net fails to capture it.

Fig. 7 shows the reconstruction results by IsMo-GAN on
the new origami video sequence. For origami, the main re-
construction cue is shading. Our approach captures well the
global deformation of the target object with a weak texture
in the real-world scene. Even though IsMo-GAN operates
on individual images, the resulting dynamic reconstruction
is temporally smooth.

5. Discussion
The experiments demonstrate the significant qualitative

improvement of IsMo-GAN when reconstructing from real
images compared to the previous most related method
HDM-Net [17]. We can reconstruct surfaces more ac-
curately in the challenging cases with external occlusions
and lack of texture. The experiment with textureless cloth
dataset [5] in Sec. 4.2 shows that our pipeline generalises
well, can be easily adjusted for other scenarios (e.g., differ-
ent primary reconstruction cues, surface properties, types
of deformations, etc.) and even outperform competing spe-

cialised methods. Even though we do not explicitly assume
gradual frame-to-frame surface deformations, IsMo-GAN
recovers temporally smooth surfaces from a video sequence
as shown in Sec. 4.3. Especially the enhanced accuracy
for textureless surfaces is a valuable property in passive
3D capture devices operating in real human-made environ-
ments. The inference in IsMo-GAN is light-weight (run-
ning at 250 Hz) and would require low energy, making it
appealing for mobile augmented reality devices.

IsMo-GAN shows plausible results especially when sim-
ilar non-rigid states appear in the training dataset or when
the target state can be represented as a blend of known de-
formation states. Otherwise, IsMo-GAN can be retrained
with a dataset encoding another deformation model or cov-
ering more deformation modes, as has been demonstrated
in Sec. 4.2. Moreover, the accuracy of our approach de-
pends on the accuracy of the binary mask generation in the
real-world scenario, and this aspect can also be improved
for pre-defined scenarios.

6. Conclusion

In this study, we introduce IsMo-GAN — the first DNN-
based framework for deformation model-aware non-rigid
3D surface regression from single monocular images with
point set representation trained in an adversarial manner.
The proposed approach regresses realistic general non-rigid
surfaces from real images while being trained on a synthetic
dataset of non-rigid states with varying light sources, tex-
tures and camera poses. Compared to the previously pro-
posed DNN based methods [17, 51], our pipeline localises
the target object with an OD-Net. Thanks to the point cloud
representation, we take advantage of computationally effi-
cient 2D convolutions.

In the extensive experiments, IsMo-GAN outperforms
competing methods, both model-based and DNN-based, in
the reconstruction accuracy, throughput, robustness to oc-
clusions as well as the ability to handle textureless sur-
faces. In future work, we plan to collect more real data and
test IsMo-GAN in the context of medical applications. For
video sequences such as origami reconstructed in Sec. 4.3,
a temporal smoothness term could further improve the re-
sults. Another future direction is network pruning for de-
ployment of IsMo-GAN on an embedded device. Besides,
a superordinate system can include IsMo-GAN as a compo-
nent for shape recognition or surface augmentation.
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Figure 8: A high-level overview of the proposed IsMo-GAN reconstruction pipeline. OD-Net accepts an input RGB image and generates an initial object-
background confidence map. The confidence map is further converted into a binary segmentation mask. Rec-Net accepts a segmented RGB image as an
input and infers 3D surface geometry. Since the topology is consistent throughout all states, it can be transferred to the output.
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(texture)
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Figure 9: (a) Selected reconstruction results of our framework on endoscopically textured and textureless surfaces for unknown states from the training set.
The textured input reconstructions of HDM-Net are not shown due to no significant differences from the ones of IsMo-GAN. (b) 3D reconstructions by our
method with known and unknown texture inputs. GT stands for ground truth.

A. Supplementary Material
In this supplementary material, we provide a schematic

high-level overview of the proposed IsMo-GAN framework
in Sec. A.1 and show more results on the thin plate dataset
[17] in Sec. A.2 and the textureless cloth dataset [5] in
Sec. A.3. We use the same list of references as in the main
matter (please see the References section above).

A.1. A High-Level Visualisation

Fig. 8 provides a high-level visualisation of the entire
IsMo-GAN pipeline including OD-Net for the confidence

map estimation (the background-foreground segmentation)
and Rec-Net. The initially probabilistic estimates of OD-
Net are firstly binarised by the algorithm of [45], and then
all pixels inside the same contour are filled with white (indi-
cating the object) using the border following algorithm [58].
Finally, the binary mask is applied to the input 2D RGB im-
age to extract the target region, and the segmented image is
passed to Rec-Net. Since the topology of the object at rest
is known in the training dataset [17] and does not change
while the surface is deforming, we transfer it to the output
point set.
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to be continued on the next page… 

A.2. Further Comparisons on the Thin Plate [17]

Selected reconstructions of IsMo-GAN on endoscopi-
cally textured and textureless surfaces from the thin plate
dataset [17] are shown in Fig. 9. Our approach reconstructs
surfaces of high visual accuracy in the textureless case (see
Fig. 9-(a)), whereas HDM-Net often distorts the structure
too much. Note that we retrain HDM-Net with the texture-
less surfaces (our dataset extension) for a fair comparison.

Next, as expected, the IsMo-GAN’s error for an un-
known texture (carpet) is slightly higher compared to the
known textures (cf. Table 3). Still, the overall states are cor-
rectly recovered, and the surfaces are smooth in most of the
cases, thanks to the adversarial regulariser (see Fig. 9-(b)).

A.3. More Results on the Textureless Cloth [5]

We show 32 additional reconstructions by IsMo-GAN on
real textureless cloth dataset [5] in Fig. 10 (our estimates are
in green, and the ground truth is in magenta). Our approach
accurately captures the overall cloth deformations, and large
wrinkles are reconstructed in most of the cases. Note that
compared to the thin plate dataset [17], the states are chang-
ing faster and discretely in the textureless cloth dataset [5]
(the states were created by manually deforming the cloth).
Although we keep the training-test split as in the case of
the thin plate (4:1), the generalisation of IsMo-GAN is not
impeded, and, as shown in Sec. 4.2, we outperform both
HDM-Net [17] and the approach of Bednařı́k et al. [5].
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Figure 10: Selected reconstructions of our IsMo-GAN approach on the real textureless cloth dataset [5], with the average SAD of 15.79 mm. (a): Input
RGB images, (b): output of IsMo-GAN, (c): ground truth, the right-most column: overlay of our reconstructions and the ground truth.
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