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Abstract

Transferring human movements to robotic systems is of high interest

to equip the systems with new behaviors without expert knowledge. Typ-

ically, skills are often only learned for a very specific setup and a certain

robot. We propose a modular framework to learn skills that is applica-

ble on different robotic systems without adaptations. Our work builds

on the recently introduced BesMan Learning Platform, which comprises

the full workflow to transfer human demonstrations to a system, includ-

ing automatized behavior segmentation, imitation learning, reinforcement

learning for motion refinement, and methods to generalize to related tasks.

For this paper, we extend this approach in order that different skills can

be imitated by various systems in an automated fashion with a minimal

amount of configuration, e.g., definition of the target system and environ-

ment. For this, we focus on the imitation of the demonstrated movements

and show their transferability without movement refinement. We demon-

strate the generality of the approach on a large dataset, consisting of about

700 throwing demonstrations. Nearly all of these human demonstrations

are successfully transferred to four different robot target systems, namely

Universal Robot’s UR5 and UR10, KUKA LBR iiwa, and DFKI’s robot

COMPI. An analysis of the quality of the imitated movement on the real

UR5 robot shows that useful throws can be executed on the system which

can be used as starting points for further movement refinement.

1 Introduction and Related Work

Implementing new behaviors for robotic systems is tedious work. In recent
years more and more often machine learning has been used to simplify this
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problem. By using learning from demonstration techniques, intuitive knowledge
from humans is leveraged to initialize a refinement process that has to be done
on the real system. For this purpose we recently proposed the BesMan Learning
Platform that automatizes the process of transferring relevant motion segments
from human motion capture data to a robotic platform in a format that can
be refined by standard policy search algorithms [7]. Most steps of this learning
process, like the segmentation of the movement demonstration and the imitation
learning, are already automatized. Manual work remains in defining a reward
function to refine the skill.

In this work, we present a general approach to imitate human demonstrations
on different robotic systems. To automatize this process for different robotic sys-
tems, poses of certain keypoints of the human body have to be mapped to poses
of elements of the robotic system. This is a special case of the correspondence
problem [14]. That means, demonstrated end effector trajectories have to be
changed in a way that they are executable on the target system.

This process, which is also called motion retargeting, is a well-known problem
in the computer graphics and animation community [5]. In practice it is often
solved manually. In the context of imitation learning for robots it has been
explored by [16, 12] with a fixed mapping. Similar work on automating the
embodiment mapping has been published by [11]. Our approach to this problem
has been presented briefly in [7] but not systematically analyzed so far. Our
approach is more restricted: we do not integrate task-specific constraints in the
optimization process (e.g., collision penalties for external objects, via-points)
and we do not modify the shape of the trajectory. The benefit is twofold:
our approach is more modular, which allows us to use any standard black-
box optimization method to optimize the embodiment, and do task-specific
adaptation with standard reinforcement learning algorithms. Furthermore, no
model of the environment is needed at this stage. The only prior knowledge
that is needed is a kinematic model of the robot. In this paper we particularly
examine if this restricted approach already generates useful trajectories in the
workspace of the robot. We build upon previous work [7] and evaluate the
applicability of the learning platform to several different robotic target systems.
The main focus lies on the automation of the embodiment mapping to map
human movement recordings to a trajectory which is executable on the system.

In section 2, the general learning platform, including automatized movement
segmentation and our approach to solve the correspondence problem in a gen-
eral and easily configurable way, are described. In section 3, we present the
experiments in which approx. 700 throwing motions have been recorded and
transferred to the target system to evaluate the approach. The results of these
experiments are presented and discussed in section 4 before we give a conclusion.

2 Generic Learning Platform

The BesMan Learning Platform is designed to cover the whole workflow of
teaching robotic systems new behavior from human demonstrations. It provides
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Figure 1: Overview of the learning platform. In this paper the focus is on
the first three modules: recording of human demonstration and automatized
movement segmentation and imitation.

utilities for human motion recording, behavior segmentation, imitation learning
as well as motion refinement and generalization in a single framework [7].

In this paper we focus on the first part of the learning platform dealing
with segmentation of human demonstrations and imitation learning. A general
overview is shown in Figure 1.

Human demonstrations of the movements that will be transferred are recorded,
automatically segmented into movement building blocks, and labeled according
to known movement classes, as described in more detail in section 2.1. Af-
terwards, the segmented trajectories are mapped to the robot workspace and
imitated, as described in section 2.2.

Due to the modular design of the approach, we can automatize the learning
process for a new robotic system or environment by just requiring a minimal
amount of configuration to integrate the available prior knowledge about the
robot target system or the scenario respectively. Demonstrations of the same
task can be transferred to different systems by configuring general robot related
properties, like kinematic structure of the robot, type of gripper and default
joint configuration (home position) and definition of a rotation matrix to map
the robot’s end effector rotation to the human hand orientation.

We summarize the methods used to automatically identify the relevant move-
ment in the human demonstrations in the following section. Afterwards, meth-
ods for the transformation and optimization are presented, which are needed
to make the movements executable on a robotic system. These methods are
applicable on different robotic systems by just defining the robot configuration
as described above.

2.1 Movement Segmentation

The learning platform allows for learning complex skills which cannot be learned
monolithically. By splitting complex movements into simpler sub-tasks, learn-
ing of these tasks becomes feasible. Previously learned sub-tasks can be reused
in other related tasks. In the learning platform, this process is automatized
using the segmentation and classification approach presented in [8]. Human
manipulation movements follow a characteristic bell-shaped velocity pattern of

3



the hand [13]. We use these bell-shaped profiles to identify building blocks of
manipulation movements using an unsupervised segmentation algorithm, called
velocity-based Multiple Change-point Inference (vMCI), introduced in [18]. To
generate labels for the identified movement building blocks, we use a supervised
approach based on 1-Nearest Neighbor (1-NN) classification. By transforming
recorded trajectories of several positions of the demonstrator’s arm to a coor-
dinate frame relative to the back of the human, and interpolating the identified
segments to the same length, simple 1-NN classification shows good classification
results on several manipulation tasks with small training set sizes [8, 7]. Using
the unsupervised movement segmentation algorithm vMCI in combination with
1-NN classification, the relevant movement parts of the demonstrations that
shall be learned by the system can be selected. Benefits of the approach are that
the movements can be performed naturally by the demonstrator, and no manual
segmentation procedure is required. Furthermore, the same approach works for
different manipulation movement without the need for adaptations. This has
already been evaluated on ball-throwing and pick-and-place movements in our
previous work [8, 6]. In this work, we additionally evaluate this approach on a
bigger dataset, containing approximately 700 stick-throwing demonstrations.

2.2 Imitation Learning

It is not easily possible to directly transfer behaviors between humanoids (e.g.
humans, humanoid robots, or robots which are similar to parts of humans) due
to the correspondence problem [14]. To circumvent this problem, a record map-
ping is needed which maps marker trajectories of human demonstrations to a
sequence of actions or system states, as well as an embodiment mapping, which
maps the recorded sequence to a trajectory that is executable on the target
system [1]. In this section we present solutions for the record and embodi-
ment mapping as well as an optimization of the embodiment mapping which is
applicable on different robotic systems.

Record Mapping

We assume that the demonstrator’s state-action sequence can be discretized
with

τD =
(

sD
0
,aD

0
, . . . , sDT−1

,aD
T−1

, sDT
)

,

and that there is some underlying policy that has been used to generate τD,
which is fully defined by a probability density function πD(s, a). τD cannot be
directly observed because neither the actions aD

t , t ∈ {0, . . . , T−1} (e.g., muscle
contractions of a human) can be observed directly, nor can the states sDt , t ∈
{0, . . . , T} be observed in their entirety (e.g. configurations of all joints of a
human). Instead, gR(sD,aD) =

(

sR,aR
)

can be observed and recorded, where
information can be lost (e.g., some joint configurations, muscle states, etc.) in
the record mapping gR : SD×AD → SR×AR. In our case, marker positions on
the human’s body are captured by a motion capture system and represented in
the motion capture system’s world coordinate system. The information about
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the state of the human is limited by the amount of markers that are attached to
the body, and we cannot measure joint angles directly because we attach markers
exclusively to the skin and clothes of the human, hence poses can change slightly
over time without any actual joint movement. From these markers, hand pose
trajectories can be extracted and represented relative to the pose of the human’s
back.1 Our setup allows to easily add tracking of dual-hand motions as well.
Hence, we extract a sequence τR that contains poses of end effectors.

Embodiment Mapping

We assume that in the ideal case all states and actions can be recorded perfectly;
that is, gR is the identity. We would like to infer the policy πD based on
the collected data τR =

(

sR
0
,aR

0
, . . . , sRT−1

,aR
T−1

, sRT
)

. However, it is often not
possible to reach all states or execute all actions. For example, if a movement
from a human shall be transferred to a humanoid robot, it might be the case
that the robot has not as many degrees of freedom as the human and thus
cannot execute a similar, smooth trajectory within the workspace. It might be
impossible to reach several states because they are not in the robot’s workspace,
the robot might be too weak or slow to execute the desired motions, or it might
be to stiff and heavy to generate the same sequence of states. Actions are ignored
for this discussion. They can be generated by position or velocity controllers
on the real system. That means, an embodiment mapping gE : SR × AR →
SE × AE is required, which maps the recorded data to states and actions that
are executable on the target system. gE is not given like gR, but instead has to
be constructed either manually, from data, or both. As in Section 2.3.2 of [7],
we propose to use simple black-box optimization to find gE .

Optimization of Embodiment Mapping

In our work, we observe sequences of end effector poses (trajectories) from, e.g.,
a human teacher. Thus, an embodiment mapping has to be obtained that maps
these trajectories to the workspace of the robot such that they are reachable
and there are no discontinuities in joint space. We propose a parameterized
linear mapping of the form

gE(xt, yt, zt, αt, βt, γt) =

















Rα,β,γ



(1− s)





x0

y0
z0



+ s





xt

yt
zt









α+ αt

β + βt

γ + γt

















+ b,

where s ∈ [0, 1] is a scaling factor, θ = α, β, γ are Euler angles (rotation around
x-, y’- and z”-axis) that define a rotation, and b is an offset vector. s,θ, b will

1We use pytransform3d to calculate these transformations [3].
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be selected to maximize the objective

f(s,θ, b) = exp

(

10

T + 1

∑

t

r(gE(pt))

)

−wvel

∑

t

q̇(gE(pt))− wacc

∑

t

q̈(gE(pt))− wjrk

∑

t

...
q (gE(pt))

−wcoll

∑

t

c(qt)− wdist||pT ||

+wheight

∑

t

p
3,t + wsize

3
∑

d=1

max
t

pd,t −min
t

pd,t,

where t ∈ {0, . . . , T} is the time step, r(p) is 1 if p is a reachable end effector
pose and 0 otherwise, c(q) is 1 if the configuration results in self-collision and 0
otherwise, pt is an end effector pose and qt are corresponding joint angles at step
t. The objective maximizes reachability, while minimizing the risk of getting too
close to singularities, avoiding self-collisions, and maximizing exploitation of the
robot’s workspace. To maximize f any black-box optimizer can be used. We
decided to use covariance matrix adaptation evolution strategies (CMA-ES; [9])
for this paper. The weights have to be configured appropriately. Depending
on the target system, an analytic solution to inverse kinematics, a numerical
solution, or even an approximation of a numerical solution [4] can be used if it
is difficult to find a mapping that fits the trajectory into the workspace of the
robot. In this paper we use both a numerical solution and an approximation,
and take the solution that yields the best result. In addition, the resulting
trajectory is smoothed with a mean filter in Cartesian space and in joint space
(positions and accelerations) to avoid infeasibly high accelerations.

Imitation Learning

After mapping the recorded trajectory to the robot’s workspace, a suitable rep-
resentation that can be used for further adaptation and refinement is needed.
A popular class of policy representations that has been used to learn move-
ment primitives for robotic manipulation are Dynamical Movement Primitives
(DMPs; [10, 15]). There are numerous advantages of DMPs in comparison to
other policy representations for our purposes, among them: (1) They are stable
trajectory representations. Slight errors in execution of the trajectory will not
result in error accumulation like in general function approximators. (2) To re-
produce a demonstrated movement, a one-shot learning algorithm can be used
that determines the weights of the forcing term θi. Hence, imitation learning
with DMPs is much simpler than it is for more general function approximators.
(3) Movements can be easily adapted (even during execution): the goal of the
movement can be changed and obstacles can be avoided.
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(a) Setup to record the human arm
motion with markers attached to the
back, arm and hand.

(b) To record the stick position,
a marker is attached to the tip of
the stick. The movement of the
robotic arm UR5 is tracked with
a marker attached to the end ef-
fector

Figure 2: Motion recording setup.

3 Experiments

In this section, we evaluate the proposed configurable learning platform on a
Touhu scenario.

Touhu, also known as pitch-pot, is a throwing game that is traditionally
played in Eastern Asia. The goal is to throw a stick from a given distance into a
pot. We use this scenario to evaluate the transferability of throwing movements
to different robotic systems using their kinematic models.

Additionally, the quality of the transferred movements is evaluated in a
second experiment, where the trajectory and goal position of the stick thrown
by humans is compared to the one thrown by a real UR5 robot.

3.1 Experimental Setup

The throwing motions demonstrated by the human subject are recorded with
a marker based-motion capturing system. The position of infrared light reflect-
ing markers attached to the human body are recorded by several cameras at
500Hz. To record the throwing motions, markers are attached to the hand,
elbow, shoulder and back of the subject to track these positions. To determine
the record mapping as described in section 2.2, additionally to the position of
the back, its orientation is also needed. Thus, we attached three markers to the
back instead of one, relative to each other in a well-known setup. The setup
allows for determining the orientation of the markers. The same applies to the
hand to allow for tracking the hand pose including its orientation. The complete
marker setup can be seen in fig. 2.
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In the second experiment, in addition to the human movement, likewise
the position of the stick is of interest. With it, the trajectories of the thrown
stick from the demonstration can be compared to the resulting trajectories after
imitation of the throwing motion on the real system. Thus, a maker is placed
on one end of the stick. Additionally, the movement of the robotic arm UR5 is
captured by placing a marker at the end effector (see again fig. 2). The recorded
demonstrations were down-sampled to 30Hz and automatically segmented into
movement building blocks with a bell-shaped velocity profile of the hand using
the vMCI algorithm as described in section 2.1. Using 1-NN classification, the
movement segments were classified into the classes strike out, throw, swing out
and idle. To transfer the recorded demonstrations to the four robotic systems,
the embodiment mapping has been optimized with the following weights in
the objective function: wcoll = 100, wvel = 100, wacc = 10, wjrk = 1, wdist =
0.1, wheight = 50, wsize = 100. These weights have been determined empirically.
The optimization was limited to the Cartesian translation of the trajectory
within the workspace of the robot. Orientation and scaling remained unchanged.

3.2 Transfer in Simulation

Throwing motions of seven different subjects, each performing between 41 and
246 throws, were recorded to evaluate the generality of our approach. In total,
697 Touhu demonstration were recorded. With this large dataset, we are able
to evaluate the generality of the movement segmentation as well as the transfer
to different robotic systems, namely Universal Robots’ UR5 and UR10, KUKA
LBR iiwa and DFKI’s COMPI [2]. To evaluate the movement classification, a
stratified cross-validation repeated 100 times was performed with a fixed number
of examples per class in the training data. Segments which could not be clearly
assigned to one of the movement classes were removed from this evaluation.
Furthermore, the number of successfully transferred movements as well as the
difference between the position of the hand in the demonstrations and the end
effector position of the systems are analyzed.

3.3 Transfer to a Real System

In the second part of the Touhu experiment, we additionally recorded 34 throw-
ing movements of three subjects, in which also the position of the stick was
recorded. Three subjects performed 10, 11 and 13 throws respectively. These
demonstrations were transferred to the real UR5 robotic arm. We analyzed the
number of successful throws, the stick position during the throw and its goal
position. The transferability of the demonstrated throws on the UR5 robot is
evaluated with respect to the following aspects: Does the robot inadvertently
collide with anything including the stick? Does the stick fall out of the stick
holder while the robot approaches the starting pose of the trajectory? Does the
stick leave the holder during the throwing motion? If any of these aspects are
evaluated negatively, the trajectory is considered not transferable. To evalu-
ate the quality of the transferred throws, we compare the stick trajectories of
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the demonstrated throws and the recordings of the throws transferred to the
UR5. Since the motion capture system sometimes returned noisy stick position
measurements, the trajectories had to be interpolated. A quadratic model was
used for interpolation. The same model has been used to extrapolate both the
demonstrated and the reproduced stick trajectory until the stick hit the ground.
Before this, we aligned the demonstrated trajectory with the start position of
the transferred one. Thus, the distance between ground contact points as well
as the similarity of the the stick trajectories can be determined. We use the
average dynamic type warping (DTW; [17]) distance, i.e., the DTW distance
divided by the maximum number of steps of the two time series, to compare the
trajectories.

4 Results

4.1 Transfer in Simulation

The automatic segmentation of 697 demonstrated throws resulted in 2913 iden-
tified segments with a bell-shaped velocity profile. Although some throwing
demonstrations showed just a small decrease of the velocity of the hand between
throw and swing out phase of the movement, most of the throwing segments
were successfully segmented. As an example result, a demonstration of one
subject containing 41 throws is visualized in Figure 3.

2233 segments were used to evaluate the annotation. The number of train-
ing examples per class was varied between 1 and 20. With 4 examples per
class a mean classification accuracy of 90% could be achieved. 95% could be
achieved with 9 examples per class. Thus, a training data set with 9 examples
per class was created, which contains the first three throwing demonstration of
three different subjects. Using this training data, the segments of all recorded
demonstration were classified. The movement class throw could be detected
with an accuracy of 99%, with 623 correctly detected throwing movements, 13
false negatives and 2 false positives. In Figure 3, different colors indicate the
resulting labels of subject 5. The segments of this subject were classified with
an accuracy of 98%, with 24 segments that had to be removed from evaluation.
This result shows that the approach to identify the relevant parts in the demon-
strations also generalizes to larger datasets. A small number of labeled training
data was sufficient to annotate the automatically derived segments. The throw-
ing trajectories mapped into the workspace of the robotic system UR5, UR10,
KUKA LBR iiwa and COMPI, are shown in Figures 4a and 4b. 682 trajecto-
ries were transferred to the workspaces of all target systems. We can see that
most trajectories easily fit in the workspace of UR10 (arm radius: 1300mm)
and KUKA LBR iiwa 7 (arm radius: 1266mm), while many trajectories have
to be distorted or are close to the borders of the workspace of UR5 (arm radius:
850mm) and COMPI (arm radius: 940mm). Throwing movements often tend
to be close to the borders of the human’s workspace. Hence, the skill that we
selected is quite challenging for smaller robots. The middle row of Figure 4
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Figure 3: Throwing trajectories of subject 5. The position of the hand is
shown for one set consisting of 41 Touhu-throws. Green dots mark the result of
the vMCI segmentation. The resulting segment trajectories were labeled with
1-NN classification. Different line styles mark the different classes. Throwing
segments are visualized as straight lines with a different color for each throw.

shows the demonstration of subject 5 visualized in Figure 3 transferred to the
robotic arms. The different colors match the colors of the throwing segments in
Figure 3.

Figure 4c shows the ground contact points of sticks for the presented throw-
ing trajectories from simulation. It can be seen that on average the UR10 has
the widest distribution as it has the largest workspace. We quantify how well
the throwing trajectories can be transferred to the real UR5 robot, as it is one
of the more challenging robotic systems due to the more restricted workspace.

4.2 Transfer to the real system

In this experiment, the throwing motions have been detected with an accuracy
of 97%, using the same training data as in the first experiment. 33 throws were
correctly detected and one was wrongly assigned to another class by the 1-NN
classification. 27 out of these segments could be transferred to the real UR5. A
comparison of the stick trajectories can be seen in Figure 5a, in which the best,
a good and the worst result in visualized. The mean average DTW distance is
0.15m (standard deviation: 0.1m), and the mean goal distance is 0.72m (stan-
dard deviation: 0.31m). The full error distribution is shown in Figure 5. The
results show, that it is possible to automatically imitate demonstrated throws
and that most of these throws are executable on the real system. Furthermore,
the executed movements show useful throws. However, the goal positions of the
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Figure 4: End-effector trajectories of throwing movements in robots’

workspaces and corresponding ground contact points of the sticks.

demonstrated throws are not reached by the system.

5 Conclusion

This work is built on our previous work about the platform for learning robot
skills from humans, presented in [7]. We extend this work to a more gen-
eral approach applicable to several systems with little configuration overhead.
Throwing trajectories are automatically extracted from human demonstrations,
and transferred to four robotic target systems. We show that the embodiment
mapping, which is needed to map human movement trajectories into the robot
workspace, can be automized for a dataset of 697 throws. Throwing is a chal-
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Figure 5: Analysis of the execution of throws on the real UR5

lenging skill for these robots because it has high acceleration and velocities and
is close to the border of the workspace of humans. Nonetheless, most of the
demonstrated throws could be transferred to the systems using our approach.
Furthermore, we evaluate the difference of stick trajectories and ground contact
points between demonstrated throws and reproductions of those on a real UR5.
We show that there is still a significant gap between the outcome of demon-
strated throws and their reproductions. As proposed earlier [7], a solution to
this problem would be to use reinforcement learning to refine the motion.
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