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ABSTRACT
The Clock Drawing Test is used as a cognitive assessment tool in
geriatrics to detect signs of dementia or to model the progress of
stroke recovery. The result is scored manually by a trained pro-
fessional. We implement the Mendez scoring scheme and create a
hierarchy of error categories that model the test characteristics of
the clock drawing test, based on a set of impaired clock examples
provided by a geriatrics clinic. Using a digital pen we recorded 120
clock samples for evaluating the automatic scoring system, with a
total of 2400 error samples distributed over the 20 error classes of
the Mendez scoring scheme. Error classes are scored automatically
using a handwriting and gesture recognition framework. Results
show that we provide a clinically relevant cognitive model for each
subject. In addition, we heavily reduce the time spent on manual
scoring. We compare manual scoring results with results produced
by our automated system.
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• Human-centered computing → Human computer interaction
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1 INTRODUCTION
For more than 50 years, the Clock Drawing Test (CDT) is used as an
assessment tool for cognitive impairment. It is a simple paper and
pencil test in which the participant is asked to draw a clock face
and indicate a certain time. The task is primarily designed to test
the visuospatial ability and is often used in geriatrics to screen for
signs of dementia, such as Alzheimer’s disease, or other neurologic
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conditions, including Parkinson’s disease, traumatic brain injuries,
and stroke recovery. Usually a trained professional observes the
clock drawing task and scores the �nal sketch based on a scoring
scheme, which takes up to a few minutes.

An automatic scoring system has several bene�ts: �rst, it signi�-
cantly reduces the time caregivers have to invest into administering
the CDT; and second, it is likely to produce more objective scores
and potentially enables a more detailed analysis [24]. Not all scor-
ing schemes are equally well suited for automation, since most of
them have been designed to be quick and easy to be interpreted
by human testers. We selected the 20 point Clock Drawing Inter-
pretation Scale (CDIS) by Mendez et al. [11], which is well suited
for automation because it contains clear test parameters that can
be modelled mathematically and computationally. In addition, the
manual scoring procedure of CDIS is very time-consuming and
would highly bene�t from automatic computation.

The CDIS contains items such as “All numbers 1-12 are present”,
which are to be rated 0 if not ful�lled and 1 if satisi�ed. All 20
individual scores are then added up and the �nal score indicates the
severity of cognitive impairment. For example, a score of less than
18 is likely to indicate Alzheimer’s. Based on CDIS and real clock
drawings (provided by a geriatrics daycare clinic of a large hospital),
we develop a categorization of individual scores subjects are likely
to make during the CDT. We create a direct mapping from the error
classes to the scoring parameters of the selected scoring scheme (1
or 0 scores). A digital pen is used to record clock sketches, which
are then analyzed by using a set of handwriting and multi-stroke
features, as well as classi�ers based on heuristics and the semantic
parameters of the clock drawing task. We compute the score per
item and the sum of all items, which equals the �nal CDIS score.

The paper is structured as follows. Section 2 describes related
work. Based on the original Mendez scoring scheme and real clock
drawings we create a structure of error classes and compute a value
for each of these classes, which we present in section 3. Because of
the mapping to the scoring scheme, we are therefore able to provide
a detailed automatic assessment of the drawn clock according to
CDIS (section 3). The resulting technical architecture is presented in
section 4. In order to evaluate how well our system predicts scores
towards its usage in clinical routine, we design and conduct a lab
experiment, in which we let cognitively healthy subjects simulate
error classes. Participants are presented with a random selection
of two error examples and are then asked to sketch a clock that
satis�es both error classes using a digital pen. In addition we let
two human expert raters with clinical background score each clock
based on the original scoring scheme (section 5). We present the
results of our evaluation (section 6) and provide a further discussion
(section 7) and a conclusion (section 8).
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2 BACKGROUND AND RELATEDWORK
Digitizing and comparing paper-and-pencil assessments has been
introduced recently [25]. Clinically relevant examples of cognitive
assessments include the Rey-Osterrieth Complex Figure (ROCF)
test [1], which can be used for various purposes, such as diagnos-
ing the periphery [2]. During the ROCF, participants are asked to
copy a complex geometrical �gure while looking at the template.
Then the template is taken away and the �gure has to be recalled
and sketched again. After 30 minutes, participants are asked to
sketch what they still recall. Another very popular assessment
tool is the Mini-Mental State Examination (MMSE) introduced in
1975 by Folstein et al. [6]. The MMSE is a 30-point questionnaire,
which is administered by a trained professional, who leads the
subject through the questionnaire, while taking notes. Afterwards,
the trained professional manually evaluates the results, based on
his notes and a prede�ned scoring scheme. Two tasks of the ques-
tionnaire require the subject to perform handwriting or sketching.
Administration takes on average 5 to 10 minutes. Due to its stan-
dardization, validity, short administration period, and ease of use,
the MMSE is widely applied as a screening tool for dementia [7].
The CDT is often administered together with the MMSE, because
both assess di�erent cognitive abilities [14]. Recent work by Nie-
mann et al. [18] shows how the MMSE and its sketched parts can
be automatically recognized using speech and handwriting gesture
recognition. Compared to other cognitive assessment tools, the
CDT is well accepted by patients and practitioners, because of its
easy and quick application. It is being used worldwide for decades
as a neuropsychological screening test and by now there exists a
plentitude of variations and scoring schemes. Di�erent cognitive
abilities, including attention, comprehension, memory, visuospatial
skills, motor and executive functions, can be measured using the
CDT [11]. Factors such as age, education and language are known
to in�uence the performance [16]. Although the majority of prac-
titioners are familiar with the CDT and can distinguish a heavily
impaired clock from a correct one without speci�c scoring criteria,
it is the detailed analysis of sketch characteristics as represented by
scoring schemes that allow us to identify disturbances with diag-
nostic sensitivity and speci�city. The scoring schemes di�er greatly
in the complexity of the scoring procedure, which in turn has an ef-
fect on their application in the clinical domain. Some contain many
and very detailed parameters that have to be evaluated manually
and are therefore time consuming when scored by the human rater.
Others contain rather unspeci�c descriptions and examples of how
a clock has to look like in order to be considered an impaired clock.

In order to analyze the recorded handwritten strokes of CDT, we
make use of so called handwriting features, which are mathematical
representations of several geometrical aspects of the sketched input.
Traditionally, stroke level features are most often used for statistical
gesture recognition. One of the most prominent set of features was
presented by Dean Rubine in 1991 [21]. It contains a total of 13
features that have been designed to re�ect the visual appearance
of strokes in order to be used in a gesture recognizer. More recent
work by Don J.M. Willems and Ralph Niels [30] de�nes a total of
89 features using formal mathematical descriptions and algorithms.
Adrien Delaye and Eric Anquetil introduced the HBF49 Feature
Set [3], which contains 49 features and was speci�cally designed

for di�erent sets of symbols and as reference for evaluating sym-
bol recognition systems. We also include14 features described by
Sonntag et al. [26] to distinguish between written text and other
types of gestures in handwriting recognition. In total, we include
over 100 handwriting features implemented by Prange et al. [17] to
predict the error classes of the CDT.

3 CATEGORIZATION OF ERROR CLASSES
Following Ehreke et al. [5] and Patocskai et al. [15] we distin-
guish between two types of scoring schemes, namely quantitative
and qualitative evaluations. They considered quantitative analyses
as those represented by numerical scales, whereas qualitative ap-
proaches classify the drawing of the clock based on descriptions of
typical errors by considering the whole clock in their analysis and
using a subjective approach [5, 15]. Considering the automation
of scoring schemes we determined that not all of them are equally
well suited to be computed automatically. Especially qualitative ap-
proaches, which are susceptible to subjective ratings, have proven
to be di�cult to be modelled computationally, whereas the numeri-
cal scales used in quantitative approaches are much more suitable.
In order to �nd an appropriate scoring, we examine several of the
most popular schemes that are used in daily practice and clinical
research. Our selection of potential scoring schemes is based on
expert interviews, a recent study conducted by Spenciere et al. [27]
and a study presented by Tuokko et al. [28]. We consider a total of
eight scoring schemes, the qualitative approaches by Libon et al. [8],
the mixed approach by Rouleau et al. [19] and the quantitative scor-
ings by Shulman et al. (both versions 1986 and 1993) [22, 23], Royall
et al. [20], Manos and Wu [9], Watson et al. [29] and Mendez et
al. [11].

Considering our selection of scoring schemes and real-world
examples of impaired clock sketches, taken from the geriatrics
daycare clinic of a large hospital, we categorize common mistakes
in a hierarchy of error classes summarized in table 1. The main
di�erentiation is done between errors concerning the numbers
of the clock-face and the presence of hands indicating a speci�c
time. Error classes are not necessarily mutually exclusive, e.g., “All
numbersmissing.” will always result in “Digits are partiallymissing.”
being true as well. Vice versa if “All numbers missing.” is true other
categories such as digit misplacement “Digits are placed counter-
clockwise.” cannot be satis�ed at the same time. We do not consider
this to be a problem, because several scoring schemes are designed
this way and real-world impaired sketches rarely trigger only a
single condition.

After careful consideration, we decided to focus on the Mendez
et al. [11] CDIS scoring scheme, a 20 point quantitative scale with
detailed conditions compared to other scorings. For example, the
Shulman [22] scoring consists of six categories and the clock sketch
has to be interpreted as belonging to one, category 1 is a “perfect”
clock and category 6 is described as “No reasonable representation
of a clock”. The categories in between are described vaguely (e.g.,
category 2 - “Minor visuospatial errors”) including examples, such
as “Mildly impaired spacing of times”. Such categories leave room
for subjective interpretation and thus potentially lead to human
bias based on the experience of the tester. Having no clear cut
seperations between categories can result in one tester rating a clock
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Table 1: Categorization of typical error classes based on ex-
isting CDT scoring schemes and real-world examples.

Digits

Missing
All missing
Only 4 main (12, 3, 6, 9) present
Partially missing

Misplacement

Wrong angle in regard to center
Counter-clockwise direction
Varying distance to circle
Varying spacing between
Not inside circle
Upside down

Duplicates Same number
Synonyms (e.g. 14 and 2)

Other

Roman numerals
Slurred/Unreadable
Not in range (1-12)
Substitution for words
Markings instead

Hands

Missing Both are missing
One is missing

Misplacement

Outside circle
Not connected to center
Longer indicates wrong minutes
Shorter indicates wrong hour
No attempt to indicate time

Length Both hands same length
Other More than 2 hands

Other

No attempt to indicate a time
Correction gestures (e.g., crossing out)
Markings and helping lines dominate the clock face
Text written (e.g., “11:10”)
Circle is re-traced

as midly impaired, while another one considers the same sketch as
belonging the the moderately impaired category. In comparison, the
Mendez score items are much more detailed and most of them are
easy to interpret, e.g., “There are no repeated or duplicated number
symbols.”. A complete overview of the CDIS scoring can be found
in table 2. Another reason to select the Mendez scoring scheme is
that, because of its size, it includes the majority of conditions that
are also present in other scoring schemes. These properties make
the CDIS a very good candidate for automatically detecting and
interpreting its error classes based on multi-stroke characteristics.

4 TECHNICAL ARCHITECTURE
We record clock sketches using a digital pen and paper imprinted
with a nearly invisible microdot pattern. The NeoSmartpen N21 is
a ballpoint pen with an intergrated infrared camera near the tip,
which recognizes the microdot pattern on the paper and records
the exact position, timestamp and pressure of the pen. It allows
us to analyze the digital ink including temporal aspects and time
stamps (which is not possible with a pure image recognition ap-
proach). The technical architecture is shown in �gure 1. First, we

1https://www.neosmartpen.com/

Table 2: The original Clock Drawing Interpretation Scale
(CDIS) by Mendez et al. [11] consists of 20 items, where each
item scores 0 or 1. The sum is used as the total score.

Item Description
1 There is an attempt to indicate a time in any way.
2 All marks or items can be classi�ed as either part of a

closure �gure, a hand, or a symbol for clock numbers.
3 There is a totally closed �gure without gaps.
4 A “2” is present and is pointed out in some way for the

time.
5 Most symbols are distributed as a circle without major

gaps.
6 Three or more clock quadrants have one or more ap-

propriate numbers: 12-3, 3-6, 6-9, 9-12 per respective
clockwise quadrant.

7 Most symbols are ordered in a clockwise or rightward
direction.

8 All symbols are totally wihtin a closure �gure.
9 An “11” is present and is pointed out in some way for

the time.
10 All numbers 1-12 are indicated.
11 There are no repeated or duplicated number symbols.
12 There are no substitutions for Arabic or Roman numer-

als.
13 The numbers do not go beyond the number 12.
14 All symbols lie about equally adjacent to a closure �gure

edge.
15 Seven or more of the same symbol type are ordered

sequentially.
16 All hands radiate from the direction of a closure �gure

center.
17 One hand is visibly longer than another hand.
18 There are exactly two distinct and separable hands.
19 All hands are totally wihtin a closure �gure.
20 There is an attempt to indicate a time with one or more

hands.

annotate each stroke with a corresponding gesture type (such as
circle, hand, number etc.). Second, we compute the values of the 20
error classes according to Mendez et al. [11]. In order to compute
the CDT error classes, we create 20 rule-based classi�ers corre-
sponding to the conditions of the CDIS scoring. We employ a set of
stroke-level syntactic features, which cover geometrical properties
of the sketched strokes, such as length, curvature or compactness
(see categorization of error classes). The second type of features
are called semantic features and describe task-dependent properties.
For example, the distance to the clock center, or the location of a
number inside a clock quadrant are used as semantic features for
the CDIS classes. We then summarize individual scores and receive
the �nal CDIS score, which indicates the overall level of cognitive
impairment indicated by the drawing.

The system di�erentiates between 7 gesture types a stroke can
belong to: part of the circle, digit, hand, center, helping line, text and
unknown/uncategorized. In an iterative streaming process, we look
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Figure 1: Architecture of our classi�cation system for the automatic prediction of error classes as described in section 4.

Figure 2: Picture of the experiment setup with touch-screen
tablet, digital pen and paper.

at stroke patterns that match to one or more of the gesture classes
based on the stroke level features. For example, a straight line has
the same initial and �nal directional vector as a circle, whereas
parts of the circle show a distinct curvature. Other gestures are
classi�ed based on their spatial location, e.g., markings on the outer
circle are classi�ed as being helper markings. For the detection
of digits and text we use a commercial handwriting recognition
engine by MyScript2. Example samples before and after annotation
are depicted in �gure 4. An intuitive example is error class 10 (“All
numbers 1-12 are indicated.”), where we iterate through all strokes
classi�ed as numbers and check if all are present (�gure 4d). Other
error classes require the use of additional stroke features, such as
error class 18 (“There are exactly two distinct and separable hands.”).
Some error classes, e.g., class 14 (“All symbols lie about equally
adjacent to a closure �gure edge.”) leave room for interpretation.

2https://www.myscript.com/

These error classes are implemented using a mixture of thresholds
and mean values.

5 EVALUATION
In order to measure the performance of our automated system, we
design and conduct an experiment in which we ask participants
to draw impaired clocks on purpose, based on our previously in-
vestigated error classes that are common in the CDT. A total of
12 subjects (3 female, 8 male) participated in our study, ranging
from 19 to 60 years of age. Subjects were recruited from university,
including co-workers and students from varying domains and �elds
of work, and none where diagnosed with cognitive impairments.
We consider the following questions:

• Is the experiment design reasonable: Are human raters able
to correctly predict the error classes that participants were
asked to draw?

• Are the parameters of the scoring scheme well-de�ned?
• Do human raters disagree?
• How accurately does the system predict error classes, how
is the performance compared to human raters?

• For which classes do medical experts and the system produce
similar scores, for which not and why?

5.1 Apparatus & Procedure
Our experiment setup consists of a touch-screen tablet and a digital
pen and paper as shown in �gure 2. The tablet is used to present
instructions and for recording the data which is streamed by the
pen via bluetooth. Participants sit in a distraction-free room at
a table with the pen and paper in front of them. After being in-
structed about the task, subjects were asked to draw several clocks
and answer a short demographics questionnaire. Each clock was
drawn on a seperate sheet of paper and marked by adding a pseudo-
anonymous identi�er. The sheets were then scanned and distributed
to two expert raters from the Charité in Berlin, with profound back-
ground knowledge about scoring schemes and the CDIS scoring
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scheme [11] in particular. The results of the human expert scor-
ings are then compared to the predictions made by the automated
system.

5.2 Task Design
Participants are asked to draw clocks based on the original instruc-
tions of the Mendez [11] version of the CDT. They are instructed
to draw a clock-face �rst and then indicate the time “10 past 11”.
Based on the error classes we create a set of instructions (see table 3)
and visual examples for each of the 20 items (see �gure ??). For
each clock the subject is given two distinct and randomly selected
error classes and is instructed to combine both of them into the
sketch to produce a single arti�cially impaired clock sketch. The
descriptions and example clocks for the two errors are displayed
on the touch-screen tablet. For example, if instructed to combine
error classes 8 (“Outside the circle - Write any symbols outside the
circle.”) and 13 (“Beyond 12 - Include numbers beyond 12.”), the
resulting clock should look like this: instead of number 1-12 the
clock has, e.g., numbers 13-24 and the numbers are written outside
the circle, instead of on the inside. Another example can be seen in
�gure 4c, which combines the error classes 14 (“Varying distance -
Vary the distance of symbols to the circle.”) and 17 (“Same length
hands - Draw two hands of the same length.”). Subjects are able to
skip a sample if they have the impression that they are unable to
combine both errors into one sketch. We decided to ask subjects
for a combination of two classes, because they have a higher prob-
ability to respresent real-world examples and after a pilot study we
determined that combining more than two error classes would be
too challenging for the participants. Each subject was asked to draw
a total of 10 clocks, covering all 20 error classes per participant.

6 RESULTS
We analyze a total of 120 clock sketches while covering each error
class with at least 12 positive samples. Considering the task design
subjects �agged 5 combinations of error classes as invalid: (1 &
4), (1 & 17), (1 & 18), (1 & 20) and (17 & 20). For each of the 120
clock sketches we have 2 manual scorings performed by human
expert raters as the ground truth. Ideally we would expect a dis-
tribution of samples where for each error class we have the same
amount of positive and negative samples. But since error classes
are not mutually exclusive, we get a slightly distorted distribution
(�gure 5). Based on the experiment design, at least 10% (12/120)
positive examples per class would be anticipated, but as can be seen
most classes have a clear imbalance in favour of negative samples,
two have even less than 10% positive samples.

We now compare the ground truth classes with the classes the
system computes. We compare the true positives (the drawn class
was correctly recognized by the rater) and the false negatives (the
rater did not recognize the class that was asked to be drawn) for
human raters and the system. Based on that, we show the sensitivity
and miss rate values in table 4. Human raters achieve on average a
miss rate of 17% compared to the system with 28%. Notably, class
6 (“Three or more clock quadrants have one or more appropriate
numbers”) has a miss rate of 91% for human raters. This class and
class 15 (“Seven or more of the same symbol type are ordered
sequentially.”) reach a 100% miss rate for the automated system.

This means that for these classes neither the human raters nor the
system was predicting the same error classes that were asked to be
drawn by participants during the experiment.

Next we calculate the interrater reliability by comparing the
individual scores across all 20 classes for each of the samples. Per
sample we check for each class if a rater disagrees on the scoring
with one of the others (human 1, human 2 and system). As we have
established previously, the error classes that participants were asked
to draw do not necessarily match the scores produced by the raters.
This is why we look closer at cases where both human raters agree
on the scoring, but where the system produces a di�erent value. The
results of these comparisons are displayed in table 5 and visualized
in �gure 6. Having calculated the overall percentage agreement we
�nd that human raters agree in 93.1% and all 3 raters agree in 92.4%
of cases. Considering only the instances where both humans agree,
the system scores the same value per class on 82.6%. Human raters
disagree in one-third of cases for classes 2 (“All marks or items can
be classi�ed as either part of a closure �gure, a hand, or a symbol
for clock numbers.”) and 5 (“Most symbols are distributed as a circle
without major gaps.”). We calculate the interrater reliability using
Cohen’s kappa [10]. Comparing human raters the kappa value is
� = 0.81, while for human 1 and the system the value is � = 0.50,
and for human 2 and the system � = 0.49. From the individual
scores per class we can calculate the sum of scores which gives us
the �nal CDIS value.

7 DISCUSSION
As explained above, based on the experiment design one would
expect a distribution of at least 10% negative samples for each
scoring item (see �gure 5). Looking at the samples and scorings of
classes 1 and 14, we determined that the instructions for drawing
these errors leave enough room for interpretation so that the sketch
is biased by the subjective interpretation of “indicate a time in any
way” and “about equally distributed”. Noticeably, the disagreement
rates in table 5 show that raters agreed in the majority of cases
for classes 1 and 14, resulting in a discrepancy in how drawing
participants interpreted the instructions and how raters interpreted
the scoring. What we see here is a prime example of the problem
of qualitative scoring approaches, namely the divergence between
interpretation of vaguely described conditions. We conclude from
this that these instructions need to be clearer and more concise,
leaving less room for subjective interpretation.

By looking at table 4 we see that classes 1, 6 and 20 have a
high miss rate, meaning that raters where not able to detect this
error in a sample even though the participant who sketched the
sample was asked to add that error. For class 1 and 20 we have
identi�ed the above discussed subjective interpretation as the root
cause, in which the phrase “an attempt” can be interpreted openly
by raters. However, for class 6 the drawing instructions stated to
“Create at least two quadrants with incorrect or missing numbers
inside.” in contrast to the scoring instruction “Three or more clock
quadrants have one or more appropriate numbers: 12-3, 3-6, 6-9,
9-12 per respective clockwise quadrant.”. Having compared the
samples with the scores we conclude that our instruction should
have been more strict in requiring the exact amount of missing
numbers. Analyzing the other end of the scale we can see that
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Table 3: Drawing instructions per error class as given to participants. The error classes correspond to the items of the Mendez
scoring scheme (e.g., error class 10 corresponds to the Mendez scoring item “All numbers 1-12 are indicated.”).

Error Class Error Title Error Description
1 No indication of time Do not indicate the time in any way, no hands, no circling of numbers etc.
2 Super�uous symbols Add additional markings/symbols which are not part of the clock.
3 Unclosed �gure Draw an incomplete circle, e.g. with one or more gaps.
4 Missing minute Do not add a 2 or do not indicate it as part of the time.
5 Varying spacing Vary the spacing between symbols.
6 Incorrect quadrant Create at least two quadrants with incorrect or missing numbers inside.
7 Counter-clockwise Order symbols counter-clockwise.
8 Outside the circle Write any symbols outside the circle.
9 Missing hour Do not add a 11 or do not indicate it as part of the time.
10 Missing numbers Leave out at least one number.
11 Duplicates Add at least one number symbol twice.
12 Substitution Use substitutions for Arabic or Roman numerals.
13 Beyond 12 Include numbers beyond 12.
14 Varying distance Vary the distance of symbols to the circle.
15 Non-sequential Order at least 6 symbols non-sequentially.
16 Non-centered hands Draw hands that do not radiate from the center.
17 Same length hands Draw two hands of the same length.
18 Multiple or not separable hands Draw more than two or not separable hands.
19 Hands outside Draw at least one hand completly or partially outside the circle.
20 No time Do not indicate the time using hands. You may indicate the time otherwise.

(a) B01 original. (b) B01 analyzed. (c) F09 original. (d) F09 analyzed.

Figure 4: Selection of produced clocks as drawn by the participants (plain) and after being analyzed by our automated system
(analyzed). Red indicates the stroke was interpreted as part of the circle, magenta indicates hands, while numbers are blue and
super�ous symbols are marked in green. In sample B01 the participant was asked to draw error classes 2 (super�ous symbols)
and 13 (numbers beyond 12), while sample F09 contains error classes 14 (varying distance) and 17 (same length hands).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
positive 92.5% 71.3% 88.8% 65.0% 74.2% 81.7% 80.8% 88.8% 58.8% 62.5% 89.2% 90.0% 89.2% 91.7% 80.0% 66.3% 61.7% 69.2% 73.8% 82.9%
negative 7.5% 28.8% 11.3% 35.0% 25.8% 18.3% 19.2% 11.3% 41.3% 37.5% 10.8% 10.0% 10.8% 8.3% 20.0% 33.8% 38.3% 30.8% 26.3% 17.1%

0%
20%
40%
60%
80%

100%

Figure 5: Distribution of samples per error class, based on the average scoring of human raters.
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Figure 6: Visualization of the comparison of disagreement between raters, based on table 5.

Table 4: Comparison of samples between error classes that
were asked to be drawn during the experiment and error
classes that were recognized later by human raters and the
automated system. Based on true positives and false nega-
tives we calculate the sensitivity/recall and the miss rate.

class human
sensitivity

system
sensitivity

human
miss rate

system
miss rate

1 0.58 1.00 0.42 0.00
2 0.92 0.92 0.08 0.08
3 1.00 0.75 0.00 0.25
4 0.75 0.42 0.25 0.58
5 0.75 0.17 0.25 0.83
6 0.09 0.00 0.91 1.00
7 0.88 1.00 0.12 0.00
8 0.92 1.00 0.08 0.00
9 1.00 0.75 0.00 0.25
10 0.96 1.00 0.04 0.00
11 0.96 1.00 0.04 0.00
12 0.92 0.92 0.08 0.08
13 1.00 1.00 0.00 0.00
14 0.75 0.67 0.25 0.33
15 0.96 0.00 0.04 1.00
16 0.92 0.83 0.08 0.17
17 0.88 0.42 0.12 0.58
18 0.96 0.92 0.04 0.08
19 0.92 0.83 0.08 0.17
20 0.55 0.83 0.45 0.17
avg. 0.83 0.72 0.17 0.28

classes 3 (“There is a totally closed �gure without gaps.”) and 9
(“An “11” is present and is pointed out in some way for the time.”)
show a miss rate of 1% for the human raters, meaning that for these
classes the raters scored almost exactly what participants intended
to draw. For class 14 (“All symbols lie about equally adjacent to a
closure �gure edge.”) human raters even agree in all of the cases. We
conclude that if the scoring and drawing instructions are phrased
carefully and leave little room for interpretation our experiment
design can be considered reasonable.

We consider for which classes human raters and the system
produce similar scores, for which not and why. As we can see from
table 5 and �gure 6, there are several classes were both humans
and the system score very similarly, such as classes 3, 12, 13, 14 and

Table 5: Comparison per sample and class on how strongly
raters disagree in their scoring. We consider all 12 partici-
pants, eachwith 10 clock samples and 20 CDIS scoring items
(n=2400). Human raters are indicated as human 1 and hu-
man 2. Note that the last column only considers instances
where both human raters agree.

class human 1
and 2

human 1
and system

human 2
and system

both humans
and system

1 8% 23% 15% 13.39%
2 39% 39% 62% 38.27%
3 1% 4% 3% 2.52%
4 2% 35% 35% 28.81%
5 32% 44% 38% 28.41%
6 10% 18% 18% 11.82%
7 6% 22% 20% 15.79%
8 5% 14% 15% 10.43%
9 1% 46% 47% 38.66%
10 8% 46% 50% 39.29%
11 2% 19% 19% 15.25%
12 2% 1% 1% 0%
13 2% 9% 11% 7.63%
14 0% 8% 8% 6.67%
15 6% 23% 25% 18.42%
16 7% 7% 10% 4.42%
17 8% 32% 28% 23.21%
18 6% 39% 37% 30.70%
19 7% 15% 10% 7.96%
20 13% 20% 7% 6.54%

16. The discrepancies in classes 9 and 10 can be explained with the
error rate of the number recognizer, which often does not recognize
the 11 correctly. Class 2 is di�cult because of the subjectiveness
of interpreting which symbols can be counted as belonging to a
clock an which not, e.g., are helping lines and markings part of
a clock? If we look closer at classes 2 and 5, we can see that the
automated system has to cope with disagreement between human
expert annotations (39% for class 2 and 32% for class 5). Since we
consider only cases where both humans agree (high probability
of the error class actually being present) the automated system
cannot score better than the disagreement rate between human
raters. All in all our automated system reaches over 82% accuracy
in predicting the same error classes as human raters.
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8 CONCLUSION
Based on real world examples and existing scoring schemes we
have categorized common types of errors that can happen during
the CDT and have presented an experiment that evaluates the
performance of our automated system in comparison to human
raters. Such systems have the potential to signi�cantly reduce the
time of experts spent on manual scoring and reduce the in�uence
of human bias on the scoring results, making the assessment of
cognitive impairment more objective.

One of the limitations is that our current classi�ers are manually
crafted. We are currently working on reducing this e�ort by cre-
ating interactive machine learning models that can predict these
error classes automatically. As not all existing scoring schemes
are equally suitable to be automated, we are also investigating if
and how the results of qualitative classi�cation approaches, as pre-
sented here, can be mapped to quantitative approaches, which are
less susceptible to subjective interpretation. Our system is currently
in the process of being deployed for evaluation in the geriatrics
daycare clinic of a large hospital. Ink features cannot only be used
for gesture or sketch recognition, but also for characterisation of
handwriting behaviour. Drotar et al. [4] have shown that the anal-
ysis of in-air movement can be used as a marker for Parkinson’s
disease. As cogntive tests often consist of more than one modality,
e.g., speech and writing, we are also investigating how ink fea-
tures can be used in multimodal scenarios [12, 13], where they may
enhance the prediction of cognitive and emotional states [31].
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