
Deep Multi-State Object Pose Estimation for Augmented Reality Assembly
Yongzhi Su* 1,2 Jason Rambach† 1 Nareg Minaskan1 Paul Lesur1 Alain Pagani1

Didier Stricker1,2

1 German Research Center for Artificial Intelligence(DFKI), Kaiserslautern, Germany
2 TU Kaiserslautern, Kaiserslautern, Germany

ABSTRACT

Neural network machine learning approaches are widely used for
object classification or detection problems with significant success.
A similar problem with specific constraints and challenges is object
state estimation, dealing with objects that consist of several remov-
able or adjustable parts. A system that can detect the current state
of such objects from camera images can be of great importance
for Augmented Reality(AR) or robotic assembly and maintenance
applications. In this work, we present a CNN that is able to detect
and regress the pose of an object in multiple states. We then show
how the output of this network can be used in an automatically gen-
erated AR scenario that provides step-by-step guidance to the user
in assembling an object consisting of multiple components.

Index Terms: Computing methodologies—Machine learning—
Machine learning approaches—Neural networks; Computing
methodologies—Artificial intelligence—Computer vision—
Computer vision tasks; Human-centered computing—Human
computer interaction (HCI)—Interaction paradigms—Mixed/
augmented reality;

1 INTRODUCTION

The detection of objects in images and their classification into one
of a number of predefined object classes has been one of the most
researched topics in computer vision for several decades. Tradition-
ally, handcrafted features such as SIFT or HOG [13] were used to
train different types of classifiers for the task. The field was revo-
lutionized by Deep Learning and Convolutional Neural Networks
(CNNs) after AlexNet won the ImageNet challenge in 2012 [8].
Further improvements followed, to the point that neural networks
have achieved human-like accuracy in detection of several types of
objects [12, 21].

However, an important problem in this category is detecting an
object in different states. Examples thereof are objects with ad-
justable or removable parts or objects comprised of several com-
ponents. Such objects are very often encountered in real-life situ-
ations at home or industrial environments and are of great interest
for Augmented Reality (AR) as well as robotic applications. Au-
tomatic recognition of object state along with their pose directly
from camera images can enable AR applications that assist in the
assembly/dis-assembly and maintenance of these objects while in-
creasing safety and human error detection and prevention. Even
though the practical importance of object state estimation is obvi-
ous, there is little existing work addressing it. This can be partially
due to its challenging nature, since it requires correct classification
between classes of very high similarity, while ambiguities between
states may even exist based on the current viewing point. Thus,
for feature-based approaches a difficult challenge are the repeating

*e-mail: yongzhi.su@dfki.de
†e-mail: jason raphael.rambach@dfki.de

Figure 1: Proposed AR Assembly application using object state and
pose estimation. The missing component to move to the next assem-
bly state is visualized.

features between classes. Using a learning approach the significance
of specific features to the classification can be learned rather than
explicitly defined.

In this paper, we propose a CNN inspired by the Backbone Tri-
dentNet [9] and Structure Faster R-CNN [23] to estimate the current
state of an object and its pose from a single RGB image. Befit
from the dilated convolution with different receptive fields, the CNN
can deal objects at different scales, without a large increase of the
computational cost and the size of the neural network. We use 3D
reconstructed models of the objects in different states and train our
CNN on exclusively synthetic datasets. Based on a state evolution
diagram of the object and the output of the trained neural network
we are able to generate an AR application that detects and tracks the
current state of the object and visualizes the next missing component
in the assembly procedure. The main contributions of this work are:

• The first system to estimate the state and pose of a multi-state
object with deep learning to the best of our knowledge.

• A combination of two CNN architectures into a new network
with a state estimation and a pose estimation branch trained
exclusively on synthetic images.

• The integration of the CNN state and pose information into
an AR assembly instruction application with reduced content
generation effort.

The paper is organized as follows: We first give an overview
of the related work in sec. 2. The object state graph defining the
possible states is introduced in sec. 3. Subsequently, we present our
proposed method in sec 4 and its quantitative evaluation in sec. 6.
We also propose an AR Application in sec. 5 as an example use case
of this work.



2 RELATED WORK

In this section we will look at related work in the problem of object
detection, classification and pose estimation. Subsequently, we
give a short overview of existing approaches for AR assembly and
maintenance applications.

2.1 Object Detection and Classification
Object detection is one of the most important problems in the re-
search of computer vision. Classical detectors extract and match
hand-crafted features. Although some features have been well-
designed to be stable to challenges like scale or lighting varia-
tions [13], they still have limited performance with textureless ob-
jects. After CNNs [8] have achieved remarkable result in the image
classification, they have also been applied in the object detection
methods as the backbone to extract features from the image. Two
main types of structures for CNN based detectors exist. The one-
stage detectors like YOLO [21] and SSD [12], benefit from the
straightforward structure, can reach a very high frame rate of more
than 50 fps. They predict the bounding box and class probabilities
with the predefined anchors on the image. The two-stage detector
like Faster R-CNN [23] and its following works [3] contain a Re-
gion Proposal Network (RPN) to generate potential bounding boxes
based on the feature map. Relying on the proposed bounding box, a
fine regression of the position and the object classification follows.

Detecting objects in various scale requires the detector to contain
various receptive fields thus it is hard to detect very large and very
small objects with the same model. The first idea to address this
issue is the use of multi-scale image pyramids. However, the com-
putational cost is proportional to the range of scaling. To reduce the
reuse of resources, the detection is performed in the feature maps
with different downsampling rates in the work of SSD [12]. Further-
more, the Feature Pyramid Network(FPN) [11] applies a top-down
pathway and lateral connections in addition, to keep semantic infor-
mation during the increase of downsampling in the CNNs. Although
the low-level feature layers have a small receptive field for the detec-
tion of smaller objects, it also has less representational power than
high-level feature layers. Detection of objects in different scales of
feature layers is still suboptimal.

Another idea is leveraging the dilated convolution, which enables
a large sampling field in the CNN layer without increasing the
number of parameters and the computational cost [9]. Following
the idea proposed in SNIP [24], training and testing of the detector
can be scale aware to ensure detecting of the object with the suitable
receptive field.

2.2 Object Pose Estimation
The object detection problem focuses on the presence of the object
and its location in the 2D image. However, in the AR and robotic
operation applications, the 6DoF pose of the object instance with a
known 3D model (CAD model or reconstructed model) is of greater
significance.

Given the bounding box of the object, the 2D detection can be
extended to 6DoF pose estimation. Generally, the object rotation
in most works is obtained by processing the image in the bounding
box. In SSD-6D [6], the rotation is classified into the predefined
discrete viewpoints. It can also be directly regressed as in [30].
A novel encoder-decoder structure was also proposed to determine
the rotation relying on the object representation in the neural net-
work [25]. The translation is treated separately as depth and offset in
the x-, y-axis. The depth information can be obtained by comparing
the size of the predicted bounding box with the bounding box in a
known distance [6] , or regressed from the neural network [25, 30].
The offset in x-, y-axis can be calculated by scaling the object 2D
center in the image with the predicted depth [6, 25, 30].

The work of PoseNet [7] was the first to regress poses directly
for relocalization using a CNN. In the work of [18] a similar net-

work was applied for regression of object poses from images. The
pencil filter was used as a domain adaptation technique to enable
training exclusively with synthetic images. However, this work only
estimates the pose and does not explicitly detect the object.

2.3 Augmented Reality Assembly and Maintenance

Assembly or maintenance instructions for industrial or household
devices has historically been one of the most coveted use cases
for Augmented Reality. The reasons for this are the clear benefits
that such an intelligent guidance system can have over the use of
printed manuals that draw the attention away from the object at hand
and are more error-prone [4]. Initial work exploring these ideas
was based on specifically selected objects and experimental setups
for the task [22]. A large amount of work followed, often being
object specific and relying on tracking techniques such as fiducial
markers [17]. An extensive overview of the topic can be found
in [29]. The work of [31] takes an approach that is similar to ours
in defining an object state graph leading to the assembly, however
using markers on each object component for tracking.

Many related publications present studies that compare AR-
assisted assembly instructions to traditional printed manuals in order
to examine the benefits of using AR mainly in terms of required
time and error avoidance [26]. Results of such studies tend to be
inconclusive, however an important depending factor that is often
not considered is the actual quality of the AR application used in
the experiments in terms of tracking and visual element quality. The
latter is studied in [27]. The complexity of the task is another im-
portant factor, however most of the existing work is focused on less
challenging tasks. In [26] the human factors in such a comparison
are in focus.

In [16], the main addressed problem is that of automated knowl-
edge capturing from a video example of the performed task. Along
with other existing systems, tracking and 3D registration of aug-
mentations is not in focus. The same holds true for many examples
of remote expert maintenance support AR applications. A 3D ob-
ject tracking system is deployed in [19] while in [20] objects that
can directly be connected to in order to provide live tracking and
status information are proposed. The work presented here could
also be combined with these approaches in a greater AR track-
ing/assembly/maintenance framework. Our paper is more focused
on providing a crucial novel technology that we consider necessary
for many AR assistance systems rather than evaluating the perfor-
mance gains from the use of AR compared to traditional assistance
methods.

3 OBJECT STATE GRAPH

An object state graph describing single components and their possi-
ble combinations leading to the assembled object is required in order
to train the network and generate an AR application that guides
the assembly. An example of such a graph for our selected test
object (coffee machine) is given in Fig. 2. The object components
are shown on the top row followed by the possible combinations
leading to new states and finally to the assembled machine. As can
be seen it is possible that there are multiple options in the order of
combinations of components to reach the final assembled device.
Reconstructed or CAD models of all single components as well
as all states are required in order to generate the synthetic training
set and to create augmentations of the following states in order to
visually guide the user to assemble the object.

4 OBJECT STATE AND POSE ESTIMATION

Dealing with objects in various scales has been a hard problem for
many computer vision tasks. This is especially of importance for the
AR assembly case since during the assembly of parts, initial states
are typically smaller than the final state.



Figure 2: Object State Graph example. Single components can be
combined in different ways to assemble the object. The example of a
coffee machine is shown here.

Another important point is that objects with the same rotation
but a different translation have a different appearance. Decoupling
the rotation and translation prediction completely can thus be prob-
lematic. Estimating the rotation directly from the bounding box
without other spatial information can be imprecise. Besides, the
estimation of translation relying on the object 2D center requires
the original of the object’s local coordinate located in its geometric
center. In the frame of this work, we estimate the 6DoF pose of an
object in multi-state, which means the object has no fixed geometric
center(see Fig. 3). We choose to decouple the pose estimation from
the detected bounding box in this work.

Following the work of TridentNet [9], which implemented the
dilated convolution to deal with the objects scaling, we added a
branch in the Faster R-CNN architecture for pose estimation. In the
section, we will first give a brief introduction of the multi-branch
block in the TridentNet and then present our modified Faster R-CNN
architecture as well as the used loss function.

4.1 CNN Architecture
The architecture of the CNN is depicted in Fig. 4. At first, a back-
bone with trident block is used to extract features from the input
image. The trident block contains multiple dilated convolutions
with various dilation rates. Each dilated convolution independently
extracts the feature map. Those features maps are stacked together
as the output. The RPN proposes potential foreground region and
resizes all the regions of interest (ROI) into a fixed size, which is
further processed for the classification of the object states and the
bounding box regression. At the same time, the extracted feature
map from the backbone are passed into another branch for the 6DoF
pose estimation. The translation is regressed in the form of the
offset in x-y-z-axis, and the rotation in the form of the quaternion,
respectively. Similar to the work of [28], we added a confidence
rate to reflect how certain the network is about the pose prediction.
The use of the trident block enables a different receptive field in one
feature layer. In the proposed architecture, this advantage is not only
used for state detection, but also for the pose estimation. Since the
6DoF pose estimation is not relying on the detected 2D bounding
box, we worked around the problem mentioned in Fig. 3.

4.2 Loss Function
It is worth noting, that each output of the network contains the
prediction from every trident block branch. It is logical to train
each branch with its suitable object scale. To this end, a weight wi
is defined for each branch, and a valid scale between li and ui is
assigned to each branch. If the size of the ground truth bounding
box located in the range of l2

i to u2
i , the wi will be set as 1, otherwise

0.
To train the network jointly, a multi-task loss function is used to

train the network, which can be expressed as

L = www(α1 ·LLLrpn class +α2 ·LLLrpn bboxα3 ·LLLrcnn class

+α4 ·LLLrcnn bbox +α5 ·LLLtra +α6 ·LLLrot +α7 ·LLLc),
(1)

where www = [w0, · · · ,wn], with n equals the number of branches in
the trident block, and the α1 · · ·α7 are the scale factors.

The Lrpn class, Lrpn bbox, Lrcnn class, Lrcnn bbox are the losses used
in Faster R-CNN. The softmax loss is used in the classification part,
and the smooth L1 loss is used in the regression part. We used L2
loss for the translation and rotation. Considering the confidence rate
ccc, it can be formulated as

LLLtra = ccc · ‖xxx− x̂xx‖2 (2)

and

LLLrot = ccc ·
∥∥∥∥ qqq
‖qqq‖2

− q̂qq
∥∥∥∥

2
, (3)

where xxx and qqq are the predicted translation and rotation quaternion
and x̂xx and q̂qq are the respective ground truth values. The regularization
term is added in the end to prevent the network from achieving a
small loss by a strong reduction of the confidence rate, which takes
form of

LLLccc =−log(ccc) . (4)

5 AR ASSEMBLY APPLICATION

Using the output of the network and the object state graph we can
generate an AR application that provides step-by-step guidance to
assemble an object. The application keeps track of the current state
of the object assembly and uses the pose in order to correctly display
the next required step or missing component as an AR augmentation
superimposed on the object. Screenshots of the application are
shown in Fig. 1.

As discussed previously our implementation is based on the two-
stage detector with the pose estimation separated from the computa-
tionally heavy RPN. This allows us to use the pose estimation branch
on every camera frame (up to ≈30fps) in order to keep track of the
current pose and display the augmentations correctly. The object
state estimation branch is invoked only on some of the incoming
frames since it can process only about 2fps (or 4fps with precision
fp16). Moreover, in order to make the state-changing more robust
and resilient to ambiguous states, we average the state confidence
values over a few frames and only change the state if there is a clear
indication from the averaged values (i.e. confidence higher than
0.7).

By using a common coordinate origin for the states of all the
models and using the object state graph, the augmentations display-
ing the next assembly state can be automatically generated by the
system without a need for manual content generation and setup.

6 EXPERIMENTS AND EVALUATION

In this section we give further details on the creation of the synthetic
dataset used for training, implementation details of the network and
an evaluation of the system performance on our chosen evaluation
object.



Figure 3: A: Even though the object has the same rotation its appearance inside the bounding box differs because of its position with respect to
the camera. Thus, it is sub-optimal to recover its rotation only relying on the image inside the bounding box. B: The different states of the object
have their own geometric center (marked in red), while they share only one local coordinates(marked in blue). Thus, the pose cannot be estimated
by locating the geometric center.

Figure 4: Our proposed architecture based on a modified TridentNet with an additional branch for pose estimation. The details of the network are
summarized in the sec. 6.2

6.1 Synthetic Training Dataset
Unlike the object’s class and bounding box, the 6DoF pose of the
object cannot be labeled manually. Even the tools like [14] are
proposed to reduce the cost of labeling, the process is still very time
consuming or require specific hardware setups for the acquisition
of ground truth poses. However, the quality and size of the dataset
is a critical factor for the supervised learning. At the same time,
with systems like [15], the 3D model of objects can be easily
obtained. Additionally the 3D CAD models are typically available
for industrial objects. Due to these reasons, training with synthetic
data is a very attractive option.

In this work, we reconstructed the 3D model of every part of our
object (i.e. a coffee machine) using a structured light approach. We
merged those parts to create models of all potential states. In total, 5
states including the initial state are created for the coffee machine
(see Fig. 2). The images from VOC2014 [2] and Ikea dataset [10]
are used as the background image. We roughly limited the possible
translation and rotation for each state, e.g. the bottom of the object
will not appear in the dataset. For every 5 degrees step of each
rotation axis, we randomly generate 10 angles within its±2.5 degree
range. For each angle, translations within the predefined range
are generated. When the 2D bounding box is inside of the image
frame, the rendered image is passed into an additional occlusion
test. Due to the self-occlusion, the differences between states can
be unclear. The rendered image is only selected, when at least 30%
of the newly added part under this pose is visible. In total, 72903
synthetic training images are created from the selected test object at
all possible states.

6.2 Implementation Details
In the work of [9], ResNet was modified with the multi-branch
block. The convolutions with kernel size 3×3 in the residual blocks
were replaced in the multi-branch with different dilation rates. Typ-
ically, the multi-branch blocks are placed in the last stage of the
backbone, to achieve different receptive fields with the same repre-
sentational power. Experiments showed that more than 3 branches
brings no further performance improvement. The multiple dilated
convolutions can share the weights to reduce the number of param-
eters in the CNN, with only a small decrease in the performance.
We implemented our work in MxNet [1] and used the ResNet50 in
bottleneck style pretrained model in the MxNet model zoo. We used
the image with the original size of 640×480 to train the network.
The details of the architecture in Fig. 4 can be summarized as:

• CNN 1: All the component of ResNet50 until the first ResNet
unit of stage 3. The output of CNN 1 is the feature map with
the size of (1024×30×40) per image in the mini-batch.

• Trident Block:The rest 5 ResNet units in the stage 3 are mod-
ified as the multi-branch block described above. We use the
multi-branch block with 2 dilated convolutions with the dila-
tion rate of 2 and 3 that share weights, and valid range for each
state are set as [0,220], and [180,∞]. The output of the trident
block has the size of (2× 1024× 30× 40) per image, the 3
corresponds to the 3 branches.

• RPN: At first a CNN and relu-activation extract a feature map,
which has the size of (2× 512× 30× 40) per image. The



Figure 5: First row: From left to right, the first 5 images are synthetic images with random noise of the 5 state, and the last one is the real image
for the validation. Second row: the images after applying the pencil filter

Accuracy IoU 0.5 IoU 0.9 Recall Precision ADD30 ADD10
Validation (Synthetic)

State 0 1.0 1.0 1.0 1.0 1.0 1.0 0.89
State 1 1.0 1.0 1.0 1.0 1.0 1.0 0.92
State 2 1.0 1.0 0.96 1.0 1.0 1.0 0.94
State 3 1.0 1.0 0.92 1.0 1.0 1.0 1.0
State 4 1.0 1.0 0.88 1.0 1.0 1.0 1.0
Mean 1.0 1.0 0.94 1.0 1.0 1.0 0.95

Testing (Real images)
State 0 0.97 0.98 0.37 0.98 1.0 − −
State 1 0.46 0.47 0.08 0.47 1.0 − −
State 2 0.83 0.84 0.13 0.84 0.92 − −
State 3 0.71 0.71 0.08 0.71 0.85 − −
State 4 0.94 0.94 0.14 0.94 0.94 − −
Mean 0.78 0.79 0.16 0.79 0.94 − −

Table 1: Evaluation results on the synthetic validation and real testing datasets. We report accuracy, IoU on the detection bounding box for the
state estimation, and the ADD metric for the pose estimation.

feature map is passed to a CNN for classification for the fore-
ground and background, and to another CNN for the bounding
box regression, for the predefined number of anchors. The
number of anchors is reduced by using non-maximum suppres-
sion and filtered according to the valid range of each branch.
At last, the ROIs in the output of trident block are resized to
(2×1024×14×14) with ROI Align [3].

• CNN 2: CNN 2 corresponds to the stage 4 in the ResNet50, it
increasing the number of channels of ROIs from 1024 to 2048.

• fc 1: The CNN 2 is flattened and connected with fc 1, which
outputs the object state and the bounding box of ROIs from
each branch.

• CNN 3: CNN 3 consists of 4 times the combination of the
relu activation and the convolution. All the convolutions have
a kernel size of 3×3, 1024 channels, while the first and third
convolution has a stride of 2. After CNN 3, the output from
trident block is downsampled to the size of (2×1024×8×10).

• fc 2: Fully connected layer of size 2046.

• fc 3: fully connected layer for the prediction of the 6DoF pose
and the confidence rate for each branch.

We train the network with Stochastic Gradient Descent(SGD) with
0.9 momentum and a weight decay of 0.0001. The network is
trained on an RTX 2080Ti GPU for 8 epochs. Each mini-batch
has 1 image. The learning rates start from 0.001 and are factored
by 0.5 after each two epochs, until reaching 0.000125. The input

position is normalized between −1 and 1. The [α1, · · · ,α7] are set
as [1,0.5,1,0.2,1,0.3,5].

We used 80% of the synthetic dataset for training the network,
the remaining 20% for the validation and about 400 real images for
the testing/evaluation. The pencil filter is used to reduce the domain
gap between the synthetic images and real images [18]. During
the training, 3 types of data augmentation effects are randomly
applied on the training image, namely gaussian noise, contrast and
illumination changes, and motion blur. The pencil filter is applied
on the input image for both training and testing. Examples of the
synthetic and real images can be found in the Fig. 5.

6.3 Quantitative Evaluation

To test the network, the prediction of object state are firstly filtered
according to the predicted bounding box. The object state with
the highest probability is considered as the final prediction. The
pose with the highest confidence rate is selected as the final pose
prediction. In Table 1, we report the accuracy, recall and precision of
state estimation for each state. The intersection over union (IoU0.5
and IoU0.9) values show how often these thresholds were met in the
predicted bounding boxes. The ADD metric [5] is used to evaluate
the accuracy of the predicted pose. Since we do not have the 6DoF
ground truth poses in the real image, the ADD metric will only be
reported for the synthetic images. The ADD metric measures the
percentage of estimated poses where the average relative error in
the estimated pose is under a certain threshold (here 10% and 30%).
Since the ground truth poses of the real images are not available, we
show some qualitative results in the supplementary material.



7 CONCLUSION

In this paper we addressed the problem of joint object state and
pose estimation for objects that consist of several components. We
believe that this is a problem of great significance for AR as it can
serve as an important step forward for AR applications that guide
object assembly and maintenance. Our proposed solution consists
of a single CNN with two branches, one for object detection and
current state estimation and one for 6DoF pose estimation. We show
how the outputs of this network can be integrated efficiently into an
AR assembly application that is capable of operating in real-time
given an object state graph. We used exclusively synthetic data for
the training of the network which allows making the dataset and
AR content generation more generic. On our selected test object
we showed promising results on the accuracy of state and pose esti-
mation. Further evaluation could be possible if a multi-state object
dataset with more objects and ground truth poses was available. A
frame-to-frame object tracker could be used to further improve the
accuracy of tracking since currently a tracking by detection approach
directly using the network output is applied.

ACKNOWLEDGMENTS

This work was partially funded by the INNOPROM Rheinland
Pfalz/EFFRE funding program (P1-SZ2-7, 84002637) in cooper-
ation with John Deere GmbH & Co. KG.

REFERENCES

[1] https://mxnet.apache.org/.
[2] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-

man. The pascal visual object classes (voc) challenge. International
journal of computer vision, 88(2):303–338, 2010.

[3] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision,
pp. 2961–2969, 2017.

[4] S. Henderson and S. Feiner. Exploring the benefits of augmented
reality documentation for maintenance and repair. IEEE transactions
on visualization and computer graphics, 17(10):1355–1368, 2011.

[5] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab. Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian conference
on computer vision, pp. 548–562. Springer, 2012.

[6] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. Ssd-6d:
Making rgb-based 3d detection and 6d pose estimation great again. In
Proceedings of the IEEE International Conference on Computer Vision,
pp. 1521–1529, 2017.

[7] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional
network for real-time 6-dof camera relocalization. In Proceedings of
the IEEE international conference on computer vision, pp. 2938–2946,
2015.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural
information processing systems, pp. 1097–1105, 2012.

[9] Y. Li, Y. Chen, N. Wang, and Z. Zhang. Scale-aware trident networks
for object detection. arXiv preprint arXiv:1901.01892, 2019.

[10] J. J. Lim, H. Pirsiavash, and A. Torralba. Parsing IKEA Objects: Fine
Pose Estimation. ICCV, 2013.

[11] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie.
Feature pyramid networks for object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp.
2117–2125, 2017.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg. Ssd: Single shot multibox detector. In European conference
on computer vision (ECCV), pp. 21–37. Springer, 2016.

[13] D. G. Lowe. Object recognition from local scale-invariant features.
In The proceedings of the seventh IEEE international conference on
Computer vision,, vol. 2, pp. 1150–1157. Ieee, 1999.

[14] P. Marion, P. R. Florence, L. Manuelli, and R. Tedrake. Labelfusion:
A pipeline for generating ground truth labels for real rgbd data of
cluttered scenes. arXiv preprint arXiv:1707.04796, 2017.

[15] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
fusion: Real-time dense surface mapping and tracking. In 2011 IEEE
International Symposium on Mixed and Augmented Reality, pp. 127–
136. IEEE, 2011.

[16] N. Petersen, A. Pagani, and D. Stricker. Real-time modeling and track-
ing manual workflows from first-person vision. In IEEE International
Symposium on Mixed and Augmented Reality (ISMAR),, pp. 117–124.
IEEE, 2013.

[17] R. Radkowski, J. Herrema, and J. Oliver. Augmented reality-based
manual assembly support with visual features for different degrees
of difficulty. International Journal of Human-Computer Interaction,
31(5):337–349, 2015.

[18] J. Rambach, C. Deng, A. Pagani, and D. Stricker. Learning 6DoF
Object Poses from Synthetic Single Channel Images. In IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR). IEEE,
2018.

[19] J. Rambach, A. Pagani, M. Schneider, O. Artemenko, and D. Stricker.
6DoF Object Tracking based on 3D Scans for Augmented Reality
Remote Live Support. Computers, 7(1):6, 2018.

[20] J. Rambach, A. Pagani, and D. Stricker. Augmented Things: Enhancing
AR Applications leveraging the Internet of Things and Universal 3D
Object Tracking. In IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 103–108. IEEE, 2017.

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), pp.
779–788, 2016.

[22] D. Reiners, D. Stricker, G. Klinker, and S. Müller. Augmented reality
for construction tasks: Doorlock assembly. In IEEE and ACM IWAR,
1988.

[23] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pp. 91–99, 2015.

[24] B. Singh and L. S. Davis. An analysis of scale invariance in object
detection snip. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3578–3587, 2018.

[25] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel.
Implicit 3d orientation learning for 6d object detection from rgb im-
ages. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 699–715, 2018.

[26] A. Tang, C. Owen, F. Biocca, and W. Mou. Comparative effectiveness
of augmented reality in object assembly. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 73–80. ACM,
2003.

[27] B. Volmer, J. Baumeister, S. Von Itzstein, I. Bornkessel-Schlesewsky,
M. Schlesewsky, M. Billinghurst, and B. H. Thomas. A Comparison of
Predictive Spatial Augmented Reality Cues for Procedural Tasks. IEEE
transactions on visualization and computer graphics, 24(11):2846–
2856, 2018.

[28] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei, and
S. Savarese. Densefusion: 6d object pose estimation by iterative dense
fusion. arXiv preprint arXiv:1901.04780, 2019.

[29] X. Wang, S. K. Ong, and A. Y. Nee. A comprehensive survey of
augmented reality assembly research. Advances in Manufacturing,
4(1):1–22, 2016.

[30] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes.
arXiv preprint arXiv:1711.00199, 2017.

[31] J. Zauner, M. Haller, A. Brandl, and W. Hartmann. Authoring of
a mixed reality assembly instructor for hierarchical structures. In
Proceedings of the 2nd IEEE/ACM International Symposium on Mixed
and Augmented Reality, p. 237. IEEE Computer Society, 2003.


	Introduction
	Related Work
	Object Detection and Classification
	Object Pose Estimation
	Augmented Reality Assembly and Maintenance

	Object State Graph
	Object State and Pose Estimation
	CNN Architecture
	Loss Function

	AR assembly application
	Experiments and Evaluation
	Synthetic Training Dataset
	Implementation Details
	Quantitative Evaluation

	Conclusion

