
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages 49–54
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

49

MoRTy: Unsupervised Learning of Task-specialized Word Embeddings
by Autoencoding

Nils Rethmeier
German Research Center for AI (DFKI)

Alt-Moabit 91c
10559 Berlin. Germany

nils.rethmeier@dfki.de

Barbara Plank
Department of Computer Science

IT University of Copenhagen
Rued Langgaards Vej 7

2300 Copenhagen S, Denmark
bplank@itu.dk

Abstract
Word embeddings have undoubtedly revolu-
tionized NLP. However, pre-trained embed-
dings do not always work for a specific
task (or set of tasks), particularly in lim-
ited resource setups. We introduce a simple
yet effective, self-supervised post-processing
method that constructs task-specialized word
representations by picking from a menu of
reconstructing transformations to yield im-
proved end-task performance (MORTY). The
method is complementary to recent state-of-
the-art approaches to inductive transfer via
fine-tuning, and forgoes costly model archi-
tectures and annotation. We evaluate MORTY
on a broad range of setups, including different
word embedding methods, corpus sizes and
end-task semantics. Finally, we provide a sur-
prisingly simple recipe to obtain specialized
embeddings that better fit end-tasks.

1 Introduction

Word embeddings are ubiquitous in Natural Lan-
guage Processing. They provide a low-effort, high
pay-off way to improve the performance of a spe-
cific supervised end-task by transferring knowl-
edge. However, recent works indicate that univer-
sally best embeddings are not yet possible (Bolle-
gala and Bao, 2018; Kiela et al., 2018a; Dingwall
and Potts, 2018), and that they instead need to be
tuned to fit specific end-tasks using inductive bias
– i.e., semantic supervision for the unsupervised
embedding learning process (Conneau et al., 2018;
Perone et al., 2018). This way, embeddings can be
tuned to fit a specific single-task (ST) or multi-task
(MT: set of tasks) semantic (Xiong et al., 2018).

Fine-tuning requires labeled data, which is of-
ten either too small, not available or of low
quality and creating or extending labeled data is
costly and slow. Word embeddings are typically
induced from huge unlabeled corpora with bil-
lions of tokens, but for limited-resource domains

like biology or medicine, it becomes less clear
whether there is still transfer. We set out to cre-
ate task-specified embeddings cheaply, with self-
supervision, that are able to provide consistent im-
provements, even in limited resource settings.

We evaluate the impact of our method, named
MORTY, on 18 publicly available benchmark
tasks developed by Jastrzebski et al. (2017)1 us-
ing two ways to induce embeddings, Fasttext and
GloVe. We test them in two setups corresponding
to two different overall aims: (a) to specialize em-
beddings to better fit a single supervised task or,
(b) to generalize embeddings for multiple super-
vised end-tasks, i.e., to optimize MORTYs for sin-
gle or multi-task settings. Since most embeddings
are pre-trained on large corpora, we also investi-
gate whether our method further improves embed-
dings trained on small corpus setups.

Hence, we demonstrate the method’s applica-
tion for single-task, multi-task, small, medium
and web-scale (common crawl) corpus-size set-
tings (Section 4). Learning to scale-up by pre-
training on more (un-)labeled data is both: (a) not
always possible in low-resource domains due to
lack of such data, and (b) heavily increases the
compute requirements of comparatively small su-
pervised down-stream task. This not only leads
to high per model-instance costs but also limits
learning to scale-out, i.e., when combining many
smaller models into a larger dynamic model as
is desirable in continual learning settings, where
models, inputs and objectives may emerge or dis-
appear over time. To provide an alternative in
such settings we design MORTY as a learning-to-
scale-down approach, that uses less data and com-
pute to achieve a performance improvement de-
spite forgoing (un-)supervised fine tuning on tar-
get domain data. Consequently, MORTY uses

1https://github.com/kudkudak/
word-embeddings-benchmarks

https://github.com/kudkudak/word-embeddings-benchmarks
https://github.com/kudkudak/word-embeddings-benchmarks


50

very little resources,2 producing a low carbon
footprint, especially regarding recent, compute in-
tensive, scale-up approaches like ELMo or BERT
(Peters et al., 2018; Devlin et al., 2018) which have
high hardware and training time requirements and
a large carbon footprint as recently demonstrated
by Strubell et al. (2019). As a result, we demon-
strate a simple, unsupervised scale-down method,
that allows further pretraining exploitation, while
requiring minimum extra effort, time and com-
pute resources. As in standard methodology, op-
timal post-processed embeddings can be selected
according to multiple proxy-tasks for overall im-
provement or using a single end-task’s develop-
ment split—e.g., on a fast baseline model for fur-
ther time reduction.

2 MoRTy embeddings

Our proposed post-processing method provides a
Menu of Reconstructing Transformations to yield
improved end-task performance (MORTY).

Approach: The key idea of MORTY is to create
a family of embeddings by learning to reconstruct
the original pre-trained embeddings space via au-
toencoders.

The resulting family or representations (post-
processed embeddings) gives a “menu” which can
be picked from in two ways: (a) standard devel-
opment set tuning, to gain performance at a single
supervised task (ST), or (b) via benchmark tasks,
to boost performance of multiple tasks (MT). The
first is geared towards optimizing embeddings for
a single specific task (specialization), the latter
aims at embedding generalization, that works well
across tasks.

In more details, the overall MORTY recipe is:
(1) Train (or take): an original (pre-trained) em-
bedding space Eorg using embedding method f .
(2) Reconstruct Eorg: compute multiple ran-
domly initialized representations of Eorg using a
reconstruction loss (mean square error, cf. below).
(3) Pick: performance-optimal representation for
the end-task(s) via a task’s development split(s) or
proxy tasks, depending on the end-goal, i.e., spe-
cialization or generalization. (4) Gain: use opti-
mal MORTY (Epost) to push relative performance
on end task(s).

2< 1GB memory including the whole dataset, computes
fast on GPU and CPU and inherits FastText’s dynamic out-
of-vocabulary token embedding generation, which is useful
in handling unforeseen words in down-stream tasks.

Which autoencoder variant? For step (2), we
found the following autoencoder recipe to work
best: A linear autoencoder with one hidden layer,
trained via bRMSE (batch-wise root mean squared
error), the same hidden layer size as the original
embedding model and half of its learning rate3–
i.e., a linear, complete autoencoder, trained for a
single epoch (cf. end of Section 3).

We experimented with alternative autoen-
coders: sparse (Ranzato et al., 2007), denois-
ing, discrete (Subramanian et al., 2018), and un-
dercomplete autoencoders, but found the simple
recipe to work best. In the remainder of the pa-
per, we test this ‘imitation-scheme’ setup recipe.

3 Experiments

With the aim of deriving a simple yet effective
‘best practice’ usage recipe, we evaluate MORTY

as follows: a) using two word embedding methods
f ; b) corpora of different sizes to induce Eorg, i.e.,
small, medium and web-scale; c) evaluation across
18 semantic benchmark tasks spanning three se-
mantic categories to broadly examine MORTY’s
impact, while assessing both single and multi-task
end goals; and finally e) evaluate 1-epoch setups
in relation to different corpus sizes.

Embeddings and Corpus Size: We evaluate
embeddings trained on small, medium (millions of
tokens) and large (billions of tokens) corpus sizes.
In particular, we train 100-dimensional embed-
dings with Fasttext (Bojanowski et al., 2016)4 and
GloVe (Pennington et al., 2014)5 on the 2M and
103M WikiText created by Merity et al. (2016).
We complement them with off-the-shelf web-
scale Fasttext and GloVe embeddings (trained on
600B and 840B tokens, respectively). This re-
sults in the following vocabulary sizes for Fast-
text and GloVe embeddings, respectively: on 2M
25,249 and 33,237 word types. For 103M we get
197,256 and 267,633 vocabulary words. Public,
off-the-shelf – common-crawl trained – Fasttext
and GloVe embeddings have very large vocabular-
ies of 1,999,995 and 2,196,008 words.

To account for variation in results, we train both
embedding methods five times each6 on the two
WikiText corpus sizes. We observed only minor

3Original Fasttext and GloVe used lr = 0.05, so lr ≈
0.025 is a ‘careful’ rate and used throughout the experiments
in this paper.

4To train Fasttext we used https://fasttext.cc
5To train GloVe we used the python glove python wheel
6Fasttext was trained using the implementation’s

https://fasttext.cc
https://github.com/maciejkula/glove-python


51

variations, < 0.5% between runs for both Fasttext
and GloVe, in overall performance Σ – i.e., when
summing the scores of all benchmark tasks.

Semantic benchmark tasks: We use a publicly
available word embedding benchmark implemen-
tation developed by Jastrzebski et al. (2017) – cho-
sen for reproducibility and breadth. The 18 tasks
span three semantic categories: (a) word similarity
(6 tasks), (b) word analogy (3 tasks), and (c) word
and sentence categorization (9 tasks).7

Evaluation and Experimental Details For the
single-task setup we show MORTY’S relative,
percentual performance change (ST % change)
produced by choosing the best MORTY embed-
ding per task – 18 MORTYs. Correspondingly, for
multi-task results we show MT % change ob-
tained by choosing the MORTY embedding with
the best score over all tasks Σ – i.e., one MORTY

for all tasks. Performances in Table 1 are aver-
aged over 5 runs each of Fasttext and GloVe per
corpus size. To maximize MORTY’S usability we
evaluate a 1-epoch training scheme. We test its
robustness – particularly for limited resource use
– by training 1 epoch on three corpus sizes (small
to web-scale), using the best multi-task (MT/ Σ)
base embedder – see Fasttext Table 1. We again
account for variation by using 3 randomly initial-
ized MORTY runs, each over the 5 respective runs
per corpus size. In this experiment, a single epoch
yielded very stable boosts, that are comparable to
multi-epoch training.

4 Results

The main results are provided in Table 1 and Fig-
ure 1. There are several take-aways.

f : Fasttext and GloVe: First, regarding the
base embeddings (cf. per-category base perfor-
mance scores in Table 1): i) we notice that Fasttext
performs overall better than GloVe; ii) classifica-
tion and similarity results improve the larger the
corpus; consistently over f ; and iii) GloVe is bet-
ter for the analogy tasks on web-scale data.8

(fasttext.cc) default parameters. GloVe was trained
with the same parameters as in (Pennington et al., 2014) –
Figure 4b. Though, 4a gave the same results.

7Jastrzebski et al. (2017) use measures form the dataset
literature: Spearman correlation for similarity, 3CosAdd for
analogy and accuracy and cluster purity for categorization.

8GloVe 3CosAdd matches (Levy and Goldberg, 2014).

MORTY for multi-task application: Second,
the MT % change columns show that a sin-
gle best MORTY improves overall performance
Σ (black row)9 – the sum of 18 tasks – by 8.9,
5.8 and 3.4 percent compared to Fasttext base.
As corpus size increases, there is less space for
MORTY to improve Σ scores. What is inter-
esting to note is that MORTY is able to recover
analogy performance on 103M (to more than 2M
level). This is also reflected in the Google and
MSR analogy scores doubling and tripling (mid-
dle column). On 2M we also see a modest im-
provement (6.2) for similarity tasks, while classi-
fication on 2M slightly dropped. Regarding GloVe
(3 rightmost columns) we notice lower overall per-
formance (black column), which is consistent with
findings by Levy et al. (2015). MORTY on GloVe
produces lower but more stable improvements for
the MT setting (middle column), with analogy and
similarity performance noticeably increasing for
the small 2M dataset. Generally, we see both per-
formance increases and drops for individual task,
especially on 2M and Fasttext, indicating that, a
single overall best MORTY specializes the base
Fasttext embedding to better fit a specific subset
of the 18 tasks, while still beating the base embed-
ders f in overall score (Σ).

MORTY for single-task application: In the ST
% change columns we see best single task (ST)
results for task-specific optimal MORTY embed-
dings. Both embedders get consistent boosts, with
Fasttext exhibiting significantly higher improve-
ment from MORTY on 2M and 103M, despite al-
ready starting out at a higher base performance.

training corpus size (small, medium, common crawl)

sc
o

re
 i

n
 %

 (
18

 t
as

ks
)

100

102

104

106

108

110

60
0B

10
3M

10
3M

10
3M

10
3M

10
3M2M2M2M2M2M

FastText Morty run 1 Morty run 2 Morty run 3

Figure 1: 1-epoch MORTY (MT %) performance
change over Fasttext: Blue bars show Fasttext base-
line performance (100%). 3 Morty runs: trained on
Fasttext for 1 epoch (2x5 Fasttext for corpus sizes 2M
and 103M and 1x for 600B). Detailed description on
next page.

9Note that, % change for Σ is not the average of the in-
dividual task changes, but the % change of the sum of 18
individual scores.

fasttext.cc


52

embedder
model

Fasttext base
performance

MT % change by
1 overall Morty 

ST % change by
18 single Mortys

GloVe base
performance

MT % change by
1 overall Morty 

ST % change by
18 single Mortys

train size 2M 103M 600B 2M 103M 600B 2M 103M 600B 2M 103M 840B 2M 103M 840B 2M 103M 840B
AP 0.31 0.59 0.68 -6.1 -0.9 -1.5 8.2 5.2 4 0.2 0.43 0.61 2.7 5.6 9.3 13.2 9.2 12.2
BLESS 0.3 0.73 0.84 -2.2 3.8 -3 13 9.7 5.4 0.27 0.51 0.85 1.6 -1.6 -1.8 7.9 7.9 4.7
Battig 0.14 0.32 0.48 -3.6 0.1 -3.7 7 4 0.5 0.1 0.19 0.46 3.5 2 1.9 7.4 5.4 8.5
ESSLI 1a 0.48 0.76 0.77 2.2 4.3 17.6 27.5 10.2 17.6 0.46 0.63 0.75 0 3.1 9.1 8 8.9 12.1
ESSLI 2b 0.63 0.75 0.78 9.2 2.7 0 26.5 11.3 12.9 0.51 0.74 0.75 19.9 -0.5 6.7 23.7 11.7 16.7
ESSLI 2c 0.54 0.54 0.62 -3.7 10.7 -10.7 11 19.7 10.7 0.46 0.54 0.62 2.1 2.7 0 16.9 16.7 10.7
Google 0.06 0.04 0.12 33.6 293.8 187.3 45.3 319.3 217.2 0 0.05 0.58 42.7 13.8 2.8 60.4 18.6 5.9
SEval 12 2 0.11 0.16 0.24 1.6 4.3 -2.8 18.1 14.1 4.8 0.11 0.15 0.2 6.5 2.2 1 11.4 5 2.4
MSR 0.28 0.08 0.18 18.8 246.2 117.1 27.5 267.3 137 0 0.09 0.57 45.6 30.9 -2.4 100.7 38.1 10.1
MTurk 0.24 0.52 0.73 65.6 5.1 1.1 98 12.6 1.5 0.3 0.46 0.69 -22.4 2.6 0.5 1.6 4.2 2.6
RG65 0.29 0.71 0.86 65.2 0.7 2.1 104.7 5.3 5.6 0.15 0.44 0.77 11.6 3.9 -1.3 30.8 10 4
RW 0.21 0.38 0.59 -17.1 -0.8 -2 4.1 2.4 0.9 0.2 0.21 0.46 -2.1 11.8 2 4 19.8 10.3
MEN 0.36 0.71 0.84 13 0.4 -0.4 22 2.3 0.3 0.16 0.51 0.8 3.6 5.6 0.5 15.1 7 7.7
SimLex999 0.18 0.31 0.5 -23.2 3.7 -1.2 7.3 9 3.1 0.03 0.22 0.41 147.8 7.3 3.1 228.3 11.7 9.3
TR9856 0.1 0.13 0.18 2.8 -4.1 -37.1 20.5 17.3 -2.5 0.09 0.08 0.1 13.9 8.9 -4.7 19.8 47.3 36.7
WS353 0.46 0.69 0.79 3.9 1 -1.7 10 2.9 0.6 0.16 0.45 0.74 31.5 7.2 0.7 36.8 8.2 5.6
WS353R 0.35 0.63 0.74 16.4 1.7 -2.8 24.3 4.1 1.6 0.08 0.4 0.69 53.1 6.5 1.1 62 8.2 2.7
WS353S 0.52 0.77 0.84 3.2 0.4 0.6 13.3 3 1.9 0.27 0.58 0.8 15.1 6.5 0.3 20.2 7.6 5.9
∑ tasks 5.55 8.83 10.79 8.9 5.8 3.4 8.9 5.8 3.6 3.56 6.68 10.84 7.8 4.3 1.9 7.8 4.3 1.9
category 2.39 3.7 4.17 -2.1 -0.2 1.8 11.4 4.5 3.1 2 3.04 4.05 3.5 -0.8 2.4 7.3 3.3 5.5
analogy 0.45 0.28 0.55 15.5 115 72.2 24.6 125.2 92.7 0.11 0.29 1.34 7.4 4.2 1.3 12.3 15.8 6.5
similarity 2.71 4.85 6.07 6.2 -0.6 -4.7 17.3 2.2 -0.3 1.45 3.35 5.45 9.2 1.8 0 11 6.3 2.9

legend <50% 50% >50% < -10% no change > +10% <50% 50% >50% < -10% no change > +10%

Table 1: MORTY on Fasttext and GloVe: Above are scores for: 18 individual tasks (AP-WS353S), the sum
of 18 scores Σ, and scores grouped by semantic: similarity (AP-ESSLI2c), analogy (Google-MSR), classifica-
tion (MTurk-WS253S). Left column: shows absolute scores of the original embedder. Middle column: shows
% score change after fine-tuning with the MORTY that has the highest overall score Σ – i.e., 1 MORTY for
all tasks (multi-task). Right column: shows % score change after applying 18 individually best MORTYs
per single-task – i.e., 18 MORTYs . Each column is further split by corpus size – 2M, 103M(illion) and
600/840B(illion) tokens. All scores are averages over 5 original embedder scores and respective MORTY changes.

Applying the MORTY 1-epoch recipe So far,
we saw MORTYs potential for overall (ST/MT/Σ)
performance improvements, but will we observe
the same in the wild? To answer this question
for the MT use-case, we apply a 1-epoch train-
ing only recipe. That is, we train 1-epoch us-
ing a linear, complete autoencoder using half of
the base embedders learning rate on three ran-
domly initialized MORTYs, and then test them
on the 18 task (MT) setup. Figure 1 shows con-
sistent MT/Σ score improvements for each of the
3 MORTY-over-Fasttext runs (red, yellow, green)
on 2M, 103M, and 600B vs. base Fasttext (blue
100).

We see that, for practical application, this al-
lows MORTY to boost supervised MT perfor-
mance even without using a supervised develop-
ment split or proxy task(s), while also eliminat-
ing multi-epoch tuning. Both Figure 1 and Table 1
show similar overall (MT) improvements per cor-
pus size, which suggests that 1-epoch training is
sufficient and that MORTY is especially benefi-
cial on smaller corpora – i.e., in limited resource
settings.

5 Related Work

There is a large body of work on informa-
tion transfer between supervised and unsuper-
vised tasks. First and foremost unsupervised-
to-supervised transfer includes using embeddings
for supervised tasks. However, transfer also works
vice versa, in a supervised-to-unsupervised
setup to (learn to) specialize embeddings to better
fit a specific supervised signal (Ruder and Plank,
2017; Ye et al., 2018). This includes injecting gen-
erally relevant semantics via retrofitting or auxil-
iary multi-task supervision (Faruqui et al., 2015;
Kiela et al., 2018b). Supervised-to-supervised
methods provide knowledge transfer between su-
pervised tasks which is exploited successively
(Kirkpatrick et al., 2017), jointly (Kiela et al.,
2018b) and in joint-succession (Hashimoto et al.,
2017).

Unsupervised-to-unsupervised transfer is less
studied. Dingwall and Potts (2018) proposed a
GloVe model-modification that retrofits publicly
available GloVe embeddings to produce special-
ized domain embeddings, while Bollegala and



53

Bao (2018) propose meta-embeddings via denois-
ing autoencoders to merge diverse (Fasttext and
GloVe) embeddings spaces. The later, is also a
low-effort approach and closest to ours. How-
ever, it focuses on embedding merging that they
tuned on a single semantic similarity task, while
MORTY provides an overview of tuning for 19
different settings. Furthermore, MORTY requires
only a single embedding space, which contributes
to the literature by outlining that meta-embedding
improvements may partly stem from re-encoding
rather than only from semantic merging.

6 Conclusion

We demonstrated a low-effort, self-supervised,
learning scale-down method to construct task-
optimized word embeddings from existing ones to
gain performance on a (set of) supervised end-
task(s) without direct domain adaptation. De-
spite its simplicity, MORTY is able to produce
significant performance improvements for single
and multi-task supervision settings as well as
for a variety of desirable word encoding proper-
ties while forgoing building and tuning complex
model architectures and labeling.10 Perhaps most
importantly, MORTY shows considerable bene-
fits for low-resource settings and thus provides a
learning-to-scale-down alternative to recent scale-
up approaches.

7 Acknowledgements

This work was supported by the German Fed-
eral Ministry of Education and Research (BMBF)
through the project DEEPLEE (01IW17001) and
by the European Unions Horizon 2020 research
and innovation programme under grant agree-
ment No 780495 (BigMedilytics). We also thank
Philippe Thomas and Isabelle Augenstein for
helpful discussions.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Danushka Bollegala and Cong Bao. 2018. Learning
word meta-embeddings by autoencoding. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 1650–1661. Asso-
ciation for Computational Linguistics.
10Source code at https://github.com/

NilsRethmeier/MoRTy

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco” Baroni. 2018.
What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic proper-
ties. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2126–2136. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Nicholas Dingwall and Christopher Potts. 2018. Mit-
tens: an extension of glove for learning domain-
specialized representations. In Proceedings of the
2018 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short
Papers), pages 212–217. Association for Computa-
tional Linguistics.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, pages 1606–1615. Association for Computa-
tional Linguistics.

Kazuma Hashimoto, caiming xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-
task model: Growing a neural network for multiple
nlp tasks. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1923–1933. Association for Compu-
tational Linguistics.

Stanislaw Jastrzebski, Damian Lesniak, and Woj-
ciech Marian Czarnecki. 2017. How to evalu-
ate word embeddings? on importance of data
efficiency and simple supervised tasks. CoRR,
abs/1702.02170.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018a. Context-attentive embeddings for improved
sentence representations. CoRR, abs/1804.07983.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018b. Dynamic meta-embeddings for improved
sentence representations. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1466–1477. Associa-
tion for Computational Linguistics.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences,
114(13):3521–3526.

http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://aclweb.org/anthology/C18-1140
http://aclweb.org/anthology/C18-1140
https://github.com/NilsRethmeier/MoRTy
https://github.com/NilsRethmeier/MoRTy
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/N18-2034
https://doi.org/10.18653/v1/N18-2034
https://doi.org/10.18653/v1/N18-2034
https://doi.org/10.3115/v1/N15-1184
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.18653/v1/D17-1206
http://arxiv.org/abs/1702.02170
http://arxiv.org/abs/1702.02170
http://arxiv.org/abs/1702.02170
http://arxiv.org/abs/1804.07983
http://arxiv.org/abs/1804.07983
http://aclweb.org/anthology/D18-1176
http://aclweb.org/anthology/D18-1176
https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521


54

Omer Levy and Yoav Goldberg. 2014. Linguistic regu-
larities in sparse and explicit word representations.
In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning, pages
171–180. Association for Computational Linguis-
tics.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. CoRR, abs/1609.07843.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Christian S. Perone, Roberto Silveira, and Thomas S.
Paula. 2018. Evaluation of sentence embeddings in
downstream and linguistic probing tasks.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

Marc’ Aurelio Ranzato, Y-Lan Boureau, and Yann Le-
Cun. 2007. Sparse feature learning for deep belief
networks. In Proceedings of the 20th International
Conference on Neural Information Processing Sys-
tems, NIPS’07, pages 1185–1192, USA. Curran As-
sociates Inc.

Sebastian Ruder and Barbara Plank. 2017. Learning to
select data for transfer learning with bayesian opti-
mization. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 372–382. Association for Computational
Linguistics.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp. In Proceedings of ACL 2019,
Florence, Italy, July 28 - August 2, 2019. Associa-
tion for Computational Linguistics.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018.
Spine: Sparse interpretable neural embeddings. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Shufeng Xiong, Hailian Lv, Weiting Zhao, and
Donghong Ji. 2018. Towards twitter sentiment clas-
sification by multi-level sentiment-enriched word
embeddings. Neurocomputing, 275:2459–2466.

Zhe Ye, Fang Li, and Timothy Baldwin. 2018. En-
coding sentiment information into word vectors for

sentiment analysis. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 997–1007. Association for Computa-
tional Linguistics.

https://doi.org/10.3115/v1/W14-1618
https://doi.org/10.3115/v1/W14-1618
https://transacl.org/ojs/index.php/tacl/article/view/570
https://transacl.org/ojs/index.php/tacl/article/view/570
https://transacl.org/ojs/index.php/tacl/article/view/570
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1806.06259
http://arxiv.org/abs/1806.06259
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
http://dl.acm.org/citation.cfm?id=2981562.2981711
http://dl.acm.org/citation.cfm?id=2981562.2981711
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://people.cs.umass.edu/~strubell/
https://people.cs.umass.edu/~strubell/
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17433
https://dl.acm.org/citation.cfm?id=3198777
https://dl.acm.org/citation.cfm?id=3198777
https://dl.acm.org/citation.cfm?id=3198777
http://aclweb.org/anthology/C18-1085
http://aclweb.org/anthology/C18-1085
http://aclweb.org/anthology/C18-1085

