
Intelligence Slicing: A Unified Framework to

Integrate Artificial Intelligence into 5G Networks

Wei Jiang∗†, Simon Duque Anton∗, and Hans Dieter Schotten†∗

∗Intelligent Networking Research Group, German Research Center for Artificial Intelligence (DFKI)

Trippstadter street 122, Kaiserslautern, 67663 Germany
†Institute for Wireless Communication and Navigation, University of Kaiserslautern

Building 11, Paul-Ehrlich street, Kaiserslautern, 67663 Germany

Abstract—The fifth-generation and beyond mobile networks
should support extremely high and diversified requirements from
a wide variety of emerging applications. It is envisioned that more
advanced radio transmission, resource allocation, and networking
techniques are required to be developed. Fulfilling these tasks is
challenging since network infrastructure becomes increasingly
complicated and heterogeneous. One promising solution is to
leverage the great potential of Artificial Intelligence (AI) tech-
nology, which has been explored to provide solutions ranging
from channel prediction to autonomous network management,
as well as network security. As of today, however, the state of
the art of integrating AI into wireless networks is mainly limited
to use a dedicated AI algorithm to tackle a specific problem. A
unified framework that can make full use of AI capability to
solve a wide variety of network problems is still an open issue.
Hence, this paper will present the concept of intelligence slicing
where an AI module is instantiated and deployed on demand.
Intelligence slices are applied to conduct different intelligent tasks
with the flexibility of accommodating arbitrary AI algorithms.
Two example slices, i.e., neural network based channel prediction
and anomaly detection based industrial network security, are
illustrated to demonstrate this framework.

I. INTRODUCTION

The charm of the fifth-generation (5G) wireless systems is

its flexibility to support a wide variety of new applications

and services, such as Internet of Things, Tactile Internet [1],

automated driving, virtual and augmented reality, e-Health,

and smart factory. To satisfy their highly diversified require-

ments, the 5G network and its upcoming evolution should

support extremely high data rate, ultra reliability, low latency,

excessive energy efficiency, strict security and privacy pro-

tection, ubiquitous coverage, and massive connection. It can

be envisioned that more advanced signal transmission tech-

niques, more efficient spectral, radio, and computing resources

utilization, more agile physical and virtual network function

orchestration, more autonomous network slicing management,

and more finer analysis methodology for network big data

and user behaviour, are needed to be developed. Fulfilling

these tasks is challenging since the network infrastructure

becomes increasingly complicated, heterogeneous, large-scale,
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and ubiquitous, while the emergence of new applications

increasingly speeds up.

One potential solution is to leverage Artificial Intelligence

(AI), which provides data-driven approaches that can be ap-

plied to solve complex and previously intractable problems.

In March 2016, when Google AlphaGo [2] achieved an

overwhelming victory versus human champion in the game

of Go, the passion of exploring AI in all scientific and tech-

nological aspects has been sparked [3]. Actually, the wireless

research community started to apply AI algorithms to solve

communication problems long ago. It has been explored to

provide a wide variety of technical solutions, e.g., recurrent

neural network (RNN) for Multi-Input Multi-Output (MIMO)

fading channel prediction [4], deep learning based resource

allocation [5], supervised learning for network security [6],

reinforcement learning in cognitive radio [7], and intelligent

network management [8]. However, the state of the art of

applying AI technology into wireless networks is mainly

limited to use a dedicated AI algorithm to tackle a specific

problem like [4]-[8]. Although the SELFNET project [9]

has proposed an intelligent framework over software-defined

virtualized infrastructure, it merely focused on applying AI

dedicated for network management. A framework that can take

advantage of AI technology to solve network problems in a

unified manner is still an open issue.

To fill the gap, this paper will present the design of a unified

framework that has generality and scalability to integrate AI to

conduct intelligent tasks for all network aspects, ranging from

radio channels to signal processing, from resource allocation

to network slicing orchestration, from local control to end-to-

end optimization. The concept of intelligence slicing, with the

flexibility to instantiate, deploy, scale, reconfigure, and transfer

AI functional modules on demand, will be presented. An intel-

ligence slice can be deployed in an arbitrary network entity to

well solve a problem by means of selecting the best algorithm

specifically optimized for this problem. Two example slices,

i.e., RNN-based MIMO channel prediction to improve the

accuracy of transmit antenna selection and security anomaly

detection in industrial networks, are illustrated to demonstrate

this framework.

This paper is organized as follows: Section II presents the

AI framework and the concept of intelligence slicing, followed
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by its life-cycle management in Section III. Section IV depicts

two example slices, and conclusions are made in Section V.

II. THE UNIFIED AI FRAMEWORK

This section introduces the AI framework over software-

defined virtualized 5G infrastructure, followed by the concept

of intelligence slicing that provides the flexibility of instanti-

ating and deploying AI functional modules into the network

on demand.

A. The Framework

Software-Defined Networking (SDN) [10] and Network

Function Virtualization (NFV) [11] were initially developed

as independent networking paradigms by Open Networking

Foundation (ONF) and European Telecommunications Stan-

dards Institute (ETSI), respectively. But they have shown

strong synergy and combining them in one networking archi-

tecture may lead to great value. For instance, an SDN con-

troller can be implemented in a software program running on

computers as a Virtual Network Function (VNF). The network

control and management applications (i.e., SDN APPs), such

as security, Mobile Load Balancing (MLB) and Quality-of-

Experience (QoE) provisioning for ultra-high-definition video

delievery, can be also realized as VNFs. Virtual computing,

storage and networking resources under the control of Virtu-

alized Infrastructure Manager (VIM) can be leveraged by SDN

to facilitate the flexibility to program the underlying networks.

Taking advantage of SDN and NFV, network slicing [12] that

allows multiple virtual networks to provide dedicated function-

ality specific to the service or customer, can be instantiated on

the top of a shared physical infrastructure, as shown in Fig.1,

where Physical Network Functions (PNFs) are used in order

to represent legacy components (non-NFV or non-SDN).

Network programmability is available through Application

Programming Interface (API), the intelligent processing, con-

trol, and management functions provided by the AI framework

can be regarded as external APPs on the top of software-

defined virtualized infrastructure. As shown in Fig.1, the AI

framework mainly consists of the following three different

functional components:

Intelligence slices are AI functional modules that are

deployed in the network to individually or collaboratively

accomplish intelligent tasks such as radio scheduling in a

MIMO system, MLB, video QoE provisioning, and security.

Intelligence slices can be instantiated on demand at different

levels to achieve dedicated intelligent tasks with the aid of

the most suitable AI algorithm specifically optimized for this

task. Although slices are controlled by a centralized entity, as

shown in Fig.1, it is only logically meaningful. Actually, a

slice should be physically deployed in a distributed manner

close to its functional area to make time-sensitive decisions

and offload the traffic passing the core network.

The slice manager is in charge of managing intelligence

slices on the basis of communicating with the network.

Once received a request for a dedicated intelligence task, the

manager instantiates an intelligence slice following a unified
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Fig. 1. A unified AI framework based on intelligence slicing over the
software-defined virtualized 5G infrastructure.

procedure. After selecting an AI algorithm that is the best for

this task and training, testing this algorithm with appropriate

data, the slice is deployed in the network part where well suits

to perform the task, e.g., at mobile edge. During its operation,

its life-cycle management such as reconfiguring, scaling, and

destroying, will be conducted by the manager.

The data manager that is responsible for acquiring, mod-

elling, processing, transferring, and storing data in a unified

and efficient manner. The data can be from both historically

off-line sources, public or proprietary, and real-time online

collected from complex, heterogeneous, dynamic, and large-

scale networks. It not only provides data sets necessary for

training and testing AI algorithms but also delivers monitored

data in a timely, securely, and accurately way during the

operation of intelligence slices.

B. Intelligence Slicing

The 5G network control and management faces increasingly

challenging situation than ever before. Most of the traditional

tasks still remain, while some probably become more severe,

e.g., the Distributed Denial-of-Service (DDoS) cyber-attack

will be more impactive due to the introduction of Internet-

of-Thing, where an attacker is able to compromise a large

number of machine-type terminals as zombies. In addition, a

large number of new tasks will emerge from the water, such

as guaranteeing ultra reliability for mission-critical control,

low latency for time-sensitive services, radio scheduling in

a massive MIMO system operating in millimeter wave bands,

orchestrating virtual resources, and managing network slices.



Different tasks have different characteristics and requirements

so that finding a universal AI algorithm that can tackle all tasks

is impossible. For example, transmit antenna selection in a

MIMO system requires a very prompt decision with the aid of

a few local data since radio channels vary within milliseconds.

The detection of DDoS attacks needs a global view of network,

leading to a huge data volume to be processed, while the time

for decision is far relaxed than a millisecond. Moreover, due

to the dynamicity of 5G infrastructure, the best algorithm for

the current situation might be outdated with time goes.

In large-scale and heterogeneous networks, centralized pro-

cessing all monitored data is inefficient and hard to meet

the real-time requirement [13]. Therefore, in this paper, the

concept of intelligence slicing is presented to enable a flexible

and scalable framework that can instantiate an AI functional

module on demand and deploy these modules in a distributed

manner, as shown in Fig.2. Following the divide-and-conquer

strategy, each slice only focuses on a dedicated intelligent task

with the aid of the best suitable algorithm specially optimized

for this task. For instance, an MIMO slice is deployed in a

Base Station (BS) taking advantage of a RNN to predict fading

channel so as to intelligently select its transmit antennas, while

another slice for network security can be instantiated in the

data center of an industrial site to detect anomalous traffic.

Different slices operate independently so that each slice has a

flexibility to instantiate, deploy, reconfigure, and scale in terms

of its respective situation.

III. LIFE-CYCLE MANAGEMENT OF SLICES

Once a slice is instantiated to handle an intelligence task,

its life starts. During its operation, for example, the behavioral

pattern of the target problem might vary due to the change

of underlying infrastructure or environment, leading to the

necessity of reconfiguring or scaling. In this section, the life-

cycle management of slices will be detailed.

1) Instantiation: Once the slice manager receives a request

from the network, a slice or a number of slices are instan-

tiated in the AI framework following a certain predefined

procedure. The associated features of the task are analyzed

to qualitatively decide a suitable AI technique, for example,

among supervised, unsupervised, reinforcement learning, etc.

For each learning technique, there is a number of different

algorithms, e.g., supervised learning technique can provide so-

lutions based on Decision Tree, Linear Discriminant Analysis,

Support Vector Machine, Nearest Neighbor, Neural Network,

Deep Learning, etc. The slice manager continues to make a

quantitative decision, e.g., by means of calculating achievable

performance comparatively for available algorithms. Then, that

algorithm achieved the best performance is applied in this

slice. Afterwards, the slice is deployed into the network.

2) Reconfiguration: There are two possible reasons for

reconfiguring a slice. First, the pattern of the intelligent task

is possible to change due to the dynamicity of infrastructure

or external environment. For example, a cellular cell close to

a shopping center is prone to be congested. Later, a small-

cell BS is deployed there and the corresponding congestion

vanishes from then on. In addition to the change of a pattern,

another motivation for reconfiguring is the emergence of a

novel algorithm that can better process a fixed pattern. During

the process of reconfiguration, the best algorithm is re-selected

with the updated training data set.

3) Scaling: Scaling means the functional coverage of an

intelligence slice being enlarged or shrunk, or the processing

resources being augmented or partially released since its

associated task varies due to the dynamicity of underlying

infrastructure or external environment. For example, at the

early stage, a cloud-RAN Base-Band Unit (BBU) associates

with ten Remote Radio Units (RRUs) with an intelligence

slice deployed in this BBU to conduct inter-cell interference

coordination and MLB in a centralized manner. When the

network becomes denser by deploying several new RRUs,

this BBU have to extend to its coverage area with a larger

number of RRUs. Accordingly, this slice probably needs more

computing resource for increased processing capability.

4) Transferring: The establishment of an intelligence slice

is not a trivial work since a learning system needs to be

trained into a learned system. For supervised and unsupervised

learning, a training dataset is necessary. Data acquisition is

sometimes difficult, especially for supervised learning, where

data need to be labeled. Reinforcement learning does not need

training dataset, but the learning system has to iteratively try

all possible actions for each state and observe their outcomes.

The learning process is time-consuming and computationally

complex. In a large-scale network, if each intelligence slice for

the same task is independently trained, it will be a tremendous

work. Relying on the transfer learning, a partial model can

be trained in the AI framework and distributed to different

deployment places where the partial model can be re-trained

with local data to satisfy their special requirements and lower

the training load.

IV. PROOF OF CONCEPT

To further shed light on the framework and prove the

concept of intelligence slicing, two examples slices, i.e., RNN-

based fading channel prediction to improve the accuracy of

transmit antenna selection in a MIMO system, and to detect

security threats in an industrial network, are illustrated.

A. RNN-based MIMO Channel Prediction

Provided accurate channel state information (CSI) at the

transmitter, a closed-loop technique called adaptive transmis-

sion system achieves a great performance gain over open-

loop schemes. Due to feedback and processing delays, CSI

at the transmitter might be outdated before its actual usage,

especially in fast fading channels. Outdated CSI has a severe

impact on the performance of a wide variety of adaptive

wireless techniques, such as precoding in MIMO [14] and

Massive MIMO [15], interference alignment [16], transmit

antenna selection [17], cooperative relaying [18], coordinated

multi-point transmission [19], etc. In the literature, a large

number of algorithms and protocols have been proposed to

combat outdated CSI. However, these methods either passively
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Fig. 2. Illustration of distributed deployment of intelligence slices under the unified management of the AI framework.

compensate for the performance loss with a cost of scarce

wireless resources [18] or aim to achieve merely a portion of

the full potential under imperfect CSI [20].

A technique referred to as channel prediction that can

actively forecast future CSI has drawn much attention from

researchers due to its potential of effectively and efficiently

solving this problem. Therefore, the authors in [21] demon-

strated the application of a RNN to build a predictor for

the fading channel. RNN [22] is a popular AI technique that

has shown a high promise in time-series prediction. Without

loss of generality, a multi-antenna wireless system with Nt

transmit and Nr receive antennas in a flat fading channel can

be modeled as

y(t) = H(t)x(t) + z(t), (1)

where y(t) represents the Nr×1 received vector at time t, x

is the Nt×1 transmit symbol vector, z stands for the vector

of additive white Gaussian noise, H(t)=[hnrnt
(t)]Nr×Nt

is

the instantaneous channel matrix, and hnrnt
∈C1×1 represents

complex-valued channel gain between transmit antenna nt

and receive antenna nr, where 16nr6Nr and 16nt6Nt.

Due mainly to the feedback delay, the CSI at the time of

selecting adaptive parameters may be outdated before its actual

usage, namely H(t) 6=H(t+τ), where τ denotes the delay. The

outdated CSI imposes a severely negative impact on a wide

variety of wireless techniques. The task of channel prediction

is to get the predicted CSI Ĥ(t+τ) that is as close as possible

to the actual CSI H(t+τ).
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Fig. 3. Outage probabilities as a function of average transmit SNR in a TAS
system with the aid of channel prediction.

As shown in Fig.2, an evolved Mobile Brand-Band (eMBB)

network slice supporting high-definition video delivery is

instantiated on a shared physical infrastructure. Using the

mobile edge computing resources, an MIMO intelligence slice

is deployed at the BS, which runs a RNN algorithm to

conduct fading channel prediction so as to improve the quality

of Transmit Antenna Selection (TAS). The performance in

terms of outage probability is evaluated through Monte-Carlo

simulation in a flat fading channel with an average gain of



0dB, i.e., h∼CN (0, 1). The symbol rate is set to fs=105Hz
to satisfy the flat fading assumption and the maximal Doppler

frequency is fd=100Hz to emulate fast fading environment.

The signal transmission is organized in block-wise, with a

block size of 50 symbols including Nt antenna-specific pilot

symbols inserted at the head of each block. A three-layer RNN

is applied to build the predictor and the Levenberg-Marquardt

algorithm [23] is used to train the neural network.

To decide the transmit antenna for upcoming block t+D,

the possible selection methods are:

• The outdated mode in traditional TAS systems where the

outdated CSI H(t) is applied.

• The prediction mode makes a selection decision based on

the predicted CSI Ĥ(t+D) that probably approximates

H(t+D).

The performance assessment is first carried out in noiseless

MIMO channel with 4 transmit and 1 receive antennas. The

RNN predictor is tuned to the a prediction range of τ=0.5ms.

As illustrated in Fig.3, the TAS system with the aid of the MI-

MO slice can obtain a remarkable SNR gain of around 10dB
over the outdated CSI. In practice, estimated channel gains

are impaired by additive noise that cannot be avoided in the

process of channel estimation. Under the assumption that the

SNR of pilot symbols is SNRp=30dB, the performance evalu-

ation in noisy channels is also conducted. Further increased the

prediction range to τ=1.0ms, the performance gain brought

by the MIMO slice is more than 4dB in comparison with the

outdated mode. Recalling the used fast fading with the Doppler

shift of fd=100Hz, this prediction range is meaningful from

the practical view in comparison with the length of a radio

frame of 10ms in LTE systems for example.

B. Industrial Network Security

Malware is a challenging issue for any domain connected to

the network infrastructure. Information leakage, spear phish-

ing, cryptolockers and botnets are the most notorious types of

attacks launched against government, businesses, and persons.

For about 15 years, not only the Information Technology (IT)

assets of organisations has been affected, but the Operation

Technology (OT) facility as well. In contrast to IT in the cyber

world, OT commonly controls physical devices and machines

that interact with the real world, also known as Cyber Physical

Systems (CPSs). If an attack against a CPS is successfully

carried out, physical entities can be affected, as the infamous

Stuxnet-attacks [24], suffering from a more severe damage and

economic loss than that of attacks within the cyber world.

As one of the pillars of 5G, Ultra-Reliable Low-Latency

Communications (URLLC) will open the possibility of in-

terconnecting industrial sites to realize smart manufacturing

in the era of Industry 4.0. It can be envisaged that a large

number of local industrial networks will be connected to

the wide-area 5G network infrastructure. However, legacy

communication protocols running on these industrial networks,

such as Profinet, Profibus, and Modbus were not designed

with network security in mind, e.g., lacking authentication

or encryption. This feature enables attackers to act freely,

once they have broken the perimeter. In consequence, anomaly

detection methods [25] for industrial networks are required

that are:

• compatible with legacy systems,

• work without feedback to the process, and

• can autonomously distinguish normal from anomalous

behaviour.

As shown in Fig.2, a URLLC network slice dedicated for a

local industrial network is instantiated on a shared infrastruc-

ture. Using the cloud computing resources at the remote data

or control center, a security intelligence slice running machine

learning-based anomaly detection algorithms, i.e., Random

Forest and Support Vector Machine (SVM), is deployed. As the

key performance indicator for anomaly detection, the detection

accuracy is evaluated with the data sets for industrial networks,

provided by Lemay and Fernandez [26]. As illustrated by

the accuracy and f1-score for the SVM algorithm in Table I,

as well as the results of Random Forest in Table II, the

achieved detection accuracy is quite high. For example, the

SVM algorithm can achieve the optimal accuracy of 100% in

detecting false negatives and postivies in the first two data sets,

as well Random Forest in the first data set. The third data set is

a combined one, consisting of different data sets provided by

Lemay and Fernandez. It was created to evaluate the impact

of different production settings on the detection quality.

TABLE I
Accuracy AND F1-score OF SVM

Dataset Accuracy F1-score

DS1 1,0 1,0

DS2 1,0 1,0

DS3 0,999 936 0,999 968

TABLE II
Accuracy AND F1-score OF Random Forest

Dataset Accuracy F1-score

DS1 1,0 1,0

DS2 0,999 701 0,999 851

DS3 0,999 973 0,999 986

V. CONCLUSIONS

To leverage the great potential of Artificial Intelligence to

solve complex and previously intractable problems in wireless

networks, an AI framework was presented in this paper.

Instead of applying a dedicated AI algorithm to tackle a

specific network problem individually, the framework can

instantiate and deploy AI functional modules on demand,

following a unified manner. Taking advantage of the concept

of intelligence slicing, this framework provides flexibility and

scalability to accommodate arbitrary AI algorithms to conduct

a wide variety of intelligence tasks in the 5G networks and

beyond. Two example slices, i.e., neural network based MIMO

channel prediction and security anomaly detection in industrial



networks, were illustrated to demonstrate this framework. The

results of this paper provided a preliminary exploration of

using a unified framework to integrate AI into the wireless

networks, which will be deepened and further exploited in the

future.
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