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ABSTRACT By adapting transmission parameters such as the constellation size, coding rate, and transmit
power to instantaneous channel conditions, adaptive wireless communications can potentially achieve great
performance. To realize this potential, accurate channel state information (CSI) is required at the transmitter.
However, unless the mobile speed is very low, the obtained CSI quickly becomes outdated due to the rapid
channel variation caused by multi-path fading. Since outdated CSI has a severely negative impact on a wide
variety of adaptive transmission systems, prediction of future channel samples is of great importance. The
traditional stochastic methods, modeling a time-varying channel as an autoregressive process or as a set
of propagation parameters, suffer from marginal prediction accuracy or unaffordable complexity. Taking
advantage of its capability on time-series prediction, applying a recurrent neural network (RNN) to conduct
channel prediction gained much attention from both academia and industry recently. The aim of this article
is to provide a comprehensive overview so as to shed light on the state of the art in this field. Starting
from a review on two model-based approaches, the basic structure of a recurrent neural network, its training
method, RNN-based predictors, and a prediction-aided system, are presented. Moreover, the complexity and
performance of predictors are comparatively illustrated by numerical results.

INDEX TERMS 5G, artificial intelligence, back-propagation, channel prediction, channel state information,
MIMO, OFDM, recurrent neural network, transmit antenna selection.

I. INTRODUCTION
By adapting radio transmission parameters, e.g., the constel-
lation size, coding rate, transmit power, precoding codeword,
time and frequency resource block, transmit antennas, and
relays, to instantaneous channel conditions, adaptive wire-
less systems can potentially aid the achievement of great
performance. To fully realize this potential, accurate channel
state information (CSI) is required at the transmitter. In a
frequency-division duplex system, the CSI is estimated at
the receiver and then fed back to the transmitter, where the
obtained CSI might be already outdated before its actual
usage owing mainly to the feedback delay. Although a
time-division duplex system can take advantage of channel
reciprocity to avoid feedback, the processing delay still leads
to inaccurate CSI, especially in high mobility scenarios.

It has been extensively proved that the outdated CSI
severely deteriorates the performance of a wide variety of
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adaptive transmission techniques, including but not lim-
ited to precoding [1] and multi-user scheduling [2] in
multiple-input multiple-output (MIMO) systems, massive
MIMO [3], beam-forming [4], interference alignment [5],
closed-loop transmit diversity [6], transmit antenna selection
[7], opportunistic relaying [8], orthogonal frequency-division
multiplexing (OFDM) [9], coordinated multi-point transmis-
sion [10], mobility management [11], and physical layer
security [12]. In the era of the fifth generation (5G) system,
this problemwill becomemore serious. On the one hand, new
applications and services such as Internet of Things, Tactile
Internet, virtual and augmented reality, networked drones,
and autonomous driving impose a great demand for extremely
high-speed, ultra reliable, ubiquitous, and secure wireless
connectivity, where adaptive transmission techniques are
envisioned to play more critical roles, further emphasizing
the importance of accurate CSI. On the other hand, the fluc-
tuation of a fading channel will speed up if the velocity of
moving objects increases or the wavelength of radio signals
decreases according to the Doppler effect of electromagnetic
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radiations [13]. Some of the 5G deployment scenarios, e.g.,
millimeter waves (having shorter wavelength), unmanned
aerial vehicles and high-speed trains (with higher moving
speed), suffer from faster fading channels that fluctuate more
rapidly, leading to worse availability of accurate CSI, if not
impossible.

To cope with the outdated CSI, a large number of miti-
gation algorithms and protocols have been proposed in the
literature. These can be mainly categorized into two classes:
passive methods [14] that compensate for the performance
loss passively with a cost of scarce wireless resources (fre-
quency, time, power, etc.) and suboptimal methods aiming
to achieve merely a portion of the full performance potential
under the assumption of imperfect CSI, e.g., the techniques
based on limited feedback [15]. In contrast, an alternative
technique referred to as channel prediction [16] provides an
efficient approach to improve the quality of CSI directly with-
out spending extra wireless resources, and therefore attracted
much attention from researchers. Through statistical model-
ing of wireless channels, two classical model-based predic-
tion, namely parametric model [17] and autoregressive (AR)
model [18], have been developed. The former assumes that
a fading channel is a superposition of a finite number of
complex sinusoids, and its parameters, i.e., amplitude, angles
of arrival and departure, Doppler shift, and the number of
scattering sources, vary much slowly relative to channels’
fluctuation rate and can be estimated accurately. However,
the estimation process is tedious, while estimated parameters
will quickly expire once the channel changes and therefore
need to be re-estimated iteratively, leading to high compu-
tational complexity. The AR model approximates a fading
channel as an AR process and extrapolates the future CSI
using a weighted linear combination of past and current CSI.
The AR model is computationally simpler, but it is vulner-
able to impairments such as additive noise [19], making it
unattractive in practice.

In March 2016 when AlphaGo, a computer program devel-
oped by Google DeepMind [20], achieved an overwhelming
victory versus a human champion in the game of Go, the pas-
sion for exploring Artificial Intelligence (AI) technology was
sparked almost in all scientific and engineering branches.
Actually, the wireless research community started to apply
AI to solve communication problems long ago. Especially in
the recent period, with the development of deep neural net-
works, the application of AI in wireless communications was
booming, such as channel estimation [21], resource allocation
[22], modulation recognition [23], multi-user detection [24],
multiple access [25], beam-forming [26], and autonomous
network management [27]. There are a number of differ-
ent neural network structures, among which recurrent neural
network (RNN) has a strong capability on time-series pre-
diction [28]. Reference [29] first proposed an application of
a RNN to build a predictor for narrow-band single-antenna
channels and was further extended to MIMO channels in
[30]. The authors of [31] proposed to employ a real-valued
RNN to implement a multi-step predictor and further verified

its effectiveness in a MIMO system [32]. The feasibility of
applying a deep neural network was also studied in [33].
Recently, a frequency-domain RNNpredictor reported in [34]
further extended the application range from frequency-flat to
frequency-selective MIMO channels. Neural networks, as a
data-driven approach, can totally avoid the tedious estimation
process of propagation parameters in model-based methods,
and can enable great flexibility of adapting to different pre-
diction scenarios.

Beyond the aforementioned works, a comprehensive
overview that can facilitate readers to quickly grasp the main
ideas and catch up with the state of the art of this promising
area is of great worth but unfortunately still missing. The aim
of this article is to fill this gap in time. In contrast to [35]
that proposed a hybrid of convolutional neural network and
long short-term memory to get the CSI of downlink channels
according to that of uplink channels, this article focuses
on predicting future CSI from its past values at the same
frequency/sub-carrier. Starting from a brief review onAR and
parametric models, the basic structure of a recurrent neural
network, its training method based on the back-propagation
algorithm, and several variants of RNN predictors applied
for different scenarios ranging from frequency-flat single-
antenna channels to frequency-selective MIMO channels, are
presented. To exemplify the applicability, prediction-aided
transmit antenna selection (TAS) in a MIMO-OFDM system
is depicted. Performance assessment in fading channels spec-
ified by 3GPP models, taking into account the factors such
as the Doppler shift, spatial correlation, additive noise, and
interpolation error, is carried out, followed by comparisons
on computational complexity.

The rest of this paper is organized as follows: Section II
reviews two model-based prediction schemes. The struc-
ture of a recurrent neural network and the back-propagation
training algorithm are introduced in Section III. Section IV
presents the variants of RNN predictors, followed by an
illustration of a prediction-aided MIMO-OFDM system in
Section V. Section VI compares the complexity and perfor-
mance for different predictors by numerical results. Finally,
concluding remarks are made in Section VII.
Notations: Throughout this article, vectors are denoted by

bold lower case letters and matrices are bold upper case
letters. For the operation of matrices, (·)T and (·)H notate the
transpose and Hermitian transpose, respectively, ‖ · ‖ stands
for the Euclidean norm, and�marks the Hadamard product.
H and H̃ represent time-domain and frequency-domain chan-
nel responses, respectively, while Ĥ is a predicted value. The
bracket (·) indicates continuous-time signals and the square
bracket [·] associates with discrete-time sequences.

II. MODEL-BASED CHANNEL PREDICTION
According to traditional statistical methodology, a fading
channel can be modelled as a number of propagation param-
eters and the channel prediction is actually a problem of
parameter estimation. Given the knowledge of current and
several past channel impulse responses, these parameters can
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be estimated and then future CSI is extrapolated. Existing
model-based prediction approaches are mainly categorized
into two classes: parametric andARmodels, which are briefly
reviewed as follows.

A. SYSTEM MODEL
This article focuses on point-to-point MIMO systems con-
sisting of a single transmitter and a single receiver, whereas
multi-user MIMO is not considered taking into account the
state of the art in this field. A narrow-band MIMO system
with Nt transmit and Nr receive antennas can be modeled by

r(t) = H(t)s(t)+ n(t), (1)

where r(t)=
[
r1(t), . . . , rNr (t)

]T denotes the Nr×1 vector
of received signals at time t , s(t)=

[
s1(t), . . . , sNt (t)

]T is
the Nt×1 vector of transmitted signals, n(t) stands for the
vector of additive white noise, H(t)=

[
hnrnt (t)

]
Nr×Nt

is the
matrix of continuous-time channel impulse responses, and
hnrnt∈C1×1 represents the gain of the flat fading channel
between transmit antenna nt and receive antenna nr , where
16nr6Nr and 16nt6Nt . Due to feedback and processing
delays, the obtained CSI at the transmitter may be outdated
before its actual usage, i.e., H(t) 6= H(t+τ ), resulting in
severe performance degradation of adaptive transmission sys-
tems [1] - [12]. The aim of channel prediction is to extrapolate
a predicted value Ĥ(t+τ ) at time t that approximates its actual
value at the upcoming time t+τ as close as possible, namely
Ĥ(t+τ )→ H(t+τ ).

B. PARAMETRIC MODEL
The commonly used multi-path fading model [13] is to repre-
sent a single-antenna channel as the superposition of a finite
number of complex sinusoids:

h(t) =
P∑
p=1

αpej(ωpt+φp), (2)

where αp, φp, and ωp denote the complex amplitude, phase,
and radian Doppler frequency shift of the pth scattering
source, respectively, j2=−1 stands for the imaginary unit, and
P is the total number of scatters.
Introducing the parameters of spatial dimension [17],

the single-antenna model in (2) can be extended to model a
MIMO propagation channel, i.e.,

H(t) =
P∑
p=1

αpar (θp)aTt (ψp)e
j(ωpt+φp), (3)

where θp stands for the angle of arrival (AOA), ψp the angle
of departure (AOD), ar represents the response vector of the
receive antenna array, while at for the transmit antenna array.
Using a uniform linear array (ULA) with M equally spaced
elements as an example, its steering vector is defined as

a(x) =
[
1, e−j

2π
λ
d sin(x), . . . , e−j

2π
λ
(M−1)d sin(x)

]T
, (4)

where x can be replaced with the angle of arrival or depar-
ture, d is the inter-antenna spacing, and λ denotes the wave-
length of carrier frequency. Based on an observation that the
multi-path parameters change slowly in comparison with the
fading rate of channels, the future CSI within a certain range
can be extrapolated if these parameters are known. Hence,
predicting a MIMO channel in terms of (3) is essentially
transferred into a problem of parameter estimation. In other
words, a parametric prediction model is built by estimating
the number of scatters P̂, and amplitude, Doppler shift, AOA,
and AOD for each path, i.e., {α̂p, ω̂p, θ̂p, ψ̂p}P̂p=1. The param-
eter estimation follows this procedure:
1) Given K known discrete-time channel samples
{H[k] |k=1, . . . ,K }, sampled from continuous-time
channel response H(t), a sufficiently large matrix
exhibiting the required translational invariance struc-
ture in all dimensions is formed. According to [36],
an block-Hankel matrix with a dimension of NrQ×NtS
is given by

D̂ =


H[1] H[2] · · · H[S]
H[2] H[3] · · · H[S + 1]
...

...
. . .

...

H[Q] H[Q+ 1] · · · H[K ]

, (5)

where Q is the size of Hankel matrix and S=K−Q+1.
Using (5), a spatio-temporal covariancematrix contain-
ing the temporal and spatial correlation can be calcu-
lated as

Ĉ =
D̂D̂H

NtS
, (6)

where (·)H denotes the Hermitian conjugate transpose.
2) Then, the number of dominant scattering sources

can be estimated using the minimum description
length (MDL) criterion (see [37]), which is written as

P̂= arg min
z=1,...,(NrQ−1)

[
S log(λz)+

(z2+z) log S
2

]
, (7)

where λz is the zth eigenvalue of Ĉ.
3) Making use of classical algorithms, such as MUlti-

ple SIgnal Classification (MUSIC) and Estimation of
Signal Parameters by Rotational Invariance Techniques
(ESPRIT), {θ̂p, ψ̂p, ω̂p}P̂p=1 can be jointly estimated by

further exploiting the invariance structure in Ĉ. For
simplicity, the details of the calculation process are
omitted but can refer to [17].

4) Given {θ̂p, ψ̂p, ω̂p}P̂p=1, {α̂p}
P̂
p=1 is then calculated.

Substituting all estimates into (3), a parametric channel
predictor is obtained

Ĥ(τ ) =
P̂∑
p=1

α̂par (θ̂p)aTt (ψ̂p)e
j(ω̂pτ+φp), (8)

where τ denotes a time range for which the CSI is to be
predicted.
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From the estimation procedure, it is concluded that the gen-
erality and applicability of this method is highly constrained.
For instance, if a different array is applied, (3) or (4) should
be modified accordingly, such as [38], where a set of polar-
ization parameters is additionally employed for modelling a
polarized array. The propagation models or steering vectors
for some irregular arrays are probably intractable, which
limits the applicability of this method. Moreover, the estima-
tion process is tedious and the computational complexity is
high due to the manipulation of high-dimensional matrices,
as analyzed in [38]. Last but not the least, the obtained
estimates expire quickly with the change of mobile propa-
gation environments, especially in high mobility. According
to [39], the region of mobile movements where the propa-
gation parameters are assumed constant is up to 50 wave-
lengths. It implies that the estimation process needs to be
periodically and frequently conducted, resulting in extreme
high complexity, which is unattractive from the viewpoint of
practical implementation.

C. AUTOREGRESSIVE MODEL
Alternatively, the discrete-time impulse response of a
time-varying channel can be modelled as an autoregressive
process and a Kalman filter (KF) is utilized to estimate AR
coefficients so as to build a linear predictor, which extrapo-
lates future CSI by combining weighted current and a series
of past CSI [40]–[43]. According to [18], a complex AR
process of order p denoted by AR(p) can be generated via
a time-domain recursion

x[n] =
p∑

k=1

akx[n− k]+ w[n], (9)

where w[n] denotes zero mean complex Gaussian noise with
the variance of σ 2

p , and {a1, a2, . . . , ap} are AR coefficients.
The corresponding power spectral density (PSD) of theAR(p)
process is

Sxx(f ) =
σ 2
p∣∣1+∑p

k=1 ake
−2π jfk

∣∣2 . (10)

For Rayleighmulti-path channels, the theoretical PSD associ-
ated with either in-phase or quadrature part of a fading signal
has an U-shaped band-limited form

S(f ) =


1

π fd

√
1−
(
f
fd

)2 , |f | 6 fd

0, f > fd

(11)

where fd is the maximum Doppler shift in Hertz. For the pur-
pose of digital processing, the discrete-time autocorrelation
function is provided by

R[n] = J0(2π fm|n|), (12)

where fm=fdTs indicates normalized fd by the signal sam-
pling rate fs=1/Ts. Theoretically, an arbitrary spectrum can
be closely approximated by an AR process with sufficiently

large order. The relationship between a desired R[n] and AR
coefficients can be given in matrix form by

v = Ra, (13)

where

R =


R[0] R[−1] · · · R[−p+ 1]
R[1] R[0] · · · R[−p+ 2]
...

...
. . .

...

R[p− 1] R[p− 2] · · · R[0]

, (14)

a =
[
a1 a2 · · · ap

]T
, (15)

v =
[
R[1] R[2] · · · R[p]

]T
, (16)

and

σ 2
p = R[0]+6p

k=1akR[k]. (17)

Substituting the value of fm into (12), the desired autocor-
relation sequence R[0], . . . ,R[p] are obtained [18]. Thus,
a1, a2, . . . , ap can be computed by solving the set of p
Yule-Walker equations in (13) through calculating the inverse
matrix R−1, which requires p3 times complex multiplica-
tions, marked by O(p3). The AR predictor for narrow-band
single-input single-output (SISO) channels is built:

ĥ[t + 1] =
p∑

k=1

akh[t − k + 1], (18)

where one-step ahead prediction can be obtained, in com-
parison with the continuous-time prediction provided by (8).
By processing a MIMO channel as a set of parallel SISO
channels, ignoring the spatial dimension of arrays, (18) is able
to extend to MIMO channels:

Ĥ[t + 1] =
p∑

k=1

Ak �H[t − k + 1]. (19)

where � denotes the Hadamard product that is the
element-wise multiplication of two matrices with same
dimension, and the coefficient matrix Ak is defined as

Ak =


ak11 ak12 · · · ak1Nt
ak21 ak22 · · · ak2Nt
...

...
. . .

...

akNr1 akNr2 · · · akNrNt

 , (20)

and the entry aknrnt represents the k
th coefficient of the AR

filter for the subchannel between transmit antenna nt and
receive antenna nr .

In comparison with the parametric model, the number of
parameters required to estimate in the AR model is substan-
tially reduced to only one, i.e., fd . The estimation process
from (12) to (16) is notably simpler than that of the para-
metric model. Despite its simplicity, the AR model has some
limitations: 1) It can only deal with the temporal correlation
of a single-antenna channel, whereas the spatial dimension
of antenna array is not able to exploit. 2) The predictor
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in (18) and (19) only enable one-step prediction Ĥ[t+1]
rather than multi-step Ĥ[t+D]. Although long-range predic-
tion can be realized by recursively reusing predicted values
at previous time instants, the problem of error propagation is
raised. 3) Until now, reliable and accurate estimation for fd is
still difficult from the practical perspective.

The authors of [44] provided a performance bound for
prediction ofMIMO channels and revealed that the ARmodel
is still significantly far away from that bound, indicating that
other more efficient prediction schemes probably exist and
a further exploration is of theoretical and practical interest,
which will be the aim of RNN-based prediction introduced in
the next section.

III. RECURRENT NEURAL NETWORK
Recurrent neural network is a class of machine learning that
has shown great potential in the field of time-series prediction
[28]. Unlike a feed-forward network that only learns from
training data, a recurrent neural network can also use its mem-
ory of past states to process sequences of inputs. RNN has
several variants, among which a Jordan network is currently
used to build a channel predictor, as illustrated in Fig. 1.
Basically, a simple network consists of three layers: an input
layer with Ni neurons, a hidden layer with Nh neurons, and
a layer having No outputs. Each connection between the
activation of a neuron in the predecessor layer and the input of
a neuron in the successor layer is assigned a weight. Let wln
denote the weight connecting the nth input and the l th hidden
neuron, while vol is the weight for hidden neuron l and output
o, where 1≤n≤Ni, 1≤l≤Nh, and 1≤o≤No. Constructing a
Nh×Ni weight matrix W as

W =


w11 · · · w1Ni
...
. . .

...

wNh1 · · · wNhNi

 , (21)

and denoting the activation vector of the input layer and the
recurrent component (feedback) at time step t as x(t) =[
x1(t), ..., xNi (t)

]T and f(t) =
[
f1(t), ..., fNh (t)

]T , respec-
tively, the input for the hidden layer is expressed in matrix
form by

zh(t) =Wx(t)+ f(t)+ bh, (22)

where bh=
[
bh1, ..., b

h
Nh

]T
denotes the vector of biases

in the hidden layer. Using a matrix F to represent the
mapping from the output at the previous time step,
i.e., y(t−1)=

[
y1(t−1), ..., yNo (t−1)

]T , to the recurrent com-
ponent, we have

f(t) = Fy(t−1). (23)

The behaviour of a neural network depends on activation
functions, typically falling into the following categories: lin-
ear, rectified linear, threshold, sigmoid, and tangent. In gen-
eral, a sigmoid function is employed to deal with nonlinearity,

FIGURE 1. Typical structure of a recurrent neural network used for
channel prediction.

which is defined as

S(x) =
1

1+ e−x
. (24)

Substituting (22) and (23) into (24), the activation vector of
the hidden layer is thus

h(t) = S (zh(t)) = S (Wx(t)+ Fy(t − 1)+ bh) , (25)

where S(zh) means an element-wise operation for simplicity,
i.e., S(zh)=

[
S(z1), ..., S(zNh )

]T . In analogous to (21), another
weight matrix V having a dimension of No×Nh with entries
{vol} is introduced. Then, the input for the output layer is
zo(t) = Vh(t) + by, where by is the vector of biases in the
output layer, resulting in an output vector:

y(t) = S (zo(t)) = S
(
Vh(t)+ by

)
. (26)

Like other data-driven AI techniques, the operation of a
RNN is categorized into two phases: training and predicting.
The training of a neural network is typically based on a
fast algorithm known as Back-Propagation (BP). Provided
a training dataset, the network feeds forward input data and
compares the resulting output y against the desired value y0.
Measured by a cost function, e.g., C =‖ y0−y ‖2, prediction
errors are propagated back through the network, causing
iteratively updating of weights and biases until a certain
convergence condition reaches. To provide an initial impres-
sion of this process, the BP algorithm in combination with
gradient descent learning for a feed forward network is briefly
depicted:
Start from an initial network state where {W,V,bh,by} are

randomly set.
1) Input a training example (x, y0).
2) Feed-Forward: For the hidden layer, its input zh and

activation h can be computed using (22)1 and (25),

1For simplicity, the BP algorithm applied in a feed forward network
without a recurrent component is illustrated. Hence, the exact equation to
calculate the input is zh(t) =Wx(t)+ bh.
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respectively. Also, zo and y in (26) for the output layer
are obtained.

3) Compute the output error ey =
[
ey1, ..., e

y
No

]T
as:

ey =∇yC � S ′(zo), (27)

where ∇ notates a vector whose entries are partial

derivatives, namely ∇yC =
[
∂C
∂y1
, ..., ∂C

∂yNo

]T
. In addi-

tion, S ′(zo) stands for the derivative of the activation
function with respect to its corresponding input zo.
Given a sigmod function in (24), for instance, we have
S ′(zo) =

∂S(zo)
∂zo
= S(zo)(1− S(zo)).

4) Back-Propagation: ey is propagated back to the hidden
layer to derive the error vector there, i.e.,

eh = VT ey � S ′(zh). (28)

5) Gradient Descent: With the back-propagated errors,
the weights and biases are able to be updated according
to the following rules:

W =W− ηehxT

V = V− ηeyhT

bh = bh − ηeh

by = by − ηey,

(29)

where η stands for the learning rate.

The weights and biases are iteratively updated until the
cost function is below a predefined threshold or the number
of epochs reaches its maximal value. Once the training pro-
cess completed, the trained network can be used to process
upcoming samples. The training of a RNN typically use
a variant of the BP algorithm, known as back-propagation
through time (BPTT). It requires to unfold a recurrent neu-
ral network in time steps to form a pseudo feed-forward
network, where the BP algorithm is applicable. Upon this,
other more advanced or efficient approaches such as real-time
recurrent learning and extended Kalman filtering have been
designed.

IV. RNN-BASED CHANNEL PREDICTION
Observing the MIMO channel model and the structure of
a neural network, high similarity that both have multiple
inputs and outputs with fully weighted connections can
be found. A neural network well suits to process MIMO
channels by adapting the number of input and output neu-
rons with respect to the number of transmit and receive
antennas. A RNN predictor is quite flexibly to be config-
ured to forecast channel response or envelope on demand
in either frequency-flat or frequency-selective fading chan-
nels. In this section, the discussion starts from the simplest
case that applies a RNN to predict a flat fading chan-
nel in a SISO system, then extends step by step until a
frequency-domain predictor for frequency-selective MIMO
channels.

A. FLAT FADING CHANNEL PREDICTION
1) CHANNEL GAIN PREDICTION BY A
COMPLEX-VALUED RNN
To begin with, consider a discrete-time baseband equivalent
model for a flat fading SISO channel:

r[t] = h[t]s[t]+ n[t]. (30)

The aim of RNN predictor is to get a predicted value ĥ[t+τ ]
that is as close as possible to its actual value h[t+τ ]. To
deal with complex-valued channel gains, a network with
complex-valued weights called a complex-valued RNN here-
inafter is needed [29], [30]. At time t , h[t] is obtained
through channel estimation, while a series of d past val-
ues h[t−1], h[t−2], ..., h[t−d] can be memorized simply
through a tapped delay line. These d+1 channel gains are fed
into the RNN as the input, i.e.,

x[t] = [h[t], h[t − 1], . . . , h[t − d]]T . (31)

In together with the delayed feedback, the prediction of a

future channel gain y[t] =
[
ĥ[t + 1]

]T
is obtained.

The extension of this predictor to flat fading MIMO chan-
nels is straightforward. To adapt to the input layer of a RNN,
channel matrices are required to be vectorized into a NrNt×1
vector, as follows:

h[t] = EH[t] =
[
h11[t], h12[t], ..., hNrNt [t]

]
. (32)

Together with a number of d past valuesH[t−1], . . .,H[t−d],
the input of RNN this case is

x[t]=[h[t],h[t − 1], . . . ,h[t − d]]T , (33)

resulting in a predictive value y[t] = ĥT [t+1], which can be
transformed to a predicted matrix Ĥ[t + 1].

2) CHANNEL GAIN PREDICTION BY A REAL-VALUED RNN
In comparison with a complex-valued RNN, a recurrent neu-
ral network with real-valued weights called a real-valued
RNN has lower complexity and higher prediction accuracy,
whereas it can only deal with real-valued data. Fortunately,
a complex-valued channel gain can be decomposed into two
real values, namely h=hr+jhi. Hence, a real-valued RNN
was proposed in [31] to build a simpler predictor with higher
accuracy by means of decoupling the real and imaginary
parts. Without a necessity of using two RNNs, the real and
imaginary parts can be processed jointly in a single predictor.
In this case, the input of the network is

x[t] =
[
hr [t], hi[t], . . . , hr [t − d], hi[t − d]

]T
, (34)

generating an output y[t]=
[
ĥr [t+1], ĥi[t+1]

]T
that synthe-

sizes to a predicted channel gain ĥ[t+1]=ĥr [t+1]+jĥi[t+1].
Similarly, H[t] is decomposed into

H[t] = HR[t]+ jHI [t], (35)

where HR = <(H) = [hrnrnt ]Nr×Nt denotes a
matrix composed by the real parts of channel gains and
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HI = =(H) = [hinrnt ]Nr×Nt is the imaginary counterpart.
Like (32), these matrices are vectorized

hr [t] = EHR[t] =
[
hr11[t], h

r
12[t], ..., h

r
NrNt [t]

]
. (36)

Feeding

x[t]= [hr [t],hi[t], ...,hr [t−d],hi[t−d]]T (37)

into the network, the resulting output is written as

y[t]=
[
ĥr [t+1], ĥi[t+1]

]T
, which can be transformed into

ĤR[t+D] and ĤI [t+D]. Then, a predicted matrix is reaped
simply by Ĥ[t+1] = ĤR[t+1]+ jĤI [t+1].

3) CHANNEL ENVELOPE PREDICTION
Many adaptive transmission systems only need to know
the envelope of channel response |h|, rather than a
complex-valued gain h. Therefore, a real-valued RNN can
be directly applied, which in turn can lower complexity,
speed up training process, and improve prediction accuracy,
in comparison with predicting channel gains. The channel
envelope at time t denoted by |h[t]| is known, with a number
of d past values |h[t−1]|, |h[t−2]|, . . . , |h[t−d]|, the input
in this case is written as

x[t] = [|h[t]|, |h[t − 1]|, . . . , |h[t − d]|]T , (38)

which generate |ĥ[t+1]| through the network. Further,
let Q[t]=

[
|hnrnt [t]|

]
Nr×Nt

denotes a matrix, in which the
(nr , nt )th entry is the envelope of hnrnt [t] in H[t]. Likewise,
Q[t] is vectorized as

q[t] = EQ[t] =
[
|h11[t]|, |h12[t]|, ..., |hNrNt [t]|

]
. (39)

With the input x[t]=[q[t],q[t−1], ...,q[t−d]]T , the predic-
tion y[t]=q̂[t+1] is got and further transformed into Q̂[t+1].

4) MULTI-STEP PREDICTION
By far the predictor is only tuned to forecast one-step ahead,
namely Ĥ[t+1], whereas such a prediction length is prob-
ably too short to satisfy the requirement of adaptive trans-
mission systems. Hence, long-range prediction enabled by
a multi-step predictor is of great interest. Making full use
of the flexible structure of neural networks, the output at
time step t can be tuned to Ĥ[t+D], where D is an positive
integer standing for the number of steps being predicted
ahead. It returns back to the pervious one-step predictor if
D=1. From the perspective of training, there is no intrinsic
difference between one-step and multi-step prediction. The
only required modification is that the desired value for cal-
culating the prediction error in the training process is shifted
from H[t+1] to H[t+D], resulting in different weights and
biases.

B. FREQUENCY-SELECTIVE MIMO PREDICTION
To begin with, let us consider the discrete-time model for a
frequency-selective SISO system:

r[t] =
L−1∑
l=0

hl[t]s[t − l]+ n[t], (40)

where s and r denote the transmitted and received symbol,
respectively, hl[t] stands for the l th tap for a time-varying
channel filter at time t , and n is additive noise. Dropped time
index for simplicity, a frequency-selective channel is modeled
as a linear L-tap filter

h= [h0, h1, . . . , hL−1]T . (41)

It can be converted into a set of N orthogonal narrow-band
channels known as sub-carriers through the OFDM modula-
tion [45], which is represented by

r̃n[t] = h̃n[t]s̃n[t]+ ñn[t], n = 0, 1, . . . ,N−1, (42)

where s̃n[t], r̃n[t], and ñn[t] stand for the transmitted sig-
nal, received signal, and noise, respectively, at sub-carrier
n. According to the picket fence effect in discrete Fourier
transform (DFT) [46], the frequency response of the chan-
nel filter denoted by h̃=[h̃0, h̃1, . . . , h̃N−1]T is the DFT of
h′= [h0, h1, . . . , hL−1, 0, . . . , 0]T that pads h in (41) with
N−L zeros at the tail.

Extending (42) to a multi-antenna system is straightfor-
ward though a MIMO-OFDM system that is modeled as

r̃n[t] = H̃n[t]s̃n[t]+ ñn[t], n = 0, 1, . . . ,N−1, (43)

where s̃n[t] represents Nt×1 transmit symbol vector on
sub-carrier n at time t , r̃n[t] is Nr×1 received symbol vec-
tor, and ñ[t] is the vector of additive noise. The subchan-
nel between transmit antenna nt and receive antenna nr is
equivalent to a frequency-selective SISO channel, denoted
by a channel filter hnrnt=[hnrnt0 , hnrnt1 , . . . , hnrntL−1]

T . Likewise,
the frequency response of this filter can be obtained by
by conducting DFT, that is h̃nrnt=[h̃nrnt0 , h̃nrnt1 , . . . , h̃nrntN−1]

T .
Then, the channel matrix on sub-carrier n can be notated as
H̃n[t]=

[
h̃nrntn [t]

]
Nr×Nt

.

Fig. 2 illustrates the schematics of a RNN predictor
for frequency-selective fading MIMO channels [34]. The
main idea is to convert a frequency-selective channel into
a set of orthogonal flat fading sub-carriers, and then uti-
lize a frequency-domain predictor to forecast the frequency
response on each sub-carrier. At time t over sub-carrier
n, as shown in Fig. 2, H̃n[t], as well as its d-step delays
H̃n[t−1], ..., H̃n[t−d], are fed into the RNN. A Matrix-to-
Vector (M2V) module vectorizes these matrices, dropped the
time index for simplicity, following

h̃n = vec
(
H̃n

)
= [h̃11n , h̃

12
n , ..., h̃

NrNt
n ]. (44)

The RNN outputs a D-step prediction, i.e., ĥn[t+D] =
[ĥ11n [t+D], ..., ĥNrNtn [t+D]]T , transforming into a predicted
matrix Ĥn[t+D] via a Vector-to-Matrix (V2M) module.
Although the prediction is conducted at sub-carrier level,

we do not need to deal with all N sub-carriers taking into
account channel’s frequency correlation. Integrated with a
pilot-assisted system, only predicting the CSI on sub-carriers
carrying pilot symbols is enough. Suppose one pilot is
inserted uniformly every NP sub-carriers, amounts to a total
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FIGURE 2. Schematics of the RNN-based predictor for frequency-selective fading MIMO channels.

of P=d NNP e pilot sub-carriers, where d·e denotes a ceil-

ing function. Given predicted values Ĥp[t+D], p=1, . . . ,P,
frequency-domain interpolation can be applied to get the pre-
dicted values on all sub-carriers Ĥn[t+D], n=0, . . . ,N−1.

V. PREDICTION-AIDED MIMO-OFDM
Transmit antenna selection in a multi-antenna system has
been widely recognized as a cost-effective approach due to
the reduction of required number of high-power amplifiers in
radio frequency chains. To select out appropriate antennas,
instantaneous CSI at the transmitter is mandatory, where
channel prediction can play an important role. In order to
further shed light on the RNN predictor, prediction-aided
TAS in a MIMO-OFDM system with Nt transmit and Nr
receive antennas is presented as an application example.

As illustrated in Fig. 3, the fast Fourier transform (FFT)
demodulator and inverse FFT (IFFT) modulator, with the aid
of cyclic prefix (CP), convert a frequency-selective channel
into N sub-carriers, where a payload of M data symbols
denoted by d=[d1, d2, . . . , dM ]T is carried. Without the con-
sideration of null sub-carriers reserved for out-of-band radia-
tion suppression [47] and direct current, we can assume that
the remaining P=N−M sub-carriers are used for comb-type
pilot symbols p=[p1, p2, . . . , pP]T , inserting uniformly every
NP sub-carriers. At time t , d(t) and p(t) are multiplexed and
transmitted in one OFDM symbol. The receiver obtains H̃p[t]
through estimating p(t). Taking advantage of frequency cor-
relation, an interpolator can recover channel responses across
the whole bandwidth including all data and pilot sub-carriers,
i.e., H̃n[t], n=0, 1, . . . ,N−1.
The traditional TAS system directly uses H̃n[t] to make

decisions, as marked by the line with a cross originated from
the channel estimator in the figure. There are two kinds of
selection strategies, i.e., bulk or per-tone, as analyzed in [48].
Without loss of generality, we adopt the latter in this article
for simplicity, i.e., each sub-carrier chooses the best antenna
individually instead of the same selection for all sub-carriers.

FIGURE 3. Illustration of prediction-aided TAS in a MIMO-OFDM system.

Mathematically, the traditional TAS system follows

ηn[t] = argmax16nt6Nt

∥∥∥h̃ntn [t]∥∥∥ , (45)

where ηn[t] stands for the index of the selected antenna at
time t upon sub-carrier n, h̃ntn [t] is the ntht column vector
of H̃n[t], and ‖ · ‖ denotes the Euclidean norm of a vector.
The receiver feeds a set of selected antenna indices for all
data sub-carriers ηt={ηn[t] | 06n6N−1, n6=p} back to the
transmitter through a feedback channel. Assuming that the
processing and feedback delays can be absorbed by the time
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TABLE 1. Simulation parameters.

gap of D OFDM symbols, the transmit antennas selected in
terms of ηt are applied for transmitting signals at time t+D.

Due to the channel fading, H̃n[t] is outdated and may
differ substantially from the actual CSI H̃n[t+D] at the
instant of signal transmission, leading to notable performance
degradation [7]. Due mainly to additive noise and delay,
H̃n[t+D] is impossible to obtain in practical systems. But if
a selection decision can be made according to predicted CSI
Ĥn[t+D] that approximates to H̃n[t+D], the performance
can be improved. At time t , as depicted in Fig. 3, H̃p[t] is
fed into the predictor to get Ĥp[t+D]. A frequency-domain
channel interpolator is applied to recover the CSI across all
sub-carriers Ĥn[t+D] so as to replace the outdated CSI H̃n[t]
in the traditional TAS system. Then, the best antenna for time
t+D upon sub-carrier n is selected in advance as

η̂n[t + D] = argmax16nt6Nt

∥∥∥ĥntn [t + D]∥∥∥ , (46)

where ĥntn [t + D] is the ntht column vector of Ĥn[t+D].
The index vector ηt+D is fed back to and is buffered at the
transmitter before its actual transmission time t+D.

VI. PERFORMANCE AND COMPLEXITY
Monte-Carlo simulations are carried out to comparatively
evaluate the performance of the predictors. In this section,
some representative numerical results in terms of outage
probabilities of prediction-aided TAS in a MIMO-OFDM
system and the prediction accuracy measured by Mean
Squared Error (MSE) are presented, together with the com-
parison on computational complexity.

A. PERFORMANCE
In a 4×1 ULA system, 3GPP Extended Pedestrian A (EVA)
and Extended Typical Urban (ETU) models with maximal
Doppler shifts of fd=70Hz and 300Hz, respectively, also
notated as EVA70 and ETU300, are applied to generate chan-
nel samples. Using a signal bandwidth (or sampling rate)
of 1MHz, a frequency-selective channel is converted into
N=64 sub-carriers via the OFDM modulation, resulting in
a sub-carrier spacing around 4f=15KHz that is compliant
with 3GPP LTE standard. From the observations in simula-
tions, a 3-layer RNN with NH=10 hidden neurons and d=3
tapped delay is adopted. To train this network, a data set con-
sisting of a series of channel samples during a length equiva-
lent to 10 channel’s coherence time is extracted. Starting from
an initial state with random values, the weights and biases are
iteratively updated by Levenberg-Marquardt [50] algorithm.
The train can be conducted in an off-line manner or rely on
other computation-intensive nodes, such as mobile edge com-
puting platform, and then the trained RNN is deployed online
for predicting instantaneous channels. In contrast, the AR
model does not need a training process. Given the value
of fd , the filter coefficients in (19) can be figured out. The
simulation parameters are summerized in Table 1.

The outage probability defined as

P(R)=Pr{log2(1+SNR)<R}, (47)

where Pr is the notation of mathematical probability and R
means a target end-to-end data rate that is set to 1bps/Hz
as usual, is employed to measure the performance of the
prediction-aided MIMO-OFDM system. The following four
different TAS strategies are compared:

• The perfectmode where the best antenna for sub-carrier
n at time t+D is chosen according to the perfect CSI
H̃n[t+D], despite it never exists in practice owing to
delay and noise.

• The outdatedmode in a traditional TAS system, making
a selection decision based on the outdated CSI H̃n[t].

• The prediction mode takes advantage of the predicted
CSI Ĥn[t+D] that may closely approximate H̃n[t+D].

• The random mode that randomly selects an antenna
without any consideration of CSI.

The assessment is first carried out in independent and iden-
tically distributed (i.i.d.) noiseless EVA70 channels, where
channel samples used to train the predictors are obtained
without the impose of additive noise. The predictors are set
to a multi-step mode of D=16, corresponding to a prediction
length of around 1ms. Fig. 4a compares outage probabili-
ties for the various selection strategies in the MIMO-OFDM
system. The outdated CSI substantially degrades the system
performance, with a relative SNR loss of around 5.5dB at
P(R)=10−3 with respect to the perfect mode. The AR model
with p=1 denoted by AR(1) achieves the optimal perfor-
mance as same as that of the perfect mode, followed by
the RNN that have a prediction gain of over 3dB compared
with the outdated mode. Although AR(1) outperforms the
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FIGURE 4. Performance comparisons in EVA70 (a) i.i.d. and (b) correlated channels.

FIGURE 5. Performance comparisons in ETU300 channels taking into account the effects of (a) additive noise and (b) interpolated errors.

RNN, the performance of other AR predictors are quite
differentiated. AR(2) and AR(3) have identical performance
that is comparable to that of the outdated mode, while the
AR(4) got a very worse result, with an SNR loss on the
order of 10dB. To check the effect of channel correlation,
we apply the matrix (see Table 1) recommended in 3GPP
LTE standard [49] to generate correlated channel samples.
Under the medium correlation indicated by α=0.3, the curves
of outage probabilities for various selection strategies are
comparatively drawn in Fig. 4b. In contrast to the results in
i.i.d. channels illustrated in Fig. 4a, the system performance
degrades collectively. That is because the available spatial
diversity gain vanishes gradually with the increase of channel
correlation, independently of the application of predictors.
Actually, the correlation has no impact on the relativity of
superiority and inferiority among the predictors.

In practice, the obtained CSI is impaired by estimation
errors because additive noise cannot be avoided. Under the
working assumption that the signal-to-noise ratio (SNR) on
pilot symbols is 20dB, the simulations in noisy ETU300 chan-
nels are also conducted. To adapt to faster channel fluctu-
ation, the number of prediction steps is reduced to D=4,
corresponding to a prediction length of 0.25ms. The results
reveal that noise has a notable impact on the system per-
formance, especially when the predictor is based on a high
order AR model. As shown in Fig. 5a, the curve of AR(4)
is overlapped with that of the random mode, while AR(3)
also approximates them. That is to say, the AR model suffers
severely from the problem of error propagation. In contrast,
the RNN performs in amore stable manner and is more robust
against noise compared to AR(2) and AR(3), in comparison
with their behaviours in noiseless channels in Fig. 4a. It still
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TABLE 2. Comparisons on MSE (dB).

receives a prediction gain of over 2dB at outage probabilities
on the order of 10−3 compared with the outdated mode.
In addition to estimation error due to additive noise, the
interpolation error that is defined as the difference between
the perfect CSI and the interpolated CSI should be taken into
account. Without loss of generality, the performance results
for theMIMO-OFDM system having a pilot insertion interval
of NP=4 are illustrated in Fig. 5b. The interpolation has a
negligible impact on the performance of the RNN predictor,
while the AR predictors are substantially affected. The RNN
remarkably outperforms the AR predictors with an SNR gain
of at least 5dB at P(R)=10−3 and has a loss of nearly 2dB
compared with the perfect mode.

In addition to outage probability, the prediction accuracy
is also compared in terms of MSE, which is defined as

MSE =
1
N

N∑
n=1

∥∥∥Ĥ[n]−H[n]
∥∥∥2 , (48)

where N is the total number of data samples used for evalu-
ation, Ĥ[n] denotes the predicted channel matrix at time step
n, andH[n] stands for its actual value. TheMSE results of the
RNN and the AR models with a filter length of p = 1, 2, 3,
and 4 in EVA70 channels are obtained, as listed in Table 2.
The RNN has the best accuracy in noiseless and interpolated
cases, while also achieving sub-optimal accuracy that very
approaches the best values in noisy and correlated cases.
Fig. 6 visualizes the MSEs of the RNN, and selects the
best (indicated by AR-Min) and the poorest (AR-Max) results
among AR models per case. For a clear illustration, the deci-
bel values are used in the table and the figure, calculating by
MSEdB=10 log10(MSE).

In a nutshell, it can be concluded that the RNN predictor
is effective to combat the outdated CSI in both independent
and correlated channels, and shows strong robustness against
additive noise and interpolation errors.

B. COMPUTATIONAL COMPLEXITY
Last but not least, the computational complexity of the pre-
dictors is assessed. As usual, the number of complex mul-
tiplications is used as a metric. There are two differentiated
phases: training/parameters’ estimation and predicting, thus
the evaluation of their complexity are separated into two parts
accordingly. From (21)-(26), we know that the hidden and
output layer of a neural network need (Ni+No)Nh and NoNh
times complex multiplications per prediction, respectively,
amounting to a total number of Nh(Ni+2No). The number of

FIGURE 6. MSE comparisons between the RNN and selected AR models
in noiseless, noisy, correlated, and interpolated EVA70 channels.

TABLE 3. Comparison on Computational Complexity.

input and output neurons is decided by the number of MIMO
subchannels NrNt , we have Ni=(d+1)NrNt and No=NrNt .
Hence, each prediction needs (d+3)NhNrNt multiplications.
Using µ=NrNt and κ=dNh to denote the size of a MIMO
system and the scale of a neural network, respectively. Then,
the complexity of the RNN can be indicated by O(κµ).
Looking at (19), we can know that the AR model requires
pNrNt times multiplications for one prediction, marked as
O(pµ). Since a small filter order is generally enough and
thus κ>p, the AR predictor is computationally simpler than
the RNN predictor. Similarly, it can be derived from (8) that
the complexity of the parametric model is O(Pµ), which is
comparable with the AR model.

More complex part is the training or parameter estimation
phase. During a training, the error back propagation through
a neural network is quite similar to its feed forward pro-
cess, corresponding to O(κµ). The total complexity is also
related to the number of training samples ns and the times
of epoches np, i.e., O(npnsκµ). To calculate p coefficients
for a MIMO sub-channel, the AR model has to make p3

times multiplications by solving the Yule-Walker equations,
amounting to O(p3µ) for µ sub-channels in a MIMO sys-
tem. The complexity of the parametric model is provided in
[38]. Since a large number of propagation parameters need
to be estimated periodically, the complexity of the paramet-
ric model is extremely high. In contrast, the weights for
a neural network and the AR coefficients do not need to
be updated frequently, which in turn drastically lower their
complexity. The complexity of the predictors is summarized
in Table 3.
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VII. CONCLUSION
This paper provided a comprehensive overview on neural
network-based predictors for multi-antenna channels. After
a review on two statistical approaches - AR and paramet-
ric models - the structure of a recurrent neural network,
its back-propagation training algorithm, and the principle
of RNN predictors were introduced. Further, a prediction-
aided MIMO-OFDM system that can improve the correct-
ness of selecting transmit antennas was illustrated as an
application example. Performance assessment in multi-path
fading environment specified by 3GPP EVA and ETU chan-
nel models, taking into account the influential factors such
as the Doppler shift, spatial correlation, additive noise, and
interpolation error, was carried out. Numerical results justi-
fied the effectiveness of the RNN predictor to combat the
outdated CSI, revealed its robustness against additive noise
and interpolation errors, and shown its moderate computa-
tional complexity. This predictor is quite flexible to apply
for both frequency-flat and frequency-selectiveMIMO fading
channels in a wide variety of wireless adaptive transmission
systems.
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