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A B S T R A C T

The Forel-Ule (FU) color comparator scale is the oldest set of optical water types (OWTs). This scale was originally developed for visual comparison and generated an
immense amount of data, with hundreds of thousands of observations being gathered from the last 130 years. Since recently, the FU scale is also applicable to remote
sensing data. This has been possible thanks to an optical characterization of the 21 FU colors in terms of the (x,y) CIE standards and new algorithms that convert
remote-sensing reflectances (Rrs) from satellite-borne ocean color sensors to FU. Rrs-derived hue angle and FU have been recently applied with success in the
assessment of color variability of lakes and specific shelf areas, but an evaluation over global oceanic waters is still missing. By clustering global climatological ESA-
OC-CCI v2.0 Rrs with the derived FU, we obtain a set of Rrs to be used as optical water types (OWTs). Diffuse attenuation coefficient, Secchi disk depth and
chlorophyll concentration are also associated to the FU classes. The angular distances of a given Rrs to the two nearest FU classes are proposed as simple and robust
membership indexes, adding up to one. We also evaluate the advantages and limitations of FU and the hue angle as monitoring tools over the full marine range, from
the most oligotrophic areas to the turbid and productive coastal zones. The first 7 FU indexes cover 99% of global surface waters. Unlike the hue angle, that resolves
all spatio-temporal color variations, the FU scale is coarse as a monitoring tool for oligotrophic waters as all the subtropical gyres saturate to FU=1, while the color
of other seas varies across 2, 3 or even 4 FU classes. We illustrate the introduction of a new “zero” FU class that increases monitoring resolution at the blue end of the
color range. Finally, we show how optical diversity varies across the color range and compare several sets of OWTs from a color perspective. Overall, we provide a
valuable and self-consistent dataset that enhances the usefulness of the FU scale by converting it to useful information for the oceanographic community. This OWT
scheme keeps the advantages of other datasets, like being useful to study ocean color product quality and characterize the uncertainties, but also allows to continue to
monitor long-term change in optical diversity over the global ocean color. Integration into the optical modules of ecosystem models can help verify past simulations
that predate the satellite age, through comparisons with in-situ FU data collected at the time.

1. Introduction

Classification of water masses into optical types has been an old
practice in optical oceanography and the quantity used for classification
has varied with the available technology. The first classification, the
Forel-Ule scale (FU) (Forel, 1890; Ule, 1892), was developed as a visual
color comparator originally conceived for inland waters, although soon
after it also started to be used in sea water (Wernand et al., 2013b, and
references therein). The FU scale is made of twenty-one colors across a
hue gradient, from blue to green, yellow and brown (Novoa et al.,
2013). Currently,> 280,000 observations over global marine areas are
centralized by NOAA (https://www.nodc.noaa.gov/OC5/WOD/secchi-
data-format.html) and constitute the longest record of ocean color ar-
chive, extending up to thirteen decades into the past. FU derived cli-
matological maps show patterns consistent with our current

understanding of the optics of the global oceans (Boyce et al., 2012;
Wernand et al., 2013b). FU observations correlate well with in-situ
chlorophyll until FU=10 (Boyce et al., 2012) and this principle was
used to derive multi-decadal chlorophyll trends from in-situ FU ob-
servations (Wernand et al., 2013b).

Morel and Prieur (1977) defined the famous classification case 1
and case 2 waters, in terms of the relative amount of phytoplankton
concentration and non-living material. This classification has been in-
terpreted by many as a distinction between water where all optically-
active constituents correlate to chlorophyll concentration and water
where they do not (Lee and Hu, 2006). In the last years, the term “case
2” is being replaced by “optically complex”, though keeping a similar
interpretation.

Jerlov (1976) categorized waters into five oceanic and five coastal
types based on diffuse attenuation coefficient (Kd) spectra and provided
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maps of this classification from in-situ Kd cruise data. The popularity of
the Jerlov's optical water types (OWTs) across disciplines was fa-
cilitated by their description in terms of light attenuation, a quantity
with a clear meaning for all oceanographers. Ecosystem modelers often
parameterize light extinction by assuming a given Jerlov water type
(Burchard et al., 1999; Cahill et al., 2008; Löptien et al., 2009). It is also
widely used in the field of underwater optical communications (Kaushal
and Kaddoum, 2016). Solonenko and Mobley (2015) associated Jerlov's
types to absorption and scattering coefficients in average marine waters
after bio-optical modeling.

Moore's original OWTs (Moore et al., 2001) are based on remote-
sensing reflectance (Rrs) and have undergone modifications (Moore
et al., 2009; Moore et al., 2012), being Jackson et al. (2017) the last
update (J17 from hereon). Mélin and Vantrepotte (2015) (M15 from
hereon) generated their OWTs from satellite Rrs after removal of open
oceanic waters, thus increasing the weight of optically complex waters,
although their dataset also included very clear waters, thus making
their classification arguably suitable for oceanic waters as well. Wei
et al. (2016) developed a novel quality assurance system for in-situ and
satellite Rrs. Its concept was that the quality of a given Rrs needed to be
defined not only after a per-band matchup analysis, but also by asses-
sing the spectral shape. Therefore, they compiled in-situ Rrs of a wide
range of waters, from ultra-oligotrophic to eutrophic, yellow, shallow
and sediment-rich waters, and clustered them in classes (W16 from
hereon).

Other than for algorithm blending, uncertainty assessment and
quality control, OWTs are useful as indicators of seasonal and geo-
graphical variability, linked to physical and biological processes
(Trochta et al., 2015). There have been other published OWTs over
inland water for specific areas, but we do not include them in this short
review as this work focuses on global oceanic waters.

OWTs classification can only be applied to satellite data if the
quantity used to classify can be derived remotely. Benefits of this ap-
proach are many, as satellite data provide unique spatial coverage and
temporal frequency. Wernand et al. (2013a) presented an algorithm to
calculate FU from MERIS Rrs. By using the hue angle as FU's continuous
counterpart, FU can be derived using data from any satellite sensor
where a hue angle algorithm is available (van der Woerd and Wernand,
2015, 2018). Based on these cited works, hue angle and FU processors
were developed for the ESA SNAP software (http://step.esa.int/main/
toolboxes/snap/). These algorithms have recently found application to
study color variability of a large amount of New Zealand lakes using
five years of Landsat 8 data (Lehmann et al., 2018), global inland wa-
ters using MODIS data for summer 2012 (Wang et al., 2018) and Mo-
zambique and the Irish seas using twelve years of MODIS data (Jafar-
Sidik et al., 2018). Dutkiewicz et al. (2019) incorporated an optical
module to a global physics and biogeochemistry model and were able to
predict Rrs changes during the 21st century, forced by a predicted
scenario of green-house gas emissions. They applied the hue algorithm
to the predicted Rrs and found that the color of the oceans will change
unevenly. They forecasted a bluer North Atlantic, with a hue angle
increase of ~10° by 2100, whereas other zones displayed smaller hue
angle increases or decreases. Wang et al. (2019) presented a method to
link combined Secchi disk depth and Forel-Ule data to absorption and
backscattering, with the motivation to bridge the gap between histor-
ical and modern measurements in marine optics and build long time
series, in a similar fashion as previously done using chlorophyll as the
target variable (Boyce et al., 2012).

In this article, we apply the FU and hue angle algorithms to ocean
color data over global marine waters, and study how seasonal varia-
bility of very diverse marine zones is resolved by them. We also provide
quantification of the optical diversity of marine waters and quantify the
uncertainty due to dimensionality reduction. We show that the FU scale
can be interpreted as an OWTs set, by clustering all marine Rrs falling
into a given FU and obtaining the mean value. If the same procedure is
followed for the Rrs-derived chlorophyll concentration (Ca), as well as

other IOPs and AOPs, a reliable translation of the FU colors into modern
optical variables is obtained, with major importance for the inter-
pretation of archived in-situ FU data, as well as for a rapid interpreta-
tion of marine Rrs and FU data in terms of other optical variables.

The aims of this work are to:

• Develop a historical, FU-class based method, to study optical di-
versity at global scale.

• Construct a global dataset of matched FU class data with standard
variables used by the oceanographic community.

• Monitor global variability of selected marine zones with the hue
angle.

• Provide a new framework for comparison of different OWT schemes.

The approach is significant, as unlike other OWT schemes, the FU
scale can be used to:

• Continue to monitor long-term change in optical diversity over the
global ocean color by stitching together in situ FU data collected
over the past century with the satellite era.

• Bridge, in a consistent manner, satellite data from two different
periods (e.g. 1970–80's CZCS and 1997-onward) using in situ FU
data over the two periods.

• Verify past model simulations that predate the satellite era, through
comparison with in situ FU data collected at the time by using an
optical module within the ecosystem model.

• Facilitate the interpretation of FU color by the oceanographic
community, useful for teaching and demonstrating the concepts of
satellite ocean color at global scale, using a visual index.

2. Materials and methods

2.1. Satellite data

The most suited source data to study the global seasonal variability
are climatological reflectances derived from a long time series. The
ESA-OC-CCI v2.0 Rrs monthly climatological dataset at 0.25° was
downloaded from the ftp server at of the ESA-OC-CCI site. These files
are monthly composites (1997–2013) of merged sensor (MERIS,
MODIS, SeaWiFS) products, where Rrs from MODIS and MERIS were
band-shifted and bias-corrected to SeaWiFS bands and values. MODIS
and SeaWiFS Rrs products were derived from 4 km resolution level-3
binned standard NASA products; MERIS was derived from a 4 km level-
3 binning of the output of the HYGEOS POLYMER algorithm.
Downloadable NetCDF files include Rrs available at the wavelengths
412, 443, 490, 510, 555 and 670 nm as well as Ca. Notably, the files
include pixel-by-pixel bias estimates of all variables. This allows to
obtain unbiased monthly estimates of each. Further information on the
generated Rrs and Ca products can be retrieved in the Product User
Guide (Grant et al., 2015).

From the unbiased Rrs, the absorption (a) and backscattering coef-
ficient (bb) were retrieved using the QAA v6 algorithm (Lee et al., 2002)
and the diffuse attenuation coefficient (Kd) was derived from them (Lee
et al., 2013). The Secchi disk depth was derived according to Lee et al.
(2015). The derivations of the CIE (x,y) coordinates, the hue angle and
the FU index are explained in the next section.

2.2. Reflectance conversion into color

The FU scale was recently revisited, manufactured and optically
characterized (Novoa et al., 2013). Derivation of the hue angle and the
FU index from satellite data was recently presented as well (van der
Woerd and Wernand, 2015, 2018; Wernand et al., 2013a). We provide
here a complete summary of the background needed in the article.

The calculations start with projecting a given spectrum (Rrs here)
onto the CIE tristimulus space (X,Y,Z) by weighting it with the three CIE
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standard observer color matching functions and integrating over the
full range Λ:

= = =X R x d Y R y d Z R z d( ) ( ) , ( ) ( ) , ( ) ( )rs rs rs

(1)

These weighting functions are plotted in Fig. 1. Their sum,
+ +x y z , is also plotted. This plot illustrates the band range to which

this algorithm is sensitive.
Eq. (2) further reduces the dimensionality from three to two by

normalizing the three quantities in Eq. (1) by the sum of them. In-
formation on the spectrum intensity or brightness is lost after this
normalization. Therefore, a constant spectrum (white or gray) is pro-
jected onto (xw,yw)= (1/3,1/3). (Jackson et al., 2017). Here, division
by (X+Y+Z) equals to a normalization by the sum of the three color
matching functions, + +x y z . Thus, two different Rrs that differ by a
constant factor would be projected onto the same (x,y) point.

=
+ +

=
+ +

x X
X Y Z

y Y
X Y Z

, (2)

Fig. 2 illustrates a given Rrs, projected onto the (x,y) space as point
P, following Eqs. (1)–(2). The projection of a given Rrs onto the (x,y)
coordinates is a great dimensionality reduction, but (x,y) still contain
information on the spectrum shape. Points close to the white point W
(lower s) have a broader spectral shape, and the closer they get to it, the
more the definition of color loses its meaning. On the other hand, points
far away from W have a higher saturation or purity, and they are
spectrally narrower. Thus, saturation (s), and hue angle (α) can be se-
parated by converting (x,y) to polar coordinates, setting the origin at W.

= = +
y y
x x

s x x y yarctan , ( ) ( )w

w
w w

2 2
(3)

As every FU index has its relative (x,y) coordinates after Novoa et al.
(2013), the FU of any given spectrum is calculated as the nearest FU
class in terms of the hue angle. As a matter of nomenclature, we refer to
“FUn” as the n-th FU index of any of the 21 classes, whereas we write
“FU=n” when a given spectrum is closest to FUn in terms of hue angle
than to any other FU index.

In the practical implementation using satellite data, Rrs is not a
continuous spectrum but a set of discrete values as a result of the
convolution with the sensor spectral response functions of each band.
Van der Woerd and Wernand (2015) and van der Woerd and Wernand
(2018) proposed a discretization of Eq. (1) for the estimation of X,Y and
Z. In particular, for a Rrs at the SeaWiFS bands, the discrete integration
leads the following linear combination of the bands:

=
X
Y
Z

R
2.957
0.112
14.354

10.861
1.711
58.356

3.744
5.672
28.227

3.455
21.929
3.967

52.304
59.454
0.682

32.825
17.810
0.018

rs sw,
(4)

where Rrs,sw is a column vector containing Rrs at the SeaWiFS bands.
From Eq. (4), the (x,y) coordinates and the hue angle can be obtained
with Eq. (2). Van der Woerd and Wernand (2015) and van der Woerd
and Wernand (2018) showed that the discrete integration to estimate
the hue angle contains an uncertainty that is only partially random, and
has a rather predictable shape as a function of the estimated hue angle
itself. This is a consequence of the generally smooth and predictable Rrs

spectral shape across a wide range of natural waters. Therefore, they
provided uncertainty-fitted curves for the removal of this bias.

Their approach provided unbiased hue and FU estimates, but left
(x,y) biased. Since we consider (x,y) and also the saturation (s) im-
portant for our study, we decided to modify the method and correct
biases directly from (x,y). We used the same IOCCG synthetized dataset
as van der Woerd and Wernand (2015) and van der Woerd and
Wernand (2018) to perform this correction. From every Rrs in the da-
taset, the “exact” (x,y) coordinates were calculated using Eqs. (1)–(2).
Then, every Rrs was convoluted with the SeaWiFS response functions
centered at 412, 443, 490, 510, 555 and 670 nm, and from the spectra
at the SeaWiFS bands, the “biased” (x’,y’) estimates were calculated
using Eqs. (4) and (2). Fig. 3 shows the plotted errors Δx= x’-x,
Δy= y’-y as a function of x’. Similarly to what reported by van der
Woerd and Wernand (2015) and van der Woerd and Wernand (2018)
for the hue angle, the errors Δx and Δy are largely systematic and
therefore they can be approximated by fitting functions. Here, we found
that 6th grade polynomials provided good fits: = =c p hx i

N
i

i
0 ,

= = q hcy i
N

i
i

0 (coefficients provided in Table 1), where N=6, h is the
centered and normalized x’, based on the mean and standard deviation
of the training dataset: h= (x’-m)/s, with m=0.3017 and
s=0.07398. Finally, biases are corrected as xcor= x’-cx, ycor= y’-cy.
For the remainder of the article, we refer to the computed quantities
(xcor,ycor) as the exact (x,y).

From the original ESA-OC-CCI v2.0 climatological files, associated
files were generated, that exported the original latitude, longitude and
time variables and incorporated x, y, the hue angle and FU.These
products have uncertainties though. Assuming an exact source Rrs, the
discretization, after systematic biases compensation, leaves residual
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 (nm)
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Fig. 1. The CIE standard observer color matching functions and the sum of all.

Fig. 2. The CIE 1931 color space in the (x,y) coordinates. The coordinates of the
21 FU colors after Novoa et al. (2013) are plotted as blue dots. The white point
W lays on (1/3,1/3). An arbitrary spectrum is represented as point P, having
polar coordinates (α,s) and laying between FU 3 and 4. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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errors, which are Δx-cx and Δy-cy (Fig. 3). These errors are higher for
green waters than for blue waters. This result can be interpreted as
follows: the SeaWiFS bands are appropriate for capturing all relevant
spectral features of blue waters, but for greener waters, some in-
formation is lost. Specifically, for x < 0.25 (blue waters), the following
uncertainties, quantified as the standard deviations for x, y and α are
obtained: σx= 8.03·10−4, σy= 6.62·10−4 and σα= 0.13°. For
x≥0.25, one obtains σx= 5.14·10−3, σy= 2.20·10−3 and σα= 2.61°.
Even in this last case, uncertainties can be assumed very small com-
pared to other sources of uncertainties in ocean color.

Such uncertainties must be added to the uncertainties of the Rrs at
sea level when these are derived from satellite measurements. Work in
the framework of ESA-OC-CCI has provided uncertainty maps related to
Rrs at each band, derived from comparison with in-situ observations. In
brief, Rrs uncertainties were calculated for matchups to an in-situ da-
taset and discriminated according to Moore's OWTs (Moore et al.,
2009). These uncertainties were then extended to the global map by
calculating the OWT membership for every pixel and assuming the
uncertainty as the weighted average of the uncertainties for all OWTs in
the matchups, using the pixel's class memberships as weights. Full de-
tails can be found at the Product User Guide (Grant et al., 2015).

ESA-OC-CCI provides maps of systematic biases and RMS differ-
ences. Biases were removed from the data and subtracted from the RMS
differences in the final uncertainty estimation. Resulting standard de-
viation maps showed some seasonal variability, that was small com-
pared to the differences between bands. Geographically and seasonally
averaged standard deviations for each Rrs band are σRrs= (0.0012631,
0.001063, 0.0007631, 0.00061579, 0.00051381, 0.0002132) sr−1.
These uncertainties were propagated to the (x,y) and α estimations. We
derived these variables and their associated uncertainties from the
IOCCG dataset but now adding random and normally distributed errors
with zero mean and σRrs standard deviation to the re-sampled Rrs at the
SeaWiFS bands, always using the coefficients of Table 1. We repeated
the procedure 1000 times and obtained the uncertainties for x < 0.25:
σx= 0.011, σy= 0.024 and σα=6.44°. For x≥0.25, we obtained

σx= 0.026, σy= 0.041 and σα=18.38°. Thus, uncertainties in CCI Rrs

exceed in one or two orders of magnitude uncertainties in the (x,y) and
α estimations from an exact discrete spectrum, but overall the total
uncertainties are low enough to obtain reliable estimates using CCI
data, especially over blue waters. There, uncertainties in the hue angle
are about 3% of its value, whereas for green waters, uncertainties are
about 20%.

2.3. Class membership

Optical water types have been proposed as tools for algorithm
comparison and merging (Jackson et al., 2017). In order to avoid dis-
continuous boundaries between classes, the class memberships have
been suggested as weights for class-algorithm blending. Class mem-
berships are also useful for generating mapped product uncertainties.
Uncertainties are estimated for every class in a matchup dataset and are
extrapolated to a given pixel by calculating the class memberships of it
and estimating the uncertainty as the weighted averaged of the calcu-
lated uncertainties per class, using the class memberships as weights
(Grant et al., 2015). However, the Rrs of an OWT dataset are not any
orthogonal basis functions and correspondingly, the class membership
coefficients of a given Rrs are not any eigenvalues. This approach is
therefore heuristic and may generate methodological doubts, but still it
may be applicable as a fit-for-purpose mechanism.

Unitarity is a desired property of any set of class membership
coefficients. Additionally, for the sake of an easier interpretation,
coefficients shall be zero for classes that are far enough from a given
spectrum, and shall have non-zero values for a reduced number of
classes. Here, we propose a class membership coefficient set such that,
given a Rrs, its membership is non-zero only for the upper and lower FU
classes, being their values CU and CL, respectively, both memberships
adding up to one and being proportional to the distance in hue angle
units. More specifically, for a given Rrs, the hue angle is calculated, αR.
If αL and αU are the hue angles of the nearest lower and upper FU class,
respectively, then the membership value for each is, respectively:
CU= (αR - αL)/(αU - αL), CL= (αU - αR)/(αU - αL). If αR is lower than
the hue angle of FU1 (or higher than FU21), then a membership equal to
one is assigned to the nearest and zero to the rest. The graphical result
of these definitions is shown in Fig. 4. By definition, these classes do not
carry information on spectral similarity. Every spectrum always has a
total membership equal to one, no matter how the spectral shape differs
from those of the FU. However, a real spectrum is never going to have a
random shape. We show later in the article that the optical variability in
the world's surface waters is limited and is well described by the hue
angle to a first order.

3. Results and discussion

3.1. Color distribution of global reflectances

The dimensionality reduction from (x,y) to the hue angle as a color
descriptor implies some loss of information unless the interdependency
between x and y is very strong, i.e., case 1. Fig. 5 plots the (x,y) (panel
a1)) and the (α,s) polar coordinates (panel b1)) of the ESA-OC-CCI v2.0
global climatological monthly Rrs. The frequency distributions of the
(x,y) coordinates are shown in panels a2) and a3), whereas the re-
spective for (α,s) are shown at panels b2) and b3).

Fig. 5 shows that all global variability occupies a very limited area
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Fig. 3. Discretization errors Δx and Δy in the computation of the (x,y) co-
ordinates as a function of x’ for the IOCCG synthetized dataset, and corre-
sponding fitted curves cx and cy (Table 1).

Table 1
Coefficients of the polynomial fits to correct biases in (x,y), times 100.

I 0 1 2 3 4 5 6

100·pi 2.9653 −2.0032 −2.1461 0.034326 0.40886 0.091567 −0.03510
100·qi −0.7786 −1.5604 1.2188 0.44135 −0.1067 −0.024582 −0.03253
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in the (x,y) and (α,s) planes, distributing along a trail from deep blue
until green-brown color. More importantly, this trail is very narrow
and, to a first order, it is distributed along a line (thick lines in panels
a1) and b1)), evidencing a strong inter-dependency. Therefore, for a
given α, an average s can be predicted. This statement is especially true
for the bluest waters (panels a4) and b4)), confirming the hypothesis
that a single parameter condenses well all optical information. On the
other hand, the trail progressively spreads with increasing x or de-
creasing α, illustrating an increasing optical complexity. At some point,
for green-brown waters, a given hue angle can be associated to a wider
range of saturations (and spectral shapes) with correspondingly dif-
ferent constituent concentrations, as happens in case 2 waters. These
results show that there is not a clear threshold for the separation be-
tween case 1 and case 2 waters, although the band thickness Δs appears
to remain relatively stable from the blue waters until α≈ 214°, staying
Δs < 2·10−3 and then sharply increasing. This boundary falls in the
class FU=3 (blue waters) and could be defined as separator between
case 1 and case 2 waters. Around 80% of the world's surface waters fall
under this case 1 classification (see frequency distribution of the hue

angle in panel b2)), including all oceans and big seas. Description of
annual variability of selected marine areas is provided further on.

3.2. Class memberships based on the hue angle

Seasonal variation of the class memberships 2 and 4 (C2 and C4) is
shown in Fig. 6 for the Mediterranean and Black Seas, using also the
ESA-OC-CCI v2.0 global climatological monthly Rrs. Class memberships
are functions of the hue angle. They have value one when the hue angle
of a pixel is equal to that of the FU classes 2 and 4, respectively, and fall
linearly to zero when the hue angle is that of the adjacent FU classes
(Fig. 4). Classes are defined such as a pixel has non-zero membership
for a maximum of two adjacent classes, so pixels showing non-zero
values for C2 and C4 are disjoint sets and can be plotted on the same
map.

The map of January clearly distinguishes between the eastern and
the western Mediterranean: the eastern Mediterranean has medium C2
membership, increasing towards the more oligotrophic areas, whereas
the western displays C4 membership and has higher values towards the
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Fig. 5. Distributions of the global climato-
logical ESA-OC-CCI v2.0 Rrs on the (x,y)
plane and in polar coordinates (α,s). Panel
a1) log-density plot of (x,y) distribution,
with dot color indicating increasing data
density. The moving median of y for every x
as thick line, and the 25th and 75th per-
centiles as band boundaries, are plotted on
top. a2) distribution of x. a3) distribution of
y. a4) same band as panel a1) but setting
the moving median of y as ordinates origin.
Panels b1) to b4) are equivalent to a1) to
a4) but replacing x by s and y by α.

J. Pitarch, et al. Remote Sensing of Environment 231 (2019) 111249

5



coastal areas. The Black Sea has zero values for C2 and C4, indicating a
dominance of higher classes. From spring to summer, water becomes
bluer in both basins, as indicated by higher C2 values for the eastern
and western Mediterranean, with the exceptions of the Alboran Sea and
the bloom at the gulf of Lion. The Black Sea shows increased C4
membership. In July, eastern Mediterranean waters are very blue which
leads to reduced C2 membership, and more dominance by C1, while the
western have higher values and almost no presence of C4 membership.
The Black Sea displays the highest C4 membership values, except the
northern coastal areas, whose waters are greener. In October, water is
tending back towards greener colors, which translates in higher C2
memberships in the western Mediterranean, while the Black Sea starts
to reduce the C4 membership and tends to higher classes.

3.3. Global maps of seasonal Forel-Ule variability

Application of the FU algorithm to the ESA-OC-CCI v2.0 global
climatological monthly Rrs (Fig. 7) reveals a vast majority of zones
falling on the lowest FU classes. 94% of the surface waters belong to FU
between 1 and 4 and 99% belong to the first 10 classes. The ultra-
oligotrophic zones are permanently classified in FU=1, although their
extension does have seasonal variability. FU=2 zones have an overall
higher surface area. Equatorial, coastal and middle to high latitude seas
occupy higher FU values. All oceanic zones are restricted to FU from 1
to 4.

3.4. Forel-Ule optical water types

The FU OWTs (Fig. 8) are constructed by clustering all Rrs belonging
to a particular FU index. By using the climatological satellite data to
build the OWTs, a good representation of average marine reflectances is
ensured.

The FU OWTs nicely represent many different water types: the first
numbers are typical of clear oceanic waters, displaying decreasing Rrs

values at blue wavelengths and increasing at the green with increasing
FU. As FU increases beyond 5, Rrs are more characteristic of green
coastal waters and include higher ranges of concentrations and shapes.

Given that FU estimations can be made visually or with simple in-
struments like photographic cameras (Busch et al., 2016), and also
given the existence of long-term FU records, it is of value to provide
indicators of optical descriptors that are common in optical oceano-
graphy, like diffuse attenuation coefficient (Kd), Secchi disk depth (zSD),
and chlorophyll concentration (Ca).

The FU-related Kd classes are calculated by deriving Kd on a pixel
basis (Lee et al., 2002; Lee et al., 2013) and clustering them based on
FU. They are shown in Fig. 9. Kd increases monotonically at every band
as FU increases, with a red shift of the window of maximum light pe-
netration, relevant for zSD calculations (Lee et al., 2015). FU=1 has the
minimum at 443 nm, FU=2 to 4 have the minimum at 490 nm, FU=5
has the minimum at 510 nm, and FU=6 to 10 have the minimum at
555 nm.

Light extinction in the ocean is an important parameter for heat
budget calculations and ecosystem modeling, and can be linked to
underwater visibility. Modelers who need to assume a light extinction
model can take advantage of this classification by downloading these
climatological FU maps and adjusting light extinction models to their
specific zone and season. If models already predict light extinction,
cross-checking with this climatology can provide indication about the
accuracy of the modeling.

Secchi disk depth generally decreases as FU increases (Fig. 10). The
class FU=1 has a zSD distribution with a very wide and asymmetric
shape due to its dead-end position, until zSD= 60m. Its shape suggests
that it may be composed of a multipolar distribution, which may be
related to separate oceans. This case exemplifies well that FU=1 is

C2 C4

Jan.

Jul.

Apr.

Oct.
Fig. 6. Color maps of membership to class 2 and class 4 of the Mediterranean Sea for the climatological months of January, April, July and October, based on the ESA-
OC-CCI v2.0 global climatological monthly Rrs.
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Fig. 7. Global FU monthly variability based on the ESA-OC-CCI v2.0 global climatological monthly Rrs.
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very ambiguous for representing an average oligotrophic ocean. The
next low FU distributions are bell-shaped for oceanic waters, but as FU
reaches 6, a second population appears at the left of the bell shape:
these observations are linked to coastal zones with different optical
properties, where sediments and CDOM reduce transparency.

The histograms of chlorophyll concentration for every FU class
(Fig. 11) reveal a similar but inverted shape than zSD for oceanic waters,
as expected, though having a general Gaussian shape, even for opti-
cally-complex waters, perhaps suggesting that the left tails of the zSD
distributions for FU 8 to 10 were caused by sediments and CDOM.

Box plots of chlorophyll concentration and Secchi disk depth for
every FU (Fig. 12) condense well the information in the former histo-
grams. The progression is the expected for the blue-green range, with Ca

increasing and zSD decreasing until FU=17. From this point on, Ca

starts a sharp decrease. Here, very high CDOM concentrations are ex-
pected to decrease light availability for the primary producers and thus
limiting Ca. zSD does not show significant variations at the highest FU
classes.

3.5. Seasonal variability of selected marine areas

Fig. 13 shows a map of series-averaged Ca. This map highlights the
five ultra-oligotrophic gyres. These are characterized by anticyclonic
circulation, downwelling and thick thermoclines. Depressed nutricline

levels limit the algal development and subsequent biogeochemical
processes. While their biological activity is small compared to other
areas, their vast size makes their contribution to the global productivity
and biogeochemistry significant (Morel et al., 2010). Other zones dis-
play higher Ca values. Middle-to-high oceans are subject to nutrient-
rich currents. Shelf seas are more sensitive to terrestrial runoff and
bottom resuspension, and upwelling coastal areas are known for the
high phytoplankton biomass. Enclosed and semi-enclosed seas follow
their own dynamics (Colella et al., 2016; Kopelevich et al., 2004;
Pitarch et al., 2016).

For a more detailed study about color variability across the globe,
we defined twenty-one zones (Table 2, Fig. 13) that represent a wide
range of optical variability. The most oligotrophic inner cores of the
gyres were selected. Other marine zones were also included, from the
equatorial pacific to mid-latitude oceanic zones, enclosed seas, shallow
seas and coastal zones. For each zone, the median of all valid pixels was
calculated. The goal here is to understand how the optical variability in
each region is resolved by increasingly simplified optical descriptors,
from (x,y) to the hue angle, to FU.

Fig. 14 plots the hue angle annual variability of all selected marine
zones in Fig. 13 (see Table 2 for boundaries and nomenclature). They all
show α > 229°, and are above the boundary between FU=1 and
FU=2. Despite being saturated to FU=1, all gyres present a clear hue
angle seasonal cycle, with a minimum (greenest) in winter and a
maximum (bluest) in summer. Lower winter hues are related to vertical
mixing that allows some underlying waters, richer in nutrients, to reach
lower depths. Higher hues are associated with a decline in phyto-
plankton, which is limited by lack of nutrients due to a strong pycno-
cline formation that stabilizes the water column, limiting the vertical
mixing, and thus, nutrient supply to the surface. In the NPSG, nutrient
supply during winter mixing seems to be hampered, so that seasonality
is smooth. NA and SA, as well as both Mediterranean basins show the
same trend, with maxima in winter and minima in summer, though
with different dynamic ranges and lower hues, caused by a higher nu-
trient availability. NA and WMED have the widest variability and SA
and EMED the lowest, all crossing between FU 1–3. Somewhat ex-
pected, the EQP has very little seasonal variability, crossing the border
between FU=2 and 3 across the seasons. Here, nutrients are hor-
izontally advected to this region (Dave and Lozier, 2015), causing
higher biomass and greener waters. Our data suggests that this process
is somewhat higher during the boreal summer, leading to a slight sea-
sonal cycle.

ARAB has the bluest waters in May and the greenest in August, and
a secondary blueness peak in November. Phytoplankton blooms in the
northwest Arabian Sea during August–September. They are driven by
the seasonal monsoon, that triggers upward nutrient fluxes to the eu-
photic zone, forced by the physical processes of coastal upwelling and
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Fig. 8. Remote-sensing reflectances corresponding to the first 10 FU water types, obtained from the ESA-OC-CCI v2.0 global climatological monthly Rrs. Bold traces
correspond to median values and bands extend between the 25th and 75th percentiles. Data of all classes can be found at Table A1.
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reader is referred to Table A2.
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offshore Ekman pumping (Brock and McClain, 1992).
GREE follows the dynamics of a boreal sea, displaying blue waters

with the maximum hue in winter and the minimum in August, during
the summer bloom. Production starts in March and increases slowly
because of low temperature. The spring bloom occurs in about May.

However, over the summer, nutrient limitation may set in and limit
production in concert with a rapid decline in insolation. Thus, the
phytoplankton in the open Greenland Sea may be controlled by nu-
trients replacing light as the limiting factor for phytoplankton produc-
tion during summer (Richardson et al., 2005).

JAP displays a high oscillation with general characteristics of an
oligotrophic sea, with higher pigment concentrations in winter than in
summer, plus two characteristic blooms, one in spring, that lowers the
hue down to FU=5, and a weaker fall bloom. Kim et al. (2000) ex-
plained bloom occurrence as the result of the changing balance between
the critical depth and the mixed layer depth. The different bloom in-
tensity can be related to different light availability in both seasons.

Despite its shallow bottom, PERS shows FU values consistent with
tropical and subtropical seas. The highest Ca in the open-water region of
the Gulf take place in winter, while lower concentrations were observed
in both spring and summer. A sharp bluing of the water in April is
caused by low Ca in April, driven by nutrient depletion (Al-Naimi et al.,
2017).

YELL displays a huge range of variability, from FU=4 in winter till
FU=7 in summer. Sediment resuspension caused by seasonal currents
plays a role (Yamaguchi et al., 2012) but the area is also affected by
strong summer blooms due to high (and increasing) nutrient discharge
(He et al., 2013). Similar dynamics are present in BOH displays, but
accentuated due to a lower distance to land and much shallower waters.

BLAC is a semi-enclosed sea, affected by terrestrial influence, which
leads to significant particle backscattering even in open areas
(Kopelevich et al., 2004). Its color dynamics is that of a temperate sea,
and is driven by Ekman pumping (Kubryakov et al., 2016), with greener
hues in winter around 175°, corresponding to FU=5, and bluer in
summer, around 200°, corresponding to FU=4.

CASP shows on average the highest hues in June and the lowest in
September, consistent with previous results using three years of
SeaWiFS data (Kopelevich et al., 2004), although the lack of in-situ data
in their study could not confirm if the seasonal low hue was caused by
Ca or other constituents.

SBAL displays seasonal dynamics influenced by an intense summer
bloom (Pitarch et al., 2016) that leads to a green-brown color
(FU=8–9). The rest of the year, color is dominated by high amounts of
CDOM. Note here the absence of data during the darkest winter months
due to low sun zenith angles.

Finally, two edge examples have been found at AZOV and PLAT,
known for the high turbidity of their waters. While AZOV shows the
highest hues in May and the lowest in August, PLAT shows the highest
FU in July and lowest in February. In both cases, seasonality is likely to
be a mixture of river-borne sediments and phytoplankton phenology.
Dogliotti et al. (2016) documented a seasonal cycle of turbidity at the
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southern end of the estuary of PLAT that followed the same trends as
shown here.

The latter analysis showed the ability of the hue angle to monitor
ecosystem variability in a wide range of marine waters. The hue angle
compresses all Rrs information into a single color indicator, which is
theoretically enough in case 1 waters. When sediments and dissolved
organic matter vary independently to Ca, the spectrum can show a
wider variety of shapes. As already commented in the methods section,
the hue angle does not carry information on the saturation. High sa-
turation can happen in zones with high sediment concentrations where
spectrum shows a broader shape, or high CDOM zones, where the
magnitude of the full spectrum is low. Saturation can therefore be a
second indicator describing optically complex waters.

3.6. Optical water types comparison

Projecting global Rrs and various OWTs on the CIE (x,y) space
provides a good graphical assessment of how the latter are re-
presentative of the former. There is however, not a clear criterion to
judge the goodness of any OWT set applied over a given dataset. So far,
their definition and their number has remained arbitrary. Generally, if
the purpose is to describe ecosystem variability, the OWTs must cover
all the observed variability and have a fine enough resolution across the
dynamic range. If the purpose is algorithm delimitation, the number of
classes can be tailored to the number of applicable algorithms.
Although there is an increasing number of OWTs sets for marine and
inland waters, or for specific regions, we restrict our study to those

Table 2
Acronym and bounding coordinates of the study zones (see Fig. 13).

Zone Acronym East (° E) West (° E) South (° E) North (° N)

North Atlantic subtropical gyre NASG −65 −52 24 26.5
South Atlantic subtropical gyre SASG −30 −23 −19 −15.5
North Pacific subtropical gyre NPSG 148 160 11 15
South Pacific subtropical gyre SPSG −126 −112 −29 −23
Indian Sea gyre IND 75 87 −29 −24.5
North Atlantic NA −45 −20 37 44
South Atlantic SA −40 0 −44 −37
Equatorial Pacific EQP −160 −120 −2 2
Off south east Greenland GREE −32 −25 60 67
Eastern Mediterranean Sea EMED 24 33 32.5 34
Western Mediterranean Sea WMED 4.5 7.5 38 41.5
Black Sea BLAC 42.2 44 30 38
Persian gulf PERS 52.4 53.8 25 26.2
Arabian Sea ARAB 54 63 10.5 14.5
Caspian Sea CASP 47 54 35 47
Yellow Sea YELL 121.5 125.5 33 35.5
Southern Baltic Sea BAL 19.6 20.8 57 59.5
Azov Sea AZOV 36.2 37.4 45.5 46.3
Off Plata river estuary RPLA −56.7 −55.8 −35.5 −35.1
Bohai Sea BOH 119.8 121.2 38.2 39.2
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Fig. 14. Hue angle climatological annual variability of selected marine zones (see Fig. 13 and Table 6). The boundaries between consecutive FU classes are also
indicated.
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OWTs published for global marine waters, in particular for M15, W16
and J17.

All OWTs (Fig. 15) fall approximately onto the trail formed by the
global Rrs across all the range except the original FU scale (blue). This
scale was designed to visually match the hue of perceived color above
water, but whose spectra do not have to match the shape of Rrs. Instead,
the coordinates of the FU-derived Rrs classes (green) fall very precisely
on the trail formed by the marine waters, because they were derived
after clustering the same Rrs forming the data cloud, being the original
FU classes only used as discriminators based on the hue angle. The FU
Rrs classes cover very evenly the dynamic range although fall short in
reaching the bluest waters (see insets in Fig. 15a1,b1). FU=1 is located
between the third and the fourth J17 classes.

The M15 classes were derived from global imagery over coastal
waters, although their definition of coastal waters was not based on
optics and included very blue waters. Therefore, their clearest class has
the color of the bluest Indian Ocean waters and even of the North
Atlantic subtropical gyre. At the other extreme, their highest in terms of
hue angle is near FU=11, like the turbid coastal waters of the Azov
Sea.

The W16 classes cover a wide dynamic range. The bluest class has
the color of the gyres, except the pacific, and the brownest has a hue
angle of 39°, which represent a class close to FU=16. This appears
then suitable not only for clear marine waters, but also for very turbid
and yellow coastal and inland waters.

The J17 OWTs cover the optical variability of the oligotrophic
oceans better than the other OWTs because they were generated di-
rectly from the CCI global reflectances with the aim of representing the
bluest waters that were missing in the original OWTs (Moore et al.,
2001). At the most turbid end, Jackson et al. (2017) noticed that they
had fell short in describing turbid waters, since their contribution in
their dataset was overwhelmed by that from the clearest ones. For this
reason, they decided to add three more spectra, consisting of sediment-
laden waters of increasing concentrations. These new classes have very
similar hue angle and in the (x,y), they fall nearly on the top of each
other. This can be explained by the fact that same sediment type was
the same, only varying in concentration. In terms of the science of
colorimetry, the last three J17 classes differ in brightness but not in
color.

The bluest W16 class and the three bluest J17 waters differ from the
oceanic Rrs (see lower panels of Fig. 15). These classes have sig-
nificantly lower saturation (broader spectra) than the Rrs they should be
representing. This result is unexpected for J17, as J17 OWT were
generated from OC-CCI v2.0 Rrs, as the marine data of this article. A

possible explanation might be related to the training data extraction in
that J17, coming from four daily product file per year of the OC-CCI
series, one in the middle of each season, and geographically sampled
from a series of two-by-two degree squares, distributed across the
Longhurst provinces.

Higher M15 and W16 classes follow pathways with a sort of zig-zag
patterns starting from the green waters, unlike FU and J17, that appear
to follow a line along the trail formed by all the marine variation. This
is due to the fact that M15 and W16 classes were generated from nor-
malized Rrs, which made their Rrs dataset more sensitive to shape dif-
ferences, that is different color saturations for a given hue. This pattern
is even more pronounced for the W16 dataset. This finding is consistent
with the fact that W16 used data collected from a number of specific
sites and so might be biased towards conditions related to those sites.
Interestingly, the zig-zag pattern does not exist for the bluest M15 and
W16 classes, that are well confined inside the average marine varia-
bility (Fig. 15, panels a2) and c2)), proving that normalized or non-
normalized Rrs contain the same information in blue waters. For
greener waters, there are spectra than can have a similar hue angle but
different spectral shapes: see for instance classes 7 and 8 of M15: both
have a very similar hue angle (215.1 and 215.6°, respectively), but
completely different spectral shapes: class 7 is characteristic of coastal
zones with moderate chlorophyll and little sediment, while class 8 can
be related to little chlorophyll but higher sediment concentrations. With
their classification based on non-normalized Rrs, J17 obtain a single
class in this region (their number 9) whose spectra looks somewhat in
the middle of classes 7 and 8 of M15.

3.7. Forel-Ule scale expansion in blue waters

The previous sections have shown how the FU OWTs exceed the
dynamic range of marine waters at the green-yellow end, but fall short
at the bluest waters. This feature is nevertheless not a shortcoming for
algorithm determination. J17 found that the optimal chlorophyll-a al-
gorithm for their first seven classes was OCI (Hu et al., 2012). However,
if the purpose is to monitor variability, then additional resolution can
be added, by the addition of a new bluest class, “FU0”. Here, we provide
a demonstrative example of this addition. First step is to assign a hue
angle to this new class. Based on Fig. 14, we choose the boundary be-
tween the classes FU1 and FU0 at 232°, that lays in the middle of the
variability within the gyres. Thus, 232° is the point of equal distance
between FU1 and FU0, which leads to α0= 234.55°. Interestingly, this
value is above the maximum recorded, which will avoid class mem-
berships saturated at the lowest FU. With this choice, even the bluest

Fig. 15. Top panels show various OWTs
projected in the (x,y) plane (panel a1)) and
in polar coordinates (panel b1)). The log-
density plot of the coordinates derived from
global climatological ESA-OC-CCI v2.0 Rrs

is shown, with the running median and the
intervals determined by the 25th and 75th
percentiles. Bottom panels represent the
differences with respect to the running
median. (For interpretation of the refer-
ences to color in this figure, the reader is
referred to the web version of this article.)
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pixels will have some membership to FU1.
To fully define the color properties, a saturation value must be

given. Fig. 16a shows that the original 21 FU classes follow a path in the
(α,s) plane. Therefore, we obtain an analytical expression with spline
curves and extrapolate this trajectory until 234.55°. This leads to:
s0= 0.2621. Conversion to rectangular coordinates leads to
(x0,y0)= (0.1813, 0.1198), shown in Fig. 16b.

The new class FU0 has a bluish-purple color and is representative of
the clearest oceanic waters. To show enhanced detail in these kind of
waters, we have repeated the analysis of Fig. 7, i.e., mapping the global
FU variability across a climatological year, but now with the added
class, FU0 in Fig. 17. Now the color variability inside the oligotrophic
gyres becomes evident. The gyres are alternating between the classes 0
and 1. SPSG displays the highest extension of FU=0 in the austral
summer, converting almost completely to FU=1 in winter. NPSG
displays the second greatest extension of FU=0 areas whereas the
NASG is the greenest of all gyres, displaying only small extensions of
FU=0 during the boreal summer.

Fig. 18 shows climatological Ca maps for the months of February
and August. The yearly oscillation is clearly evidenced here: low to mid
latitudes display lower Ca values in summer and higher in winter while
some higher latitudes like the North Atlantic or North Pacific display
higher productivity in summer. The boundaries between the corre-
sponding FU classes overlap in both maps and provide clear evidence
that Ca is driving color at the oceanic scale to a first order. The FU scale
is highlighted as an effective delimitator of regions like the oceanic
gyres, the equatorial pacific, upwelling zones and oceanic fronts.

The addition of a new lower class can have benefits for tracking the
progression of the surface of the most oligotrophic oceanic areas over a
given time period. This could be achieved by running the algorithm on
the full CCI series. On the other hand, an altered FU scale would have
reduced significance when linking to historic measurements because

the new class 0 takes pixels from the old class 1. Consequently, IOPs and
AOPs associated to FU=1 are altered, and shifted towards a greener
type, and therefore, all figures and tables displaying aggregated quan-
tities would need to be rebuilt. Classes 2 and higher would remain
unaltered.

4. Conclusions

This work has performed for the first time a thorough evaluation of
the hue angle and FU products over global oceanic waters. The pro-
jection of monthly climatological Rrs of selected marine zones onto the
CIE (x,y) plane depicted a continuous trail, that formed a rather com-
pact curved line for the oligotrophic zones, suggesting a good descrip-
tion using a single parameter (case 1) while the trail showed increasing
spread as hue angle decreased, as expectable for case 2 waters. The FU
scale falls short in describing optical variability of the oligotrophic
zones, with all oligotrophic gyres shown as FU=1. For mid-latitude
zones, coastal zones and productive seas, ranges encompassed two,
three, up to even five FU classes. We showed that the FU scale can be
expanded to better characterize variability in oligotrophic waters.

Considering the FU index as a clustering variable of satellite ocean
color data allowed the determination of median chlorophyll, Secchi
disk depth and diffuse attenuation coefficient, for every FU, providing a
physical basis for the FU scale and allowing the association of water
color to relevant parameters for primary production, ocean heating or
visibility. This approach is methodologically different to that presented
in Wang et al. (2019), which combined radiative transfer modeling and
empirical relationships to relate zSD and FU data to modern IOPs.

The FU OWTs form a clear sequence from bluest to greenest waters,
with increasing Ca, increasing Kd and decreasing zSD. As FU increases,
so does the spread within each class, indicating an increasing optical
diversity and decreasing representativeness of an average class.

Fig. 16. a) Polar coordinates (α,s) of the 21
original FU classes, after Novoa et al.
(2013), with derived spline curve and co-
ordinates (α0,s0) of the new class FU0. b)
The CIE 1931 color space in the (x,y) co-
ordinates, with the coordinates of the 21 FU
colors (2013) and the new FU0 (red dot).
(For interpretation of the references to
color in this figure legend, the reader is
referred to the web version of this article.)

FU
Jan. Feb. Mar.

Dec.

May Jul.

Apr.

Sep.

Aug.

Oct. Nov.

Jun.

Fig. 17. Global FU-extended annual variability based on the ESA-OC-CCI v2.0 climatological Rrs.
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Comparatively, the classes proposed in Jackson et al. (2017) show si-
milar characteristics except with a broader range for blue waters, a
slight mismatch in color with respect to the FU classification, and three
upper classes that do not add further dynamic range in the context of
color (not brightness). Contrary to these two classifications, classes by
Mélin and Vantrepotte (2015) and Wei et al. (2016) highlight Rrs shape
differences within the average marine waters and identify clusters of
similar hue but different saturation.

The FU optical water types are a clearly ordered set in terms of the
hue angle. Similar first-order behavior was found for the global marine
Rrs, which supported the definition of class memberships as functions
proportional to the angular distances to the two nearest FU, having the
properties of adding up to one at a given hue angle. This methodology
sets the basis for an intuitive yet rigorous algorithm blending proce-
dure.

Projection of a spectrum onto the (x,y) plane has the limitation of
being sensitive only to spectral information within the visible range,
with the bands 412 nm and 670 nm already having a minimal weight.
An expectable effect is the possible inability to respond to CDOM
changes in marine waters that are independent to Ca. Any other outside
this range is not detectable.

The direct relationships between color, transparency and phyto-
plankton are representative of average marine conditions and thus less
frequent events are not represented. Examples of these situations are
glacial flour-rich lakes or marine coccolithophore blooms. In both cases,
turbidity is much higher than described by the average relationships
shown here, given their hue angle. This anomaly is caused by the kind
of particles present in the water, that highly increase the brightness and
saturation of the spectrum without increasing the hue angle very much,
compared to average marine cases. If such anomalous spectra are to be
included in optical water types, they can be manually extracted from

selected images (Moore et al., 2012).
In this article, we have studied the global traits of optical variability.

FU classes showed internal variability that is expected to relate to dif-
ferent zones of the ocean. Future work could aim at clustering data
within each FU class and identify similarities and differences between
these “second-order classes” within each FU. This approach would
provide more insights of optical variability within distinct optical
ranges in the world's oceans.

In addition to all the characteristics of any OWT classification (i.e.,
tool for uncertainty assessment and for variability monitoring), the FU
scale adds the advantage of being linkable to historic measurements.
This approach can allow us to continue to monitor long-term change in
optical diversity over the global ocean color by stitching together in situ
FU data collected over the past century with the satellite era. The ap-
proach can be used to bridge, in a consistent manner, satellite data from
two different periods (e.g. 1970–80's CZCS and 1997-onward) using in
situ FU data over the two periods. The FU climatology can be the basis
for quality control of in-situ global FU data. For instance, in-situ values
that would be highly off the climatological values could be flagged.
Nevertheless, any study linking satellite FU to historic in-situ FU from
visual observation will need to deal with the issue that FU observations
over a Secchi disk appear greener than those over an optically deep
water column (Pitarch, 2017). Another issue is that satellite FU are
calculated from bidirectionally-corrected Rrs, whereas in-situ FU come
from upwelling radiance in air, for any illumination conditions. An
added difficulty is that archived FU data provide no information on the
atmospheric conditions. This is likely to add unknown biases, whose
effect will need to be tested, potentially using coupled atmospheric and
marine optical modeling.

Increasingly, bio-optical modules are being added to global bio-
geochemical models (Baird et al., 2016; Dutkiewicz et al., 2019) to look

Ca (mg m
-3

)

a)
Feb.

b)
Aug.

Fig. 18. Climatological chlorophyll-a maps for the months a) February and b) August. The contour lines are the boundaries between FU classes, including the newly
developed FU0.
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at impacts of climate change. Our approach can be integrated and used
to verify early 20th century model simulations through comparison
with in situ FU data collected at the time.

As a final remark, the FU scale and the hue angle are powerful
quantities for outreach and educational purposes, easy to understand by
a broader audience. They are intuitive quantities that help provide clear
messages to spread scientific developments to mass media (McGrath,
2019) and are ideal for developing citizen-science projects and events
on water quality and ocean state, and engaging citizens in becoming
actively involved in environmental monitoring (Citclops, 2015). For
these reasons, this topic will deserve further attention by the commu-
nity in the coming years.
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Appendix A. Annex A

Table A1
Percentiles 25th, 50th (median, bold) and 75th of the global climatological Rrs associated to every FU, times 1000. The median values are defined as the FU-Rrs OWTs.
The normalized root mean square deviation (RMS difference over the mean value) is provided, as useful to show the indicating ability of the FU classes.

FU 1 2 3 4 5 6 7 8 9 10 11

Rrs412 p25 11.02 7.66 5.19 3.02 2.09 1.82 1.80 1.83 1.92 1.94 1.98
p50 12.33 8.51 6.22 3.77 2.62 2.44 2.77 2.98 3.14 3.10 3.06
p75 13.97 9.33 7.28 4.73 3.42 3.66 4.75 5.25 5.31 4.98 4.62
NRMSD 1.02 1.01 1.03 1.07 1.13 1.25 1.28 1.24 1.22 1.23 1.21

Rrs443 p25 8.64 6.24 4.65 3.10 2.25 1.99 1.94 1.90 1.92 1.87 1.89
p50 9.53 6.84 5.31 3.66 2.78 2.75 3.20 3.42 3.63 3.51 3.48
p75 10.51 7.46 6.10 4.35 3.49 4.22 5.80 6.54 6.59 5.97 5.65
NRMSD 1.01 1.01 1.02 1.05 1.14 1.30 1.32 1.28 1.26 1.25 1.21

Rrs490 p25 5.83 5.17 4.36 3.37 2.77 2.77 3.00 3.15 3.36 3.41 3.39
p50 6.05 5.44 4.86 3.88 3.38 3.91 5.03 5.59 5.96 5.89 5.93
p75 6.29 5.81 5.56 4.52 4.27 6.11 8.66 9.70 9.88 9.19 8.83
NRMSD 1.00 1.01 1.02 1.06 1.15 1.29 1.28 1.23 1.20 1.19 1.16

Rrs510 p25 3.36 3.32 3.20 2.90 2.73 2.89 3.24 3.53 3.85 3.93 3.98
p50 3.45 3.51 3.51 3.28 3.21 3.88 5.19 5.94 6.47 6.47 6.62
p75 3.54 3.81 4.06 3.78 3.94 5.87 8.71 10.10 10.48 9.92 9.68
NRMSD 1.00 1.01 1.02 1.04 1.12 1.27 1.27 1.21 1.19 1.18 1.15

Rrs555 p25 1.33 1.69 1.92 1.91 2.06 2.64 3.45 4.18 4.88 5.34 5.75
p50 1.42 1.80 2.14 2.31 2.60 3.70 5.68 7.15 8.34 8.88 9.50
p75 1.52 1.94 2.50 2.81 3.36 5.80 9.92 12.53 13.64 13.42 13.61
NRMSD 1.01 1.01 1.02 1.07 1.16 1.31 1.29 1.22 1.19 1.17 1.14

Rrs670 p25 0.12 0.20 0.28 0.33 0.43 0.60 0.86 1.19 1.62 2.02 2.43
p50 0.14 0.23 0.32 0.39 0.51 0.79 1.38 2.15 2.99 3.61 4.23
p75 0.16 0.28 0.37 0.47 0.65 1.23 2.60 4.25 5.45 6.06 6.75
NRMSD 1.27 1.10 1.11 1.17 1.25 1.39 1.41 1.32 1.28 1.25 1.21
FU 12 13 14 15 16 17 18 19 20 21

Rrs412 p25 2.12 2.10 1.82 1.66 1.45 1.24 2.46 2.63 2.67 2.73
p50 3.26 3.15 2.84 2.40 2.22 2.02 3.74 4.57 4.07 4.09
p75 4.76 4.63 4.42 4.05 4.32 4.09 6.32 6.89 5.96 6.31
NRMSD 1.18 1.25 1.31 1.40 1.47 1.49 1.31 1.36 1.57 1.36

Rrs443 p25 2.03 2.09 1.76 1.61 1.39 1.21 1.12 1.32 1.37 1.92
p50 3.81 3.48 2.97 2.39 1.99 1.62 1.71 2.04 2.31 2.70
p75 5.70 5.43 4.80 3.61 3.18 2.33 2.75 3.10 3.45 3.88
NRMSD 1.19 1.16 1.19 1.19 1.23 1.24 1.24 1.17 1.18 1.14

Rrs490 p25 3.59 3.59 3.19 2.97 2.72 2.49 2.15 2.37 2.43 2.64
p50 6.49 6.06 5.17 4.34 3.68 3.21 2.95 3.41 3.38 3.85
p75 9.01 8.89 7.95 6.22 5.65 4.34 4.39 4.88 5.43 5.36
NRMSD 1.14 1.13 1.15 1.14 1.16 1.16 1.18 1.12 1.15 1.12

Rrs510 p25 4.17 4.07 3.72 3.52 3.16 2.83 2.45 2.74 2.64 2.73
p50 7.22 6.91 5.89 4.89 4.22 3.63 3.37 3.54 3.67 3.76
p75 9.97 9.97 8.94 6.96 6.21 4.79 4.82 5.07 5.24 5.01
NRMSD 1.13 1.12 1.14 1.14 1.15 1.15 1.17 1.11 1.12 1.10

Rrs555 p25 6.18 6.40 5.52 5.18 5.06 4.84 3.89 3.47 2.80 2.77
p50 10.64 10.61 9.07 7.54 6.78 6.19 4.91 4.88 4.51 3.89
p75 14.29 14.79 13.83 10.83 9.83 8.03 7.20 6.58 6.08 5.31
NRMSD 1.13 1.12 1.14 1.14 1.15 1.13 1.16 1.12 1.14 1.12

Rrs670 p25 3.05 3.59 3.76 4.25 4.67 5.17 4.51 5.20 5.09 5.97
p50 5.48 5.93 5.96 6.03 6.11 6.38 6.21 6.78 7.52 9.23
p75 7.97 8.89 9.26 8.66 9.11 8.46 9.16 9.87 10.71 14.24
NRMSD 1.18 1.15 1.15 1.14 1.16 1.18 1.25 1.18 1.13 1.17
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Table A2
Percentiles 25th, 50th (median, bold) and 75th of the global climatological Kd associated to every FU, times 10. The normalized root mean square deviation (RMS
difference over the mean value) is provided, as useful to show the indicating ability of the FU classes.

FU 1 2 3 4 5 6 7 8 9 10 11

Kd412 p25 0.23 0.40 0.62 1.00 1.60 2.54 3.79 5.26 6.92 8.58 10.48
p50 0.27 0.46 0.69 1.11 1.79 2.90 4.58 6.87 9.38 11.42 13.63
p75 0.31 0.51 0.78 1.27 2.06 3.45 6.06 9.06 11.87 14.36 17.24
NRMSD 2.19 1.10 1.13 1.14 1.13 1.12 1.10 1.08 4.20 1.57 1.25

Kd443 p25 0.22 0.38 0.56 0.85 1.30 2.05 3.21 4.78 6.47 8.41 10.39
p50 0.25 0.42 0.62 0.93 1.45 2.32 3.77 5.65 7.71 9.72 11.80
p75 0.29 0.47 0.69 1.05 1.65 2.71 4.86 7.33 9.56 11.50 13.54
NRMSD 2.18 1.11 1.16 1.18 1.17 1.14 1.10 1.07 5.96 2.36 2.45

Kd490 p25 0.24 0.34 0.46 0.63 0.89 1.30 2.00 2.88 3.89 5.04 6.29
p50 0.26 0.37 0.50 0.69 0.99 1.50 2.42 3.72 5.14 6.47 7.81
p75 0.29 0.40 0.55 0.77 1.14 1.85 3.48 5.43 7.12 8.38 9.70
NRMSD 1.89 1.11 1.18 1.22 1.22 1.19 1.15 1.11 3.54 2.06 1.79

Kd510 p25 0.35 0.45 0.55 0.66 0.85 1.21 1.79 2.54 3.40 4.39 5.54
p50 0.37 0.47 0.58 0.73 0.95 1.40 2.21 3.37 4.71 5.87 7.08
p75 0.39 0.50 0.63 0.80 1.10 1.73 3.28 5.11 6.63 7.80 9.00
NRMSD 1.59 1.09 1.16 1.22 1.24 1.20 1.16 1.13 3.51 2.04 1.79

Kd555 p25 0.64 0.67 0.72 0.79 0.93 1.19 1.60 2.11 2.71 3.42 4.23
p50 0.65 0.68 0.74 0.83 0.99 1.32 1.88 2.81 3.84 4.69 5.59
p75 0.66 0.70 0.76 0.87 1.08 1.55 2.82 4.31 5.54 6.42 7.37
NRMSD 1.35 1.07 1.13 1.20 1.23 1.21 1.17 1.15 3.01 2.10 1.74

Kd670 p25 4.42 4.44 4.45 4.46 4.50 4.59 4.82 5.78 6.42 6.98 7.50
p50 4.43 4.44 4.46 4.48 4.53 4.70 5.66 6.40 7.13 7.79 8.42
p75 4.43 4.45 4.48 4.51 4.59 5.42 6.41 7.43 8.32 8.98 9.73
NRMSD 1.00 1.00 1.00 1.00 1.01 1.02 1.02 1.04 1.18 1.19 1.11
FU 12 13 14 15 16 17 18 19 20 21

Kd412 p25 12.56 15.06 17.50 20.37 23.06 24.33 14.71 14.78 20.10 28.15
p50 17.00 19.70 23.33 28.57 35.88 44.40 25.32 30.19 33.62 47.23
p75 21.11 24.73 30.01 36.35 46.89 60.39 44.51 48.40 45.81 81.00
NRMSD 1.67 1.40 1.31 1.16 1.21 1.29 1.67 1.37 1.48 1.28

Kd443 p25 12.97 15.36 18.93 24.12 30.63 39.77 35.75 35.42 34.58 40.87
p50 14.33 17.15 21.19 26.66 35.12 47.24 46.93 46.74 44.33 57.27
p75 16.45 19.49 23.61 29.67 39.76 54.44 59.79 64.02 61.65 89.37
NRMSD 1.95 1.35 1.15 1.12 1.18 1.21 1.40 1.19 1.21 1.25

Kd490 p25 8.14 9.86 11.85 14.86 18.64 23.25 23.33 24.24 25.04 29.67
p50 9.58 11.47 13.45 16.45 20.61 26.40 27.61 28.84 30.03 39.26
p75 11.66 13.59 15.79 18.13 22.66 29.65 31.29 35.38 38.47 60.90
NRMSD 1.63 1.32 1.12 1.06 1.17 1.16 1.32 1.17 1.11 1.22

Kd510 p25 7.27 8.74 10.52 13.28 16.73 20.96 21.71 22.54 23.51 28.74
p50 8.76 10.39 12.20 14.76 18.65 23.82 24.86 26.20 28.21 37.06
p75 10.89 12.62 14.67 16.83 20.62 26.94 28.69 32.53 35.65 59.13
NRMSD 1.76 1.42 1.13 1.06 1.17 1.17 1.32 1.17 1.11 1.20

Kd555 p25 5.56 6.50 7.75 9.52 11.81 14.75 15.73 18.55 21.91 27.28
p50 6.86 8.06 9.34 10.99 13.33 16.40 18.19 22.28 25.47 36.08
p75 8.80 10.31 12.03 13.46 16.21 18.74 22.96 27.76 29.87 54.66
NRMSD 2.03 1.58 1.16 1.08 1.40 1.26 1.39 1.16 1.12 1.19

Kd670 p25 8.19 8.85 9.60 10.71 12.22 13.91 13.05 12.82 12.92 14.10
p50 9.39 10.15 10.88 11.93 13.51 15.52 15.28 15.51 15.76 17.55
p75 10.78 11.72 12.91 13.71 15.24 17.17 17.56 19.37 19.60 25.42
NRMSD 1.09 1.08 1.04 1.03 1.05 1.10 1.20 1.11 1.07 1.13

Table A3
Percentiles 25th, 50th (median, bold) and 75th of the global climatological Secchi disk depth (m) associated to every FU. The normalized root mean square deviation
(RMS difference over the mean value) is provided, as useful to show the indicating ability of the FU classes.

FU 1 2 3 4 5 6 7 8 9 10 11

zSD p25 32.37 23.29 17.09 12.22 8.86 6.08 3.27 2.13 1.65 1.42 1.24
p50 36.33 25.12 18.67 13.63 9.95 7.17 4.97 3.32 2.42 1.97 1.66
p75 41.94 27.13 20.18 15.06 11.16 8.00 5.86 4.44 3.46 2.74 2.22
NRMSD 1.02 1.01 1.01 1.02 1.02 1.04 1.06 1.08 1.08 1.08 1.08
FU 12 13 14 15 16 17 18 19 20 21

zSD p25 1.04 0.91 0.80 0.72 0.63 0.54 0.53 0.48 0.48 0.36
p50 1.35 1.15 1.01 0.87 0.73 0.61 0.65 0.65 0.60 0.54
p75 1.68 1.43 1.21 1.00 0.83 0.70 0.78 0.80 0.76 0.70
NRMSD 1.08 1.06 1.04 1.03 1.03 1.04 1.07 1.07 1.06 1.10
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Table A4
Percentiles 25th, 50th (median, bold) and 75th of the global climatological chlorophyll concentration (mg m-3) associated to every FU, times 10. The normalized root
mean square deviation (RMS difference over the mean value) is provided, as useful to show the indicating ability of the FU classes.

FU 1 2 3 4 5 6 7 8 9 10 11

Ca p25 0.46 1.25 2.19 4.43 8.77 13.94 20.89 28.13 33.14 38.03 42.71
p50 0.66 1.44 2.60 5.48 11.12 17.46 25.26 33.52 39.33 46.66 54.02
p75 0.85 1.66 3.16 7.00 14.55 22.85 31.99 41.53 49.98 63.17 72.95
NRMSD 1.13 1.04 1.13 1.13 1.12 1.12 1.09 1.09 1.09 1.11 1.12
FU 12 13 14 15 16 17 18 19 20 21

Ca p25 45.20 50.17 55.44 61.79 69.50 79.28 30.21 22.51 15.37 10.27
p50 57.85 63.99 66.21 72.65 83.52 111.07 93.54 46.12 32.20 16.33
p75 76.39 89.26 86.30 86.81 106.12 140.47 133.30 105.66 67.18 36.89
NRMSD 1.16 1.19 1.18 1.15 1.12 1.11 1.21 1.36 1.43 1.63
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