
Crowdsensing Under Recent Mobile Platform
Background Service Restrictions - A Practical

Approach
Oliver Petter

German Research Center for Artificial
Intelligence (DFKI)

Kaiserslautern, Germany
oliver.petter@dfki.de

Marco Hirsch
German Research Center for Artificial

Intelligence (DFKI)
Kaiserslautern, Germany
marco.hirsch@dfki.de

Eshan Mushtaq
University of Kaiserslautern
Kaiserslautern, Germany
emushtaq@rhrk.uni-kl.de

Péter Hevesi
German Research Center for Artificial

Intelligence (DFKI)
Kaiserslautern, Germany
peter.hevesi@dfki.de

Paul Lukowicz
University of Kaiserslautern

German Research Center for Artificial
Intelligence (DFKI)

Kaiserslautern, Germany
paul.lukowicz@dfki.de

ABSTRACT
Crowdsensing applications are a popular and common re-
search tool, because they allow volunteering participants to
provide valuable data via their mobile phones with minimal
effort. In most scenarios, it is an important goal to gather data
in a reliable and continuous way, while the app runs in the
background to avoid disturbing the user. However, in recent
versions, Android as well as iOS severely restrict the func-
tionality of an app when it does not have the authorization
of a foreground process.
In this work, we present a structured overview of the

technical state of background service restrictions under iOS
(12) and Android (9). We demonstrate a practical approach
for working with these restrictions by utilizing the respective
operating system’s location provider solution.

CCS CONCEPTS
• Computer systems organization → Embedded sys-
tems; • Applied computing → Health care information
systems; • Human-centered computing→ User studies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6869-8/19/09. . . $15.00
https://doi.org/10.1145/3341162.3344867

KEYWORDS
mobile phone sensors; participatory data collection; influenza
monitoring; crowdsensing

ACM Reference Format:
Oliver Petter, Marco Hirsch, Eshan Mushtaq, Péter Hevesi, and Paul
Lukowicz. 2019. Crowdsensing Under Recent Mobile Platform Back-
ground Service Restrictions - A Practical Approach. In Adjunct Pro-
ceedings of the 2019 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and the 2019 International Symposium on
Wearable Computers (UbiComp/ISWC ’19 Adjunct), September 9–13,
2019, London, United Kingdom. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3341162.3344867

1 INTRODUCTION
The continuous rise of mobile phone usage in recent years
has resulted in greater interest to leverage them as a plat-
form to gather large amounts of data for a variety of different
application scenarios [5]. One of these scenarios involves
volunteer citizens who are part of a participatory disease
surveillance system and contribute to it by donating contex-
tual information that is obtained from the sensors of their
mobile devices.
This kind of data can prove to be very useful for the in-

tended purpose. For instance, the movement patterns of in-
dividuals can aid in the prediction of diseases such as In-
fluenza [1]. While additional input in form of questionnaires
is sometimes a key component, crowdsensing does not nec-
essarily require any further interaction from the user to
participate, apart from setting the initial permissions on his
device. Hence, the data can be contributed at low cost, at
least in terms of time invested by the participants.

https://doi.org/10.1145/3341162.3344867
https://doi.org/10.1145/3341162.3344867

UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom Petter et al.

Previous Work
In previous work, enhancing epidemiological studies by us-
ing sensor data from mobile phones was shown to be a
promising approach to get deeper insight into the condi-
tion and behavior of participants, such as in the use case
of Influenza monitoring [4]. Accessing location data and a
variety of other sensors with fine temporal resolution in
combination with a privacy-preserving aggregation is an
important task of a mobile application in the context of a
participatory disease surveillance system.
The grippeNET mobile application, as an initial in-the-

wild approach, demonstrated practicability while taking eth-
ical aspects into account [2]. But also technical challenges
and motivational aspects need to be studied and improved
since they have an impact on data quality [3]. While the
motivation to participate in crowdsensing can be raised by
offering useful services, entertainment or monetary bene-
fits [6], we suspected that it could also be lowered by distrust.

Due to the strict privacy measures within grippeNET, ac-
cess to any raw data or the inquiry of participants for be-
havioral questions other than those related to Influenza, is
not possible. To research and improve privacy preserving
data aggregation and better understand the technical limita-
tions that are imposed by device manufactures and different
operating system versions, we started a new study inside a
controlled environment, called Together against flu. Partici-
pants were asked to install an Android application that was
designed to collect sensor data periodically. Data included
mobile signal strength, weather, location coordinates, step
count, battery status, current activity and others. The study
is ongoing and has consenting participants in the age group
of 20 to 35 years. Their Android mobile phones have differ-
ent operating system versions ranging from 6 to 9 and come
from a variety of different manufacturers. In total, 59 unique
devices contributed data in the study so far over the course
of 8 months. The frequency and quality of the sampled data
varied due to individual usage behavior, data skepticism and
the constraints of the different devices and their operating
system versions.
Figure 1 portrays differences during one data collection

window for three selected participants. Data is only received
while the app is technically allowed to access sensor data as
it is running as a background service. The gaps in the visual-
ization for higher Android versions, especially 9, highlight
the inconsistency in the amount of data received. Although,
sometimes gaps exist because of erratic and hard to pre-
dict permission changes of the participants, in most cases,
they result from the restrictions of the operating system. In
this work we focus on if and how we can overcome these
restrictions in a sustainable way.

Figure 1: Time line showing continuity of data points re-
ceived via the Together against flu application for three ex-
ample users. In these cases, the app has been actively in-
stalled during the period frommidNovember tomidDecem-
ber, 2018 on devices with different Android versions.

2 CHALLENGES
Smartphone operating systems evolve continuously over
time in an effort to bring in many improvements targeted to
benefit the user. Unfortunately, this evolution brings along
the overhead of maintaining and keeping apps up to date.
New versions involve stricter rules for API usage and evo-
lution of existing functionality, making it hard for devel-
opers to build new versions while maintaining backwards-
compatibility. In recent versions, Android as well as iOS
severely restrict the functionality of an app when it does not
have the authorization of a foreground process.

Distinctive features of iOS
Most mobile phones are running either Android or iOS. Al-
though both operating systems share a common subset of
sensor interfaces that are accessible by developers, there are
restrictions that complicate or completely prevent the collec-
tion of some data. The grippeNET and Together against flu
applications that have been mentioned, were developed for
Android and accessed a multitude of data sources that are
outlined in table 1. In our work, we first investigated which
of these sensor interfaces are available to access on iOS.

Similar to Android, iOS provides several options to access
location data of devices. It is possible to request the current
location actively as well as being informed about location
changes at specific intervals on both platforms. However,
iOS is more restrictive in terms of access to WiFi, Bluetooth,
signal strength and battery data. It is only possible to scan
for nearby Bluetooth devices when the app is running as a
foreground process, otherwise the specific UUID of a Blue-
tooth device has to be known before it can be scanned for.
Regarding WiFi, the accessible data is limited to the current
connection, because scanning for all available networks is
not allowed at all. Battery change notifications can only be

Crowdsensing Under Recent Mobile Platform Background. . . UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom

Table 1: Sensor access options on iOS.

Data sources iOS
Location yes
WiFi partially
Bluetooth partially
Signal strength no
Battery level partially
Activity yes
Installed apps no

processed by an app, when it is running as a foreground
process. In contrast to those limitations, iOS provides several
options to access activity data. It does not only grant access
to pedometer and activity confidence scores recordings, but
also includes a very widely used health app (Apple Health)
that is deeply integrated into the platform and can be used
as a data source. It is important to note that HealthKit data
is encrypted while a device is locked, so that access is only
possible while the device is in use. Finally, it is not possible
to access any data about other applications installed on the
device on iOS.

Background Data Collection
While a user is actively using an app that is part of a participa-
tory disease surveillance system when he reports information
such as his symptoms, the collection of sensor data mostly
takes place when the app is not used and in background.
As a principle, the user should under no circumstances be
disturbed in his remaining workflow by this process. This
is in everyone’s interest, because an increased number of
disruptions might not only displease an user, but also tempt
him to no longer participate in the crowdsensing. For this
reason, it can neither be assumed that the permissions of
a foreground process are granted at the time of collection,
nor can those permissions actively be requested without vi-
olating the aforementioned principle. Instead, the app has
to be designed to ensure functionality while running as a
background process.
The documentation of iOS states a list of nine UIBack-

groundModes that define the use cases in which an applica-
tion running in the background can become active. Apps that
use a UIBackgroundMode, but do not adhere in their function-
ality to the corresponding use case, are rejected by Apple
during the review process. The UIBackgroundModes are, for
instance, intended for apps that offer location-functionality
based on the standard location services from the Core Lo-
cation Framework or apps that require to be informed by a
remote notification when new content is available to down-
load. For accessing location data, also two other options exist

Figure 2: App Standby Bucket view inside the developer op-
tions (left); Force Close Screen of the Android app switcher
(right).

- the Visits Location Service and Significant-Change Location
Service. When using them, an app is regularly notified of
changes to the device’s location if an user has allowed the
app to always access his location.
Starting with version 6 of Android, several changes for

apps running in the background were introduced. If a de-
vice running on Android 6 or higher is left unplugged and
unused for some time, the device enters a Doze mode that
defers network access and CPU-intensive tasks, as well as
jobs, syncs, and standard alarms to a recurring maintenance
window. Furthermore, App Standby restricts network access
for apps that has not been used recently. Android 8 limits the
number of updates received from the Fused Location Provider
as well as the maximal number of backgroundWiFi and Blue-
tooth scans to a few per hour. Moreover, apps running in
the background can not start background services any more,
but should use the JobScheduler to launch jobs instead. With
Android 9, apps can not receive data frommost sensors while
they do not have the authorization of a foreground process.
The GPS sensor is excluded from this limitation. Addition-
ally, a new battery management feature called App Standby
Buckets sorts apps by how recently and frequently they are
used. Buckets can be checked and selected through the An-
droid developer options as shown in Figure 2. Depending on
this sorting, network access, jobs and alarms are deferred at
different intervals, as long as the device is not charging.

3 PRACTICAL APPROACH
None of the offered UIBackgroundModes for iOS fits exactly
to the distinct use case of a crowdsensing app - one which

UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom Petter et al.

Table 2: Features of the practical approaches under background process restrictions;
last two rows are only relevant for iOS.

iOS Android
Receive location updates on a regular basis yes yes
Time window to process location updates is usable for other tasks yes yes
App continues to work after force close yes yes
Requires user authorization to access location yes yes
Requires active background app refresh setting yes /
Requires Background Modes key no /

collects sensor data in a non-interfering way while running
in the background. The characteristics of the Visits Location
Service and Significant-Change Location Service are, however,
suitable to receive at least location data on a regular basis.
The documentation states that the system grants an app
10 seconds to process the location update on every receipt.
Based on experience reports, we assumed that this time pe-
riod could be extended to 3 minutes by starting an additional
BackgroundTask, to access other data sources as well. Our
first experiments showed that this is indeed possible, but
actually not necessary. Contrary to the documentation, we
were able to not only process the location update, but also
perform other tasks for longer then 10 seconds without using
an additional BackgroundTask. Another advantage of using
the Visits Location Service or Significant-Change Location Ser-
vice is that an app is relaunched, even if an user forces it to
close.
Considering the typical usage pattern of an app that is

part of a participatory disease surveillance system, the app
will most probably be sorted into the last of the four buckets
(Rare) by the App Standby Bucket feature of Android 9. As a
result, all jobs would be deferred for up to 24 hours. Although
one has to adapt to the new features of the android system,
this would severely oppose the objective of collecting (es-
pecially location) data with fine temporal resolution. Our
approach to achieve this goal despite the given limitations in
the best possible way is based on the Fused Location Provider.
By using the Fused Location Provider under Android 8 and
higher, an app running in the background is informed about
the location of the device a few times per hour. Initially we
planned to start a background service each time a location
update arrives, to obtain a time window in which we could
access other data sources. However, this is prevented by the
changes introduced with Android 8, limiting us to using jobs
that could again be deferred up to 24 hours because of the
app probably being sorted into the Rare bucket. Most inter-
estingly, our first experiments - see Figure 3 - revealed that
it might be possible to use the granted time window itself
not only to process the location update, but also to perform

Figure 3: Android prototype using the Fused Location
Provider running as a foreground process (left) and running
as a background process (right).

other tasks such as accessing the remaining data sources and
storing the results. However, it must be noted that the main
thread is blocked for this time, since we can only work in this
thread while the app is running in the background. Using the
Fused Location Provider, a positive side effect is that the app
continues to receive location updates even after it has been
force closed1 by the user, similar to the behavior when the
Visits Location Service or Significant-Change Location Service
is used in iOS.

4 CONCLUSION
During the design phase of a new mobile application for
a participatory disease surveillance system, we faced severe
restrictions of the current iOS and Android versions, particu-
larly regarding the permissions of background services. Un-
fortunately, this mode of operation is imposed by the given
use case of an app that accesses sensor data throughout the
1by swiping it out of the app switcher screen as shown in Figure 2

Crowdsensing Under Recent Mobile Platform Background. . . UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom

day without disturbing its users in their workflows. The new
restrictions also render the design of previous versions of
the Android app inoperable. Therefore, we had to elaborate
new approaches by working through the official documenta-
tions of Apple and Google as well as a variety of third-party
software development resources. The results of this research
led to a design for the iOS app that is constructed around
the Visits Location Service and Significant-Change Location
Service and one for the Android app that is built upon the
Fused Location Provider. We implemented a proof of concept
for both operating systems.

Although the temporal resolution of the data gathered by
using our approaches is not optimal, they appear to be the
best possible solutions for current iOS and Android versions.
Further testing is essential to verify the functioning of the
approaches in all scenarios. Especially the length of the time
interval in which additional sensor data can be gathered
requires further investigation.

For our purpose, research into the current technical state
was necessary for iOS (iOS 12), as well as for Android (An-
droid 9).With each update, both systems receive new features
that on the one hand improve the performance of devices
or the privacy of users, but on the other hand might restrict
the accustomed approaches of researchers to access sensor
data. The upcoming version of iOS (iOS 13), for example,
will inform users about apps that use background location
tracking with a pop-up notification that includes a map of
the accessed locations. It is therefore becoming increasingly
important to be informed about these changes in order to be

able to develop software for research purposes that is both
functional and accepted by users.

REFERENCES
[1] Gianni Barlacchi, Christos Perentis, Abhinav Mehrotra, Mirco Musolesi,

and Bruno Lepri. 2017. Are You Getting Sick? Predicting Influenza-like
Symptoms Using Human Mobility Behaviors. EPJ Data Science 6, 1 (Dec.
2017). https://doi.org/10.1140/epjds/s13688-017-0124-6

[2] Lester Darryl Geneviève, Andrea Martani, Tenzin Wangmo, Daniela
Paolotti, Carl Koppeschaar, Charlotte Kjelsø, Caroline Guerrisi, Marco
Hirsch, Olivia Woolley-Meza, Paul Lukowicz, Antoine Flahault, and
Bernice Simone Elger. 2019. Participatory Disease Surveillance Systems:
Ethical Framework. Journal of Medical Internet Research 21, 5 (May
2019), e12273. https://doi.org/10.2196/12273

[3] Jennifer L. Hicks, Tim Althoff, Rok Sosic, Peter Kuhar, Bojan Bostjancic,
Abby C. King, Jure Leskovec, and Scott L. Delp. 2019. Best practices for
analyzing large-scale health data from wearables and smartphone apps.
npj Digital Medicine 2, 1 (2019), 45. https://doi.org/10.1038/s41746-019-
0121-1

[4] Marco Hirsch, Olivia Woolley-Meza, Daniela Paolotti, Antoine Fla-
hault, and Paul Lukowicz. 2018. grippeNET App: Enhancing Participa-
tory Influenza Monitoring Through Mobile Phone Sensors. In Proceed-
ings of the 2018 ACM International Joint Conference and 2018 Interna-
tional Symposium on Pervasive and Ubiquitous Computing and Wearable
Computers - UbiComp ’18. ACM Press, Singapore, Singapore, 833–841.
https://doi.org/10.1145/3267305.3274171

[5] Hamed Vahdat-Nejad, Elham Asani, Zohreh Mahmoodian, and Moham-
mad Hossein Mohseni. 2019. Context-aware computing for mobile
crowd sensing: A survey. Future Generation Computer Systems 99 (2019),
321 – 332. https://doi.org/10.1016/j.future.2019.04.052

[6] X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X. Mao. 2016.
Incentives for Mobile Crowd Sensing: A Survey. IEEE Communications
Surveys Tutorials 18, 1 (Firstquarter 2016), 54–67. https://doi.org/10.
1109/COMST.2015.2415528

https://doi.org/10.1140/epjds/s13688-017-0124-6
https://doi.org/10.2196/12273
https://doi.org/10.1038/s41746-019-0121-1
https://doi.org/10.1038/s41746-019-0121-1
https://doi.org/10.1145/3267305.3274171
https://doi.org/10.1016/j.future.2019.04.052
https://doi.org/10.1109/COMST.2015.2415528
https://doi.org/10.1109/COMST.2015.2415528

	Abstract
	1 Introduction
	Previous Work

	2 Challenges
	Distinctive features of iOS
	Background Data Collection

	3 Practical Approach
	4 Conclusion
	References

