
Table Localization and Field Value Extraction in Piping and Instrumentation
Diagram Images

Arka Sinha
Smart Data and Services

German Research Center for Artificial Intelligence (DFKI)
Kaiserslautern, Germany

Email: arka.sinha@dfki.de

Johannes Bayer
Smart Data and Services

German Research Center for Artificial Intelligence (DFKI)
Kaiserslautern, Germany

Email: Johannes.Bayer@dfki.de

Syed Saqib Bukhari
German Research Center for Artificial Intelligence (DFKI)

Kaiserslautern, Germany
Email: saqib.bukhari@dfki.de

Abstract—Piping and Instrumentation Diagrams (P&IDs)
are graph-based engineering drawings utilised in process en-
gineering. These documents also contain aditional information
in tabular form. In this paper, the localisation and extraction
of information of these tables are investigated. Documents
used in this context are scanned raster version of P&IDs
with tabular data inside a frame. The objective is to extract
fields information from these tabular structures. This process
is mainly divided into table localisation and then table field
extraction from the segmented tables.

The table localization task is achieved primarily with contour
detection methods of computer vision. For the field-value ex-
traction, a combination of rule-based keywords and navigation
approach is used, utilising an Optical Character Recognition
(OCR) for text extraction and regular expression for string
comparison. This paper describes application of this extendable
approach to the P&ID domain, where it achieved a promising
result on a private dataset.

Keywords-Table Localization, Information Extraction, Piping
and Instrumentation Diagrams

I. INTRODUCTION

Piping and Instrumentation Diagrams (P&IDs) are an
integral part of process engineering. These diagrams not
only contain the graphical structure of a process engineering
plant, but also complex tabular structures containing impor-
tant information about the plant. In this paper, our focus
is to segment those tables from P&IDs and extract infor-
mation from those segmented tables. Character recognition
technology has seen a lot of advancement through the recent
years. There are already many well established methods for
applying Optical Character Recognition (OCR) on a scanned
document image. However, extracting text from an image
like P&IDs where other non-textual information is present,
is relatively complex as compared to text-only document
images.

In this paper we are proposing a two step methodology for
table understanding in P&ID documents. The first subtask

is solely focused on localizing the tables i.e. to find out
the coordinates of the tabular frames within a whole P&ID
document image. Once tables are successfully detected, in
the second subtask the desired fields can be extracted from
the tables. Cropping out the tables beforehand reduces a
huge amount of pre-processing load for an OCR engine
and as a knock-on effect, it also reduces its probability of
misreading characters since the amount of extraneous data
is less. In the experimental section of this paper, it has been
observed that the inaccuracy of OCR often undermined the
result. Therefore, it was one of the primary targets to keep
the scope of OCR as specific as possible.

This paper is further organised as follows. Section II
briefly describe some previous work in the domain of
table localization and information extraction. Section III
describes the first step of our proposed methodology i.e.
table localization in P&IDs. Section IV describes the tabular
information extraction from P&IDs i.e. the second step
of the proposed methodology. Both of these sections also
contain their respective performance evaluation, results and
their future work. A brief discussion about these results is
described in Section V. Finally, Section VI concludes the
paper.

II. RELATED WORK

Tengli et al.,2004 [2], worked on HTML tables in
webpages. They looked for 〈table〉 tags in the pages
and parsed its contents. They analyse various tags
(〈tr〉,〈td〉,〈th〉) to capture the table structure and their
results were promising. Embley et al., 2016 [7], also worked
on tables from the web. They segment and store tables for
query processing and can deal with tables in wide variety
of formats. However, since our work in this paper mainly
deals with electronic documents with no backend HTML or
XML, their method could not be adopted. Pinto et al.,2003
[3] applied Conditional Random Fields (CRFs) for table



extraction. They label different lines in the images as per
their relation with the tables. Then they trained their model
to find out where are the table boundaries or header cell
or row-column divisions. However, in P&IDs images the
tables have frames and have contours for the cells. Hence,
we propose to develop an algorithm without involving data
labelling and training a model. The algorithm in this work
is more inspired from the work of Riad et al.,2017 [1]
where they also deal with scanned/digital images. They use
connected component analysis for structural analysis of the
image and use OCR for textual information extraction.

III. TABLE LOCALIZATION METHOD IN P&IDS

A. Problem Statement

Every document in this work has table which contains
key information such as project number, project description,
index etc. For the first part of the work, the objective is to
detect the location of the table in the whole P&ID image.
Figure 1 shows an example of a P&ID diagram. Similar
images have been used as dataset for this paper.

One key feature in our dataset is that there is always one
table in each image and it is always at the bottom half of
the image. Since the scope of this work is primarily targeted
for the current dataset, this observation is utilized to narrow
down our search for table only in the bottom half of the
image as shown in Figure 2a. Please note that the Figure
2a has been edited to anonymize the data and it is not the
actual image used in this work.

Figure 1: A sample P&ID Image [12]

However, we want our code to be applicable to as many
general cases as possible. Hence, we edited some existing
images to place the tables at random locations to test if the
algorithm works when tables are located in various places.
We also gathered images with multiple tabular structures to
prove that the algorithm can detect more than one tables in
single image.

B. Employed Technologies

The main programming language used for this work is
Python (version 3.6) [11]. With OpenCV (version 3.4.1)
[9] library of Python, programmers have access to a wide
range of pre-built functions for computer vision techniques.
Tesseract (version 3.05.02) [10] OCR engine has been
used to carry out the part of field value extraction. Python
also supports packages for string matching (using regular
expressions RegEx). The target of this work is to use these
powerful tools in the right way to get the desired results.

C. Methodology

The non-table rectangular graphical structures usually
contain less textual information and less internal cellular
structures which is found in table because of the intersection
of row-column borders. Hence, to localize the tables, the
algorithm starts by looking for the rectangles in the image.
We use findContours method from OpenCV package as
the primary means to find all the edges or contours in the
image. This function can find the lines joining continuous
points of same color [8]. Among several options of contour
retrieval, we settled for retrieval mode as RETR_LIST and
approximation mode as CHAIN_APPROX_NONE to ensure
that we get each and every contour without any compression
and also we want to avoid any internal hierarchy between
the contours. While contours are being retrieved, they are
passed to approxPolyDP method of OpenCV to filter in
only the rectangular shaped contours.

D. Main Issue

Tables are made of multiple adjacent smaller rectangles
created by intersecting rows and columns. One of the major
issues faced during this phase was that the findContours
function was detecting the contours of the internal rectangles
but not the contour of the main table as a whole. Even
using RETR_EXTERNAL as retrieval mode did not give the
desired result. Part of the problem was that in most cases the
table shared two common boundaries with the image margin.
Therefore, the first target was to remove the margin. Our
program takes width of the margin as parameter. It draws
an unfilled rectangle with the same dimension as the image
with white border. The width of the border will be same as
the margin width parameter and the resulting image will be
the whole image without the margin lines. In this paper, after
analysing the available dataset, we settled on 0.015 (1.5 %
of the total image width) as margin width and it gives us
the desired result.

E. Table Blackout

Once the margin is removed, next target is to find a
way for the function to recognize the outer boundary of
the table as one single contour. Since the problem was due
to the function recognizing only the inner rectangles, it was
necessary to somehow remove them from the image. For this



a unique approach has been followed. We create a new white
image object with the same dimension as the input image.
Whenever the function detects any rectangle in the original
input, it draws a filled black rectangle in that position with
the same dimension (of the detected rectangle) in the white
image. At the end of the full iteration, it results in to the
image shown in Figure 2b, where only objects in the image
are patches of black blobs in place of detected rectangular
shapes. Now that the program has made the table or any
other rectangular structures into patch of black rectangles,
this resultant image is again passed through the process of
contour detection. This time since no other non-rectangular
graphical structures is present, the process becomes much
easier and accurate for the findContours function.

F. Table Selection

Now that the coordinates of the rectangles in the image
are known, another mechanism is required to identify the
actual tables among them. In our dataset it was apparent that
the non-table rectangular graphical structures usually contain
less textual information and less internal cellular structures
which is found in tables. Hence to differentiate between
tables and other rectangular symbols, the program at first
counts the number of internal cells within the rectangles.
If the count of cells is above certain number, then it is
a possible candidate for table. The program also accepts
rectangles as tables if it has more than certain amount of
textual information. For performance improvement, while
detecting the amount of text, we avoided using Tesseract
OCR engine since we don’t need the actual information
of the text in this section. Instead, the program measures
the amount of contours it can detect within the rectangles.
Characters and letters have their own contours. Hence if we
add up the areas of detected contours in the tables then it will
be more than the area of the actual rectangle. Using these
two validation criteria, our program differentiates tables
from all other rectangular structures.

G. Results

The function finally returns the coordinates of the top-
left corner point and the width and height of the table.
This algorithm was executed on 106 images of P&IDs
from a private use case where each file has at least one
tabular structure. Since the tables were always situated at
the bottom half, for performance improvements, we applied
the algorithm on bottom half of the image only. As shown
in Table I, the code was able to segment 109 tables from the
images successfully. For 4 images, the tables were not fully
connected to the margin and also had no other boundary
around the table. For those images, the algorithm could not
detect the whole table and identified the table till its last
found column boundary. There were 2 images where the
proposed algorithm did not work as it failed to identify any
table from them and they were not used in subsequent steps.

Lastly, we got 10 rectangles which were not tables but were
wrongly segmented from the images.

Table I: Table detection result statistics
Correctly Identified Tables Partially Identified Tables Wrongly Identified Tables Not identified Tables

109 4 10 2
87.2% 3.2% 8.0% 1.6%

For testing the generality of our code, we tested our
program with an image with 6 tables and it detected all
of them. We also tested our code with some edited images
from the dataset where the location of the table is random
and it was still able to segment the correct tables.

Since approxPolyDP method is used for rectangle
detection, which is an approximation method, the program
can detect tables which are not a perfect rectangle as well.

H. Future Work

Knowledge of the dataset has been used in some places
to tune the algorithm for better performance. However, this
algorithm for detecting table can be easily adapted for other
dataset with some changes. Some of the most likely changes
that may be required are as follows:

• This algorithm takes margin width as a parameter. For
new set of images, a new value for the margin width
needs to be assessed and passed on.

• Since all of the tables in the dataset are at the bottom
half of the images, the algorithm is applied in that
region only for better performance. Half of the image
means half the number of pixels to analyse. There is
no other reason behind this decision and we have tested
that our algorithm can seamlessly work on full images
as well even if the location of the table is fully random.

• The algorithm is designed to select a rectangle as
table candidate based on how many cells it has and
how much other contours (assuming most of them are
texts) it has inside. The threshold of these parameters
has been set heuristically for our dataset. However,
these threshold values may need modifications for other
datasets.

As it can be seen from above, all of these changes may
require some alteration in scripts, but the core algorithm,
will remain the same.

IV. TABULAR INFORMATION EXTRACTION METHOD
FROM P&IDS

A. Problem Statement

After detecting the tables in the image, the next task is to
extract specific information from them. The challenge during
this phase is that the location of a field value with respect
to its key or header is not fixed. For example, some of the
field-values (e.g. the name of the processing plant) can be
extracted without evaluating the content of their neighbour
cells. In contrary, for extracting the correct version of the
P&ID from the table, the content of the last non-empty cell



(a) Input Image (bottom half) (b) Rectangle detection result

Figure 2: Illustration of table segmentation (Data anonymized). Background has been darkened for illustration purpose.

(a) Table candidate 1 (b) Table candidate 2

Figure 3: The two segmented rectangles from the example above. Based on the high number of cells and textual data,
candidate 1 is selected as table. The keywords later used for field extraction is highlighted (yellow boxes). Sensitive data
has been anonymized.

has to be used as value. Therefore, even if we could write
dedicated functions for extracting each field separately, it
would have made future extensions very difficult because if
any new fields are to be added whose locations might be
different than the previously extracted fields, we will have
to write a separate function.

B. Methodology

To avoid such scenarios, we opted to develop our algo-
rithm in more generic way. We decided to separate the in-
formation about location of the fields from the methodology
to traverse to a particular cell as per requirement. Therefore,
the program for this part has two components:

• Configuration files containing the information about the
fields to be extracted and where to look for the value.

• Python scripts that read these configurations and act
accordingly

C. Experimental Setup

Our dataset contains three types of tables. Each type of
tables has exactly similar layout but very different from other
types. Therefore, instead of entering configuration for each
file separately, we instead entered configuration for each type
of tables. Hence, we managed to encode configuration for

104 files into 3 entries (3 separate configuration files). The
configuration files contained fields’ name which are to be
extracted and the location of the cell where our algorithm is
required to search for the fields’ value.

The Python scripts first have to decide which type out
of the three it is working with. For this task we take a
naive approach of comparing the number cells of each type.
Since in our dataset, the layout of each type is completely
different, this method of categorisation works accurately.
After the table’s type is detected, the script looks into its
corresponding configuration file to get the information about
which text or word to search for as field’s key and once the
key have been found, it traverses in the direction mentioned
by the configuration for the value.

To make the traversal efficient and manageable, we de-
cided to transform the table into a network graph. Each node
will represent a cell of the table with the text inside the cell
and the width-height, coordinates of the cells are represented
by the node properties. The adjacency of cells in the image
will be replicated in terms of edge connectivity in its graph
form. The label of the edges signifies the relative directions
of the cells/nodes. This method of converting table image
into a network graph makes it easier to hop either one or



multiple nodes in particular direction. The flow diagram in
Figure 4 shows how our algorithm works. Most of the fields’
value can be retrieved with these methods. However, we had
to address two special cases that we encountered and wrote
dedicated methods to solve.

The first case is where the fields’ key and the fields’ value
is in the same cell. Which means that the text we extract
to check for the fields’ key, also contains the value itself.
Hence, we had to develop an algorithm to remove the key
from the extracted text and keep only the value.

The other case is for fields like “Index” or “Rev”, we
only require the latest value. Our aim is to traverse through
all values and take the last one. Therefore, while traversing
through the table graph, our program checks if there is any
neighbour node in that direction or if the neighbour node
has no text. Either cases signify end of search and returns
the last found value.

D. Employed Technologies

JavaScript Object Notation (JSON) files have been used
to store the field extraction rules. JSON is natively supported
by Python and provides sufficient methods to easily access
the required data from a JSON configuration files.

In Python scripts, we again use findContours method
from OpenCV package to detect all the cells within a table
and get their coordinates, height and width. While converting
the table into a network graph, we used the NetworkX
(version 2.3) library for Python. For extracting the text
within a cell, we opted for Tesseract OCR engine and
then for matching those text with configuration information,
we use regular expressions.

E. Results

A total of 104 cropped table images from the first subtask
has been selected for field extraction. We decided to extract
5 different fields for each type of tables and judge the
performance based on how many out of those 5 could our
program recognize. Please note that the accuracy of the
extracted text (as field value) was not considered as it is
heavily dependent on the internal algorithm of Tesseract.
For some cases Tesseract reads “Z” as “2” or “I” as “1”.
The focus was mainly on whether the program can detect
the field key in the table and retrieve the corresponding value
from the location mentioned in the configuration file. Based
on such criteria we observed that for 29 tables, our algorithm
was able to successfully extract all 5 fields. For the rest of
the tables we were able to detect at least 3 or more fields.
Figure 5 shows the result of our algorithm at its current state.

Some manual intervention was required to improve our
result in some places.

• Since Tesseract was often confusing between letter
“I” and digit “1”, for the “Index” field we explicitly
mentioned to search for “Index” or “1ndex”.

• For the 4 cases where tables were partially detected,
we had to change the field search key to account for
the missing characters.

Please note that these manual changes were only restricted
to JSON configuration files and the Python scripts were not
altered in any way to address such special cases.

F. Future Work

Similar to the first part, we have used our knowledge
of data to foresee some special scenarios and designed
our configuration files accordingly. However, by keeping
rules for retrieval separate from the actual methodology of
traversal, we have tried to ensure that any new addition of
fields should only require extra entry in the configuration
file. In spite of this, there are multiple areas where our
algorithm can be improved:

• Since our three categories of tables are vastly different
to one another, comparing the number of cells to
categorise was sufficient. But if in future a new type
of tables comes into input list, then we need to find
a better method (e.g. applying SVM or PCA or other
machine learning algorithm) to assign a more unique
signature for the tables to differentiate their types.

• If an entirely new type of table is given as input, we
need to write a separate JSON file and also add lines
in script to generate its own contour signature.

• Our method is highly dependent on the accuracy of
Tesseract output and hence in future we can implement
any better alternatives.

• We have not addressed the case of having more than
one key-value pair within a single cell.

V. DISCUSSION

The proposed algorithm for table localization works fairly
accurately as we were able to crop out the correct tables from
the images only apart from two images. There were some
extra rectangles labelled wrongly as tables which we will
work on to filter out better in future. In information extrac-
tion part, the results have been mixed. As per our analysis,
the presence of graphic elements including some containing
text like logos, may have led to OCR errors and require more
filtering to ignore them. In some cases, the letters were not
aligned properly and was touching cell boundary which is
also difficult for OCR to read. One must also have to factor
in the probabilities of Tesseract misreading some characters
because of its internal approximation algorithm. They all
contributed to some inconsistencies in our result.

VI. CONCLUSION

This paper primarily uses computer vision techniques, text
processing and Optical Character Recognition technology.
We had to use our knowledge of dataset in some places to get
more accurate output. Logically this algorithm should still
adapt well to other dataset with very little changes. In future



Figure 4: Fields value extraction workflow.

Figure 5: Fields value extraction result

we would like to develop a complete generic algorithm
with minimal human involvement across various dataset.
Currently our program can only detect tables inside frames,
but we want to extend our algorithm to detect tables without
borders as well. We think machine learning algorithm can
help us achieve that target. We can use state of the art
semantic segmentation networks (e.g. R-CNN [4], SegNet
[5], ResNet [6] etc.) and adapt them for our use cases. If we
can successfully label the pixels as background pixels and
table pixels separately, then we can segment the table from
P&IDs irrespective of their borders. Although the data set for
this type of work is limited, we can use data augmentation
to increase our training dataset. A successful combination of
such methods can eliminate the need of any manual input
and potentially perform more accurately.

REFERENCES

[1] Riad, Amir, et al. “Classification and Information Extraction
for Complex and Nested Tabular Structures in Images.” 2017

14th IAPR International Conference on Document Analysis
and Recognition (ICDAR). Vol. 1. IEEE, 2017.

[2] Tengli, Ashwin, Yiming Yang, and Nian Li Ma. “Learning
table extraction from examples.” Proceedings of the 20th
international conference on Computational Linguistics. As-
sociation for Computational Linguistics, 2004.

[3] Pinto, David, et al. “Table extraction using conditional ran-
dom fields.” Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in
informaion retrieval. ACM, 2003.

[4] Girshick, Ross, et al. “Rich feature hierarchies for accurate
object detection and semantic segmentation.” Proceedings
of the IEEE conference on computer vision and pattern
recognition. 2014.

[5] Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla.
“Segnet: A deep convolutional encoder-decoder architecture
for image segmentation.” arXiv preprint arXiv:1511.00561
(2015).

[6] He, Kaiming, et al. “Deep residual learning for image recogni-
tion.” Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016.

[7] Embley, David W., et al. ”Converting heterogeneous statistical
tables on the web to searchable databases.” International
Journal on Document Analysis and Recognition (IJDAR) 19.2
(2016): 119-138.

[8] Contours : Getting Started, Retrieved March 12, 2019, from
https://docs.opencv.org/3.3.1/d4/d73/tutorial py contours
begin.html

[9] OpenCV library, Retrieved March 12, 2019, from https:
//opencv.org/

[10] tesseract-ocr, Retrieved March 12, 2019, from https://github.
com/tesseract-ocr/

[11] Welcome to Python.org, Retrieved March 12, 2019, from
https://www.python.org/

[12] Piping and instrumentation diagram, Retrieved March
11, 2019, from https://en.wikipedia.org/wiki/Piping and
instrumentation diagram#/media/File:P%26ID.JPG


