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ABSTRACT

This paper presents a new lightweight approach for real-time
performance-driven facial animation from monocular videos.
We transfer facial expressions from 2D images to a 3D virtual
character, by estimating the rigid head pose and non-rigid
face deformation from detected and tracked 2D facial land-
marks. We map the input face into the facial expression space
of the 3D head model using blendshape models and formu-
late a lightweight energy-based optimization problem, which
is solved by non-linear least squares at 18 FPS on a single
CPU. Our method robustly handles varying head poses and
different facial expressions, including moderately asymmetric
ones. Compared to related methods, our approach does not
require training data, specialised camera setups or graphics
cards, and is suitable for embedded systems. We support our
claims with several experiments.

Index Terms— Performance-driven animation, face
tracking, head pose estimation, blendshape model

1. INTRODUCTION

Real-time performance-driven facial animation refers to the
problem of capturing a live video stream of a person and an-
imating a virtual avatar upon the observed facial expressions.
Although this problem was first investigated in the context
of the production of virtual avatars in films and computer
games, such a system can also help in developing affective
user interfaces in real world contexts. For example, the facial
movements of the user can be used to assess the psycholog-
ical state, or the user’s intent in reaching for a specific tool,
or his response to an interactive computer system. Some ap-
plications of such interfaces could be: driver monitoring in
automobiles, service kiosks for patients in hospitals, or instal-
lations in theme-parks. To facilitate real time interaction, the
system has to have very low hardware and data requirements,
while being robust to a diverse range of human users.
Depending on the target application, there is always a
trade-off between the quality of the input data and the com-
plexity of the acquisition setup [1]. On one side, there are
high-end systems used in the movie and gaming industries
(e.g., active 3D scanners or markers-based motion capture
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Fig. 1: Overview of the proposed pipeline for 2D-3D facial expres-
sion transfer: facial landmarks are detected in every incoming image
and used to find the head pose and an optimal blendshape combi-
nation resembling the observed appearance. It supports moderately
asymmetric expressions and runs on a CPU at real-time rates.

systems). Even though they provide realistic animations, they
are intrusive and require substantial manual intervention. On
the other side, there are simple, inexpensive and non-intrusive
passive-scanning devices such as conventional monocular
RGB cameras. Even though RGB or intensity-based facial-
tracking methods have limited operational performance (e.g.,
under varying illumination), monocular cameras are ubiqui-
tous and flexible in installation and usage. Recently, several
approaches based on commodity RGB-D sensors have been
proposed [2, 1, 3]. Nevertheless, the most common visual
data acquisition technology in every-day life constitutes RGB
cameras as those embedded in mobile devices.

We aim at a lightweight method for real-time 3D facial
character animation from monocular RGB or intensity im-
ages, which can be used in consumer-centric applications. In
order to meet these requirements, the 2D facial tracking has
to be robust, accurate and lightweight. Moreover, the setup
should not rely on specialised hardware or markers. Fig. 1
provides an overview of the proposed pipeline. To summarise,
the primary contributions of this paper are:

e A new real-time approach for performance-based facial
animation from a monocular setup. We formulate 3D
character animation as a lightweight energy-based opti-
mization problem solved with non-linear least-squares
(Sec. 4).

e To guarantee real-time constraints, our energy func-



tional relies only on a sparse set of 2D facial land-
marks, which are used to update the head pose and
facial expressions (Sec. 4).
e A novel differentiable energy term for specifying the
range of the weights of the blendshape targets (Sec. 4).
e A set of experiments for the validation of different as-
pects of the proposed method (Sec. 5).

2. RELATED WORK

In this section, we summarise state-of-the-art methods in
monocular facial performance capture. For an extensive
overview on this topic, we refer the reader to [4].

Several works propose approaches for non-rigid tracking
and character animation which require either specialised se-
tups, physical markers, RGB-D cameras or manual interven-
tion [5, 1, 2, 6, 7, 8, 9]. Cao et al. [10] introduced a real-
time facial animation approach from 2D data which requires
a user-specific shape regressor trained in a preprocessing step
with manual adjustments. In a follow-up work [11], they use
public image datasets to train the regressor. [12] proposed a
bilinear face model for identity and facial expression repre-
sentation based on 2D or RGB-D data which can be used to
generate a blendshape model of an actor or animate a 3D face.

Garrido et al. [13] introduced an offline approach for
automatic reconstruction and animation of user-specific 3D
face rigs from monocular videos. Their pipeline consists of
three layers, where a parametric shape model is defined to
encompass the subspace of facial identity, facial expression
and fine-scale details such as wrinkles. Thies et al. [14]
presented a real-time photo-realistic facial monocular reen-
actment approach. They track facial landmarks relying on a
dense photometric consistency measure and use GPU-based
iteratively reweighted least squares solver to achieve real-time
frame rates. Liu et al. [15] introduced a real-time expression-
transfer approach from 2D data which is adaptable to user-
specific data. Their setup requires a preprocessing step for the
acquisition of target-specific training images. The approach
of Saito et al. [16] for real-time 3D facial performance capture
from RGB data relies on accurate deep neural-network-based
facial region segmentation and is robust to occlusions and
significant head rotations.

Recently, some commercial facial performance capture
software have been released, e.g. Apple’s iPhone X app to
animate a virtual character with its depth camera [17].

In our work, we use a monocular 2D setup and a lightweight

energy-based minimization, which can be used in affective
user interfaces. Our approach runs on a single CPU at real-
time rates, while relying on robust facial landmark extraction.
We do not require specialised hardware, preprocessing steps,
manual intervention, large collections of training data or pre-
trained target-specific regressors. Thus, our method addresses
several limitations of existing 2D-to-3D facial expression
transfer approaches.

3. OVERVIEW OF THE PROPOSED PIPELINE

An overview of our approach is shown in Fig. 1. In every
incoming frame, we track a sparse set of facial landmarks
for the recovery of rigid and non-rigid facial motion. Then,
we define a linear parametric model with blendshapes and
retrieve parameters modeling the head pose and facial ex-
pression by solving an energy-based optimization problem.
Finally, we map the 2D facial expressions to a virtual 3D
character which can be an animatable avatar or a person-
specific 3D reconstruction obtained in a preprocessing step.
Our method assumes a perspective projection model and
known intrinsic camera parameters.

Blendshape Model. Blendshape models provide a simple yet
robust technique for facial animation. They allow to parame-
terize facial expressions by building a linear weighted sum of
basis elements [18]. The set of D blendshape targets defines
the valid range of expressions and limits face movements to
a subspace of dimension D. Unlike PCA-based models, each
basis shape encodes a semantically meaningful expression.

The face model is given by a column vector f € R3P,
composed of p vertices with the coordinates vectorized as
[T0, Y05 20, T1, Y15 21, - Tp, Yps 2p] - Similarly, each blend-
shape target is denoted by a vector by, € R3P. The absolute
blendshape model is then defined as:

f= wyb, (1)
k=0

where 0 < wy < 1 are the blendshape weights [18]. We
arrange n blendshape targets into a matrix B = [by, ..., b,,] €
R3PX™ defining the expression semantics transferable to the
avatar. by denotes a face with neutral expression and b; Vi #
0 corresponds to different base expressions. Concatenating
wy, into a vector w € R™, Eq. (1) can be rewritten as:

f = Bw. 2

Similarly to commercial animation software such as
Maya [19] and state-of-the-art methods [2, 13, 14], we use the
delta form of the blendshape model, i.e., each column of B is
composed of offsets w.r.t bg: B = [by; — by, ..., b, — bg].
As a result, multiple rows of B are composed of zero or near
zero values. Egs. (1) and (2) are then read as follows:

f=bo+ > wi(by—bg) =by+Bw. (3)
k=1

Alignment of Blendshape Targets. We selected 44 blend-
shape targets from [20] and modified versions of the scans
from [21] provided by [22]. These datasets provide targets
with consistent topology and vertex-wise correspondences,
with 5023 vertices and 9976 faces. Although the resulting
variety of facial expressions is not as high as in [12], the low



number of vertices makes them attractive for real-time appli-
cations on a single CPU. To compensate for the misalignment
of the targets, we register the scans from [22] by solving the
following constrained orthogonal Procrustes problem:

R = argmin [|QA — B|| -, s. t. QQ=1 (G))
Q

where A and B are two blendshape targets to register, R is
the orthogonal matrix that maps A to B and ||-|| » denotes
Frobenius norm. For every mesh, we extract R = ux'vrT,
where UXVT = svd(M), and & = diag(11 det(VUT)).
Note that only a subset of points on the back side of the head
is used for the alignment.

4. OUR TARGET ENERGY FUNCTIONAL

We propose to minimize a multi-objective energy function
E(vy) for v = (R,t,w), where R and t are the rotation
and translation, i.e. the head pose, and w are the blendshape
weights to recover the facial expression:

E(7) = Wsparse Esparse (7) + Wprior Eprior (7) . (5)

Egparse is the data term that measures the model’s head
pose and facial expression, from Eqs. and Eg, respectively,
and the input 2D facial landmarks:

Esparse (7) = Wpose Epose(Ra t) + Wit Eﬁl(w)~ (6)

Eprior comprises our regularization terms for the head
pose, E;, and blendshape weights, Eg and E,:

Eprior(7) = wr Br (R, t) + ws Bs(w) + w, By (w). ()

The weights wy.y in Egs. (5)-(7) define the contribution of
each energy term to E(vy).

Non-rigid tracking. We detect 2D facial landmarks using
the off-the-shelf face alignment approach proposed by [23],
which aligns an ensemble of regression trees. We retrieve 68
facial landmarks around the jawline, lips, nose, eyes and eye-
brows. Optical flow is then used to track the landmarks frame
by frame. The correspondences of the 2D facial landmarks
for every 3D blendshape target are known in advance.

Rigid head pose estimation. An initial estimate of the rigid
head pose is computed based on [24]. A set of robust facial
landmarks, including eyes canthi, both lateral and medial, and
points around the nose, are used to minimize the reprojection
error of the 3D-2D correspondences. For the other frames,
we minimize the reprojection error of the n = 68 facial land-
marks, using:

n
Epoe(R,t) = Y [|7(RP; +t) — py|5. (8)

i=1

where 7(-) : R® +— R? denotes the perspective projection
operator. [R]t] are the extrinsic parameters of the camera,

i.e. the pose, P and p are the 3D and 2D corresponding facial
landmarks, respectively, and ¢ is the index of the ¢-th feature
point. As the calibration of the camera is known, Eq. (8) is
minimized in the least squares sense with respect to the pose
parameters R and t, using Levenberg-Marquardt iteration.

Inspired by [2], we include an additional term, E to en-
force temporal smoothness on the head pose:

n
E.(R.t) =) |[rftl—2 — 2[rltl—1 + [F[thll5, O
i=1
with r = [rg,ry,7.] being the angle-axis representation of

the rotation around the x, y and z axes and ¢ the timeframe.

2D-3D Transfer of Facial Expressions. To recover the facial
expression, we minimize the reprojection error of the 7 facial
landmarks using the blendshape model in Eq. (3):

n
En(w) = > [|n(b + B'w) — pi- (10)
=1

Since the elements of the blendshape basis are not orthogo-
nal, i.e. not linearly independent, the same facial expression
could be recovered using different target combinations. Thus,
we include a sparsity prior based on [2], defined as a ¢;-norm:

E,(w) =Y _[Iwl]. (11)
k=1

To avoid compensation artifacts, the weights are usually
set in the range [0, 1]. This implies that we need a differen-
tiable function so that in the range [0,1] it generates a zero
penalty, and a large penalty otherwise. Inspired by [25], we
define such function by adding two smooth Heaviside func-
tion approximations:

Eg(w) = % (tan_l (w;a) —tan™" (%)) +c,

12)

witha = 1.002,b = 2-107° and ¢ = 2.5 (see Fig. 2).
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Fig. 2: Our function — a sum of two Heaviside approximations —

to limit the blendshape target weights w to range [0,1].

In contrast to [1, 2], we do not use any temporal coher-
ence constraints on the blendshape weights.

Energy Minimization. We solve an energy-based optimiza-
tion problem for 50 parameters: 6 DOF head pose and 44
parameters (the number of blendshape targets) for the facial
expression, with a total of 68 x 2 residuals for Egparse, 6 for
E; and 1 for each Eg and E,,.
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Fig. 3: Results of our performance-driven facial animation approach. Top: Input images with detected facial landmarks. Bottom: Animated
3D characters. (a)-(i) demonstrate the variety of supported facial expressions; (j)-(1) show results under occlusion and extreme poses.

5. RESULTS

The pipeline was implemented in C++, using DLib [26] and
Ceres [27]. We used a commodity computer with an Intel
Xeon(R) W3520 processor and 8GB of RAM. The videos
were captured using a Logitech C920 HD Pro webcam, with
a resolution of 640 x 480. Representative results are shown
in Fig. 3 and in the supplemental material.
Runtime analysis. The average runtime for ~1000 frames
was 18FPS. Face alignment took 23.7 ms, while the energy
minimization took 31.6 ms on average per frame.

We also investigated how the internal number of iterations
in the energy function affected the output and runtime. Fig. 4
(left) shows the resulting head poses and facial expressions
for one frame. To select a fixed set of parameters for all the
experiments, we considered the trade-off between accuracy
and time consumption. In Fig. 4 (right), head pose required
around 15 iterations to converge, while the estimation of the
weights of the blendshape targets did not converge in the first
50 iterations. However, 15 iterations were enough to transfer
similar facial expressions to the target (see Fig. 3).

Head pose evaluation. We evaluated the head pose using the
Boston University (BU) head tracking database [28], which
contains 45 video sequences of individuals performing differ-
ent head movements. We used the mean absolute error (MAE)
to compare the rotation to other methods of the state of the art
(see Table 1). We report translation errors (in inches) of 2.27,
0.90 and 2.04 for the X, Y and Z axes, respectively. The errors
of our approach are comparable to other methods, although
they are intended to face alignment and head pose estimation
only, without any facial performance capture.

Discussion. Our pipeline can handle occlusions caused by
glasses, long hair and beard (see Fig. 3: (a)-(f)). Although the
face alignment has limited performance for facial expressions
with strong asymmetry, our method can transfer such expres-
sions sufficiently (see Fig. 3: (b), (h) and (i)). Our approach is
constrained by the facial landmarks detection and tracking,
particularly under large head rotations and occlusions (see
Fig. 3: (j)-(1)). Similarly to other methods using RGB data,
the method is sensitive to low illumination (Fig. 3 (g)).
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Fig. 4: Left: Energy minimization results. p and e are the number
of iterations used to estimate the head pose and facial expression,
respectively. Top: Head pose for a fixed e = 15. Bottom: Facial
expression for a fixed p = 15. Selected parameters: ¢ = 15 and
p = 15. Right: Time consumption of the energy minimization for
varying number of iterations of p and ¢, for ~1000 frames.

Method Roll Pitch Yaw  Average
Jeni et al. [29] 241 2.66 3.93 3.0
Wu et al. [30] 3.1 53 4.9 443
Gou et al. [31] 33 4.8 5.1 4.4
Diaz Barros et al. [24] 232 341 3.90 3.21
Ours 235 362 438 3.45

Table 1: Comparison of rotational MAE on the BU dataset.

6. CONCLUSIONS

We presented a real-time pipeline for performance-driven fa-
cial animation based on monocular systems. The head pose
and facial expressions are formulated as a lightweight opti-
mization problem, using blendshape models. Our method
runs at 18 FPS on a single CPU and does not require train-
ing data nor special camera setups. These features make our
pipeline suitable for embedded systems, with potential for af-
fective user interfaces.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

7. REFERENCES

Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly, “Re-
altime performance-based facial animation,” in ACM Trans.
Graph. ACM, 2011, vol. 30.

Sofien Bouaziz, Yangang Wang, and Mark Pauly, “Online
modeling for realtime facial animation,” ACM Trans. Graph.,
vol. 32, no. 4, 2013.

Pei-Lun Hsieh, Chongyang Ma, Jihun Yu, and Hao Li, “Un-
constrained realtime facial performance capture,” in Int. Conf.
on Computer Vision and Pattern Recognition (CVPR). IEEE,
2015.

Michael Zollhofer, Justus Thies, Pablo Garrido, Derek Bradley,
Thabo Beeler, Patrick Pérez, Marc Stamminger, Matthias
NieBner, and Christian Theobalt, “State of the art on monocu-
lar 3D face reconstruction, tracking, and applications,” in Com-
puter Graphics Forum. Wiley Online Library, 2018, vol. 37.

Thibaut Weise, Hao Li, Luc Van Gool, and Mark Pauly,
“Face/off: Live facial puppetry,” in SIGGRAPH/Eurographics
Symposium on Computer animation. ACM, 2009, pp. 7-16.

Hao Li, Jihun Yu, Yuting Ye, and Chris Bregler, “Realtime
facial animation with on-the-fly correctives.,” ACM Trans.
Graph., vol. 32, 2013.

Justus Thies, Michael Zollhofer, Matthias Niener, Levi Val-
gaerts, Marc Stamminger, and Christian Theobalt, “Real-
time expression transfer for facial reenactment.,” ACM Trans.
Graph., vol. 34, no. 6, 2015.

Roger Blanco i Ribera, Eduard Zell, JP Lewis, Junyong Noh,
and Mario Botsch, “Facial retargeting with automatic range of
motion alignment,” ACM Trans. Graph., vol. 36, no. 4, 2017.

Yudong Guo, Juyong Zhang, Lin Cai, Jianfei Cai, and Jian-
min Zheng, “Self-supervised cnn for unconstrained 3d facial
performance capture from a single RGB-D camera,” arXiv
preprint:1808.05323, 2018.

Chen Cao, Yanlin Weng, Stephen Lin, and Kun Zhou, “3D
shape regression for real-time facial animation,” ACM Trans.
Graph., vol. 32, no. 4, 2013.

Chen Cao, Qiming Hou, and Kun Zhou, “Displaced dynamic
expression regression for real-time facial tracking and anima-
tion,” ACM Trans. Graph., vol. 33, no. 4, 2014.

Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun
Zhou, “FaceWarehouse: A 3D facial expression database for
visual computing,” IEEE Trans. on Visualization and Com-
puter Graphics, vol. 20, no. 3, 2014.

Pablo Garrido, Michael Zollhofer, Dan Casas, Levi Valgaerts,
Kiran Varanasi, Patrick Pérez, and Christian Theobalt, “Recon-
struction of personalized 3D face rigs from monocular video,”
ACM Trans. Graph., vol. 35, no. 3, June 2016.

Justus Thies, Michael Zollhofer, Marc Stamminger, Christian
Theobalt, and Matthias Niefiner, “Face2face: Real-time face
capture and reenactment of RGB videos,” in Int. Conf. on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, 2016.

Shuang Liu, Xiaosong Yang, Zhao Wang, Zhidong Xiao, and
Jianjun Zhang, “Real-time facial expression transfer with sin-
gle video camera,” Computer Animation and Virtual Worlds,
vol. 27, 2016.

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

Shunsuke Saito, Tianye Li, and Hao Li, “Real-time facial seg-
mentation and performance capture from RGB input,” in Eu-
ropean Conf. on Computer Vision (ECCV). Springer, 2016.

“Use animoji on your iphone x and ipad pro,” https://
support.apple.com/en-gb/HT208190, 2018, [Online;
accessed 01-Feb-2019].

John P Lewis, Ken Anjyo, Tachyun Rhee, Mengjie Zhang,
Frederic H Pighin, and Zhigang Deng, “Practice and theory
of blendshape facial models.,” Eurographics (State of the Art
Reports), vol. 1, no. 8, 2014.

Sham Tickoo, Autodesk Maya 2018: A Comprehensive guide,
CADCIM Techonologies, 2017.

Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J
Black, “Generating 3D faces using convolutional mesh autoen-
coders,” in Proceedings of the European Conf. on Computer
Vision (ECCV), 2018.

Darren Cosker, Eva Krumhuber, and Adrian Hilton, “A FACS
valid 3D dynamic action unit database with applications to 3D
dynamic morphable facial modeling,” in Int. Conf. on Com-
puter Vision (ICCV), 2011.

Tianye Li, Timo Bolkart, Michael J. Black, Hao Li, and Javier
Romero, “Learning a model of facial shape and expression
from 4D scans,” ACM Trans. Graph., vol. 36, no. 6, 2017.

Vahid Kazemi and Josephine Sullivan, “One millisecond face
alignment with an ensemble of regression trees,” in Int. Conf.
on Computer Vision and Pattern Recognition (CVPR). IEEE,
2014.

Jilliam Maria Diaz Barros, Bruno Mirbach, Frederic Garcia,
Kiran Varanasi, and Didier Stricker, “Fusion of keypoint track-
ing and facial landmark detection for real-time head pose esti-
mation,” in Winter Conf. on Applications of Computer Vision
(WACV). IEEE, March 2018.

Tony F. Chan and Luminita Vese, “Active contours without
edges,” Trans. on Image Processing, vol. 10, 2001.

Davis E. King, “Dlib-ml: A machine learning toolkit,” Journal
of Machine Learning Research, vol. 10, 2009.

Sameer Agarwal, Keir Mierle, and Others, “Ceres solver,”

http://ceres—-solver.org.

M. La Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head
tracking under varying illumination: An approach based on
registration of texture-mapped 3D models,” Trans. on Pattern
Analysis and Machine Intelligence, vol. 22, no. 4, 2000.

L4asz16 A Jeni, Jeffrey F Cohn, and Takeo Kanade, “Dense 3D
face alignment from 2D video for real-time use,” Image and
Vision Computing, vol. 58, pp. 13-24, 2017.

Yue Wu, Chao Gou, and Qiang Ji, “Simultaneous facial land-
mark detection, pose and deformation estimation under facial
occlusion,” Int. Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

Chao Gou, Yue Wu, Fei-Yue Wang, and Qiang Ji, “Coupled
cascade regression for simultaneous facial landmark detection
and head pose estimation,” in Int. Conf. on Image Processing
(ICIP). IEEE, 2017.



