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Abstract

Adversarial attacks have exposed the intricacies of the
complex loss surfaces approximated by neural networks. In
this paper, we present a defense strategy against gradient-
based attacks, on the premise that input gradients need
to expose information about the semantic manifold for at-
tacks to be successful. We propose an architecture based
on compressive autoencoders (AEs) with a two-stage train-
ing scheme, creating not only an architectural bottleneck
but also a representational bottleneck. We show that the
proposed mechanism yields robust results against a collec-
tion of gradient-based attacks under challenging white-box
conditions. This defense is attack-agnostic and can, there-
fore, be used for arbitrary pre-trained models, while not
compromising the original performance. These claims are
supported by experiments conducted with state-of-the-art
image classifiers (ResNet50 and Inception v3), on the full
ImageNet validation set. Experiments, including counter-
factual analysis, empirically show that the robustness stems
from a shift in the distribution of input gradients, which mit-
igates the effect of tested adversarial attack methods. Gra-
dients propagated through the proposed AEs represent less
semantic information and instead point to low-level struc-
tural features.

1. Introduction
We nowadays see an increasing adoption of deep learn-

ing techniques in production systems, including safety-
relevant ones (as exemplified in [28]). Hence, it is not
surprising that the discovery of adversarial spaces for neu-
ral networks [40] has sparked a lot of interest and con-
cern. A growing community focuses on different ways
to reach those spaces [12, 25, 7], understand their proper-
ties [28, 16, 23], and protect vulnerable models from their
malicious nature [29, 11, 21].

Commonly used methods to exploit adversarial spaces
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rely on input gradients as basis to find perturbations sur-
rounding an otherwise clean sample [12, 25, 7, 21]. Due to
the intractability of transformations modeled by neural net-
works, and the limited amount of change that is allowed for
perturbations to be considered adversarial, the gradient of
the model w.r.t. a given sample exposes just enough infor-
mation about input dimensions that correlate highly with the
predicted class. With this in mind, defenses against adver-
sarial attacks that rely on gradients have been devised in two
fundamental ways: 1) They complement traditional opti-
mization schemes with a two-fold objective that minimizes
the overall prediction cost while maximizing the perturba-
tion space around clean images [21, 35, 43]. 2) Gradients
are blocked or obfuscated in such a way that attack algo-
rithms can no longer use them to find effective adversarial
perturbations [5, 13, 36]. Type 1 methods enjoy mathemati-
cal rigor and hence, provide formal guarantees with respect
to the kind of perturbations they are robust to. However,
these regimes have strong limitations, since assumptions
about the nature of the attacks have to be made to formulate
the optimization target. Methods of type 2 have been sys-
tematically proven ineffective through general methods to
circumvent said defense mechanisms [2, 9, 1]. Furthermore,
while effective for small-scale problems such as MNIST
and CIFAR-10, we found no empirical evidence that these
methods scale to larger problems such as ImageNet. In fact,
it has been shown that defenses for adversarial attacks tested
on small datasets do not scale well when applied to bigger
problems [16].

Several emerging defenses for large-scale scenarios are
still reliant on the second use of gradients: suppression [19,
47] and blockage [13, 46]. These are instances of gradient
obfuscation as defined by Athalye et al. [2], where instabil-
ities from vanishing or exploding gradients, and stochastic
or non-differentiable preprocessing steps are used to defend
the model. As demonstrated also in [2], defenses based on
obfuscation can be easily circumvented. Hence the afore-
mentioned defense mechanisms are still susceptible to ad-
versarial attacks. In this paper, we propose an alternative
defense that affects the information contained in gradients



by reforming its class-related signal into a structural one.
Intuitively, we learn an identity function that encodes low-
level features and decodes only the structural parts of the
input necessary for classification, dropping everything else.
To this end, an autoencoder (AE) is trained to approxi-
mate the identity function that preserves only the portion
of the original signal that is useful for a target classifier.
The structural information is preserved by training both en-
coder and decoder unsupervised, and fine-tuning only the
decoder with gradients coming from an pre-trained classi-
fier. This second step induces a representational bottleneck
in the decoder that complements the architectural compres-
sion layer of the AE, aligning reconstructions with the latent
classification manifold in a straightforward fashion. By us-
ing a function that only encodes structure (the first half of
the AE), input gradients are devoid of any class-related in-
formation, therefore invalidating the fundamental assump-
tion about gradients that attackers rely on. We show that
gradient-based attacks fail to generate perturbations that are
adversarial for a pre-trained classifier when gradients are
extracted from said fine-tuned AE. Moreover, we show that
the ineffectiveness of said attacks is closely related to the
kind of input gradient they receive as input, and not because
of instabilities i.e., gradient obfuscation. We refer to the
final AE architecture as a Structure-To-Signal autoencoder
(S2SAE). Similarly, we define the term Structure-to-Signal
network (S2SNet) for the ensemble of an S2SAE and clas-
sifier.

1.1. Formal Definitions

To understand the relationship between adversarial at-
tacks, input gradients and adversarial perturbations, we in-
troduce the following notation:

Let f : Rn → {1, . . . , k} be a continuously differen-
tiable classifier for k classes, and x̃f the portion of the sig-
nal in the original input x that is effectively being used by f ,
i.e., f(x) = f(x̃f ). Typical state-of-the-art classifiers only
use a fraction of the available information [27], so for some
comparative measure of information content I (e.g. normal-
ized mutual information [37]) it holds that I(x, x̃f ) � 1.
Let ∇xf ⊆ Rn refer to the sensitivity of input samples
w.r.t. the cost function used for training f , e.g., categori-
cal crossentropy. Let P = {δ : ||δ||p < ε} ⊆ Rn be the
space of all adversarial and non-adversarial perturbations
under a given norm p ∈ {0, 1, 2,∞}. Perturbation vectors
δ ∈ P are applied to input samples by point-wise addition,
creating perturbed samples x̂ = x + δ ∈ Rn. We also
define the sub-space Px,f ⊆ P as the set of adversarial per-
turbations δx,f that are reachable from the input gradients
∇xf . Adversarial perturbations are elements δx,f ∈ Px,f
such that y = f(x) 6= f(x + δx,f )

1. A gradient-based

1Adversarial perturbations can also be reached through other domains
that do not depend on gradients [26]. We restrict our analysis to gradient-
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Figure 1: S2SNets shift the domain of an attack function
from semantic (∇xf ) to structural gradients (∇xf ◦ A).
With our defense (solid line), reachable perturbations fall
into P − Px,f instead of the adversarial range Px,f (dotted
line).

attack (or simply an attack) α : ∇xf → P is a function
mapping input gradients based on a target classifier to per-
turbations. An attack is adversarial if the set of reachable
perturbations is adversarial. In other words, α is adversarial
if α : ∇xf → Px,f . An S2SAE can therefore be defined
as a function A : Rn → Rn such that A(x) = x̃f . This
way, A is considered an adversarial defense for f against
gradient-based attacks if:

f(x) ≈ f(A(x))
∇xf ∩∇xf ◦ A = ∅

(1)

Intuitively, these conditions guarantee that A lets seman-
tically relevant information reach the classifier, while ex-
posing only structure-related input gradients so that an at-
tacker cannot reach the space of adversarial perturbations
for f . See Figure 1 for a graphical interpretation of this
setup. We show through large-scale empirical experiments
that our proposed S2SAE meets these two conditions. De-
tails of the architecture and training of the S2SAE and the
S2SNet are discussed in Section 3.1. This architecture has
several key advantages over other strategies:

• No compromise for clean inputs: the first condition
in Equation 1 requires that clean samples are classified
the same way regardless of the presence or absence of
the defense. Some well-known methods have proven ro-
bust against attacks at the expense of an often overlooked
drop in clean accuracy [12, 15, 47]. As the transforma-
tion done by S2SNets preserves the required signal x̃f
for classification, using either A(x) or x has no negative
impact on the classifier when clean images are used.

• Attack agnostic: S2SNets rely on the semantic mani-
fold of the classifier, and not on the specific artifacts in-
troduced by the attacks themselves. This indicates that
S2SNets are robust against a plurality of gradient-based
attacks at once.

based attacks.



• Post-hoc implementation: our proposed defense uses
information from pre-trained networks, and therefore
can be used to defend models that are already available.
Additionally, no fine-tuning or architectural adaptations
are required to integrate the defense to an existing clas-
sifier. Moreover, no additional considerations need to be
made when training a new classifier from scratch.

• Compatibility with other defenses: due to the compo-
sitional nature of this approach, any additional defense
strategies that work with the original classifier can be
implemented for the S2SNet ensemble.

We test S2SNets on two high-performing image classi-
fiers (ResNet50 [14] and Inception-v3 [38]) against three
gradient-based attacks (FGSM [12], BIM [17] and CW [7])
on the large scale ImageNet [33] dataset. Experiments are
conducted for both classifiers under the most challenging
white-box threat model where the attacker has access to
the entire S2SNet ensemble, the input gradients and output
predictions. An evaluation of the effectiveness of S2SNets
over regular AEs (e.g., as proposed in [22]) is presented
in Section 3.1, empirically showing how S2SNets impose
an information bottleneck that is harmless for the classifier
but detrimental for attackers (first condition of Equation 1).
Furthermore, we extract measures from the gradient spaces
Px,f and Px,f◦A to show that the second condition of Equa-
tion 1 also holds. In other words, we show that input gra-
dients from an S2SNet cannot be consistently used by an
attacker to generate adversarial perturbations.

2. Related Work
The phenomenon of adversarial attacks has gained mo-

mentum since its discovery [40] and has had three main ar-
eas of focus. The first area is the one that seeks new and
more effective ways of reaching adversarial spaces. In [12],
a first comprehensive analysis of the extent of adversarial
spaces was explored, proposing a fast method to compute
perturbations based on the sign of gradients. An iterative
version of this method was later introduced [17] and shown
to work significantly better, even when applied to images
that were physically printed and digitized again. A promi-
nent alternative to attacks based on gradients succeeded us-
ing evolutionary algorithms [26]. Nevertheless, this has not
been a practical wide spread method, mostly due to how
costly it is to compute. Papernot et al. [28] showed how
effective adversarial attacks could get with very few as-
sumptions about the attacked model. Finally, more elab-
orate methods that go beyond a greedy iteration over the
gradient space perform different kinds of optimization that
maximize misclassification while minimizing the norm of
the perturbation [25, 7].

The second area focuses on understanding the proper-
ties of adversarial perturbations. The work of Goodfellow

et al. [12] already pointed at the linear nature of neural
networks as the main enabler of adversarial attacks. This
went in opposition of what was initially theorized, where
the claim was that non-linearities were the main vulnera-
bility. Not only was it possible to perturb natural looking
images to look like something completely different, but it
was also possible to get models issuing predictions with
high confidence using either noise images, or highly artifi-
cial patterns [40, 26]. Transferring adversarial perturbations
was shown to be possible by crafting attacks on one network
and using them to fool a second classifier [20]. However,
transferable attacks are limited to the simpler methods as
iterative ones tend to exploit specific particularities of each
model, and are hence less effective when transferred [16].
As it turns out, not only is adversarial noise transferable
between models but it is also possible to transfer a single
universal adversarial perturbation to all samples in a dataset
to achieve high misclassification rates [23, 30]. Said in-
dividual perturbations can even be applied to physical ob-
jects and bias a model towards a specific class [4]. Further
fundamental work has focused on the inescapable nature
of adversarial perturbations [34], the influence of optimiz-
ers, and the topology of decision boundaries they converge
to [41, 10, 24].

The third area of research has focused on how networks
can be protected against such attacks. Strategies include
changing the optimization objective to account for possi-
ble adversarial spaces [21, 35, 15], detection [11], dataset
augmentation that includes adversarial examples [12, 43, 6],
suppressing perturbations [29, 36, 19, 22, 8, 47] or obfus-
cating the gradients to prevent attackers from estimating an
effective perturbation [5, 13, 46, 44, 31].

While some of these empirical defenses have been shown
to work under simple test conditions, it has been demon-
strated that reliance on gradient obfuscation is not effec-
tive, and that said methods can be easily circumvented with
some slight adjustments of the threat model (i.e. the attack-
ing conditions) [2, 1].

In this work, we build upon the idea of using AEs as
a compressed representation of the input signal. AEs have
been proposed multiple times in the past with different goals
in mind: they have been used to limit the dimensionality
of the input space and project adversarially perturbed sam-
ples back to the space of clean inputs [22, 36]. These de-
fenses rely heavily on the architectural bottleneck of the AE
and are limited to an empirical evaluation of the model’s
accuracy under perturbations with bounded norms for toy
datasets. Moreover, instead of operating in the original in-
put space, AEs have been fine-tuned to approximate the
residual of adversarial samples (i.e. the perturbation) so that
it can be explicitly subtracted before being passed on to a
classifier [19]. Most recently, AEs were trained on a dataset
augmented with adversarial samples from a classifier which



is also trained concurrently [18]. These methods consti-
tute either examples of gradient obfuscation (and therefore,
are known to be easy to circumvent [2]) or a less flexible,
model- and attack-dependent defense. We propose a fine-
tuning stage for the decoder that introduces a representa-
tional bottleneck [39] to complement the existing architec-
tural bottleneck of the AE. Input reconstructions show how
this data-driven defense changes the information retained
by the AE (and consequently, the input gradient), preserv-
ing the input signal that closely relates to the semantic man-
ifold of the classifier. Furthermore we evaluate our claims
by conducting a large-scale evaluation on the challenging,
full ImageNet validation set, as well as counterfactual ex-
periments to support our theoretical analysis of the gradient
space.

3. Methods

This section introduces the architecture of S2SNets and
their signal-preserving training scheme, followed by an em-
pirical evaluation of the gradient space. We test the robust-
ness of S2SNets in a White-Box setting, and compare them
to a baseline AE trained with an unsupervised cost function.
To evaluate the fulfillment of the second part of Equation 1
without resorting to gradient obfuscation, two experiments
are conducted measuring the structural similarity of gradi-
ents, and the extent by which adversarial perturbations can
be reached by any attacker when relying on gradients from
either the classifier or an S2SNet.

3.1. Structure-to-Signal Networks

S2SNets start out with an AE (A) trained with an unsu-
pervised loss CU = 1

N

∑N
i=1 ||xi −A(xi)||22 on a dataset of

≈ 92 million natural images [42]. The architecture of the
AE is that of a convolutional autoencoder called SegNet as
proposed in [3]. We deliberately select such a large archi-
tecture for the AE as we found it to be the closest approx-
imation of the ideal identity function A(x) = x that does
not require shortcut connections between encoder and de-
coder e.g. as proposed in [32]. This AE is able to reproduce
input signals required by both ResNet50 (R) and Inception
v3 (I) such that their top-1 accuracy is almost identical the
original reported value (±0.5%).

Once the AE has been trained, the fine-tuning of the de-
coder takes place by freezing the encoder’s layers, and then
updating only the parameters of the decoder. The update is
done via backpropagation of the supervised cross-entropy
loss CX through the classifier w.r.t. the autoencoded input.
In other words, we update the decoder by minimizing the
classification loss of the reconstructed samples:

argmin
θD

CX
(
f(A(x; θD)), y

)
(2)

where θD is the set of trainable parameters of the de-
coder, and f is the pre-trained classifier. Note that the clas-
sifier is assumed to already be pre-trained and consequently,
its weights remain frozen as well. This training regime has
been used in the past to measure the portion of each in-
put sample that is required to achieve state-of-the art per-
formance [27]. We argue that the fine-tuning process im-
poses an information bottleneck that complements the ar-
chitectural bottleneck of the AE, moving the reconstructed
samples to areas of the input domain that lay closer to the
classification manifold.

Moreover, by fixing the parameters of the encoder after
training them on CU , intermediate representations at the bot-
tleneck of the AE remain class-agnostic. This implies that,
during backpropagation through an S2SNet, input gradients
correspond only to low-level structural features, not seman-
tics. Intuitively, we say that input gradients from an S2SNet
point to parts of an image that influence the reconstruction
error, and not the classification error.

3.2. Threat model

The conditions to test for robustness against adversarial
attacks closely follow those from Guo et al. [13]:

• Dataset: We use ImageNet to test S2SNets in a chal-
lenging, large-scale scenario. Classifiers are trained on
its training set and evaluations, including attacks, are car-
ried out on the full validation set of 50000 images.

• Image classifier under attack: we use ResNet 50 (R)
and Inception v3 (I), both pre-trained on ImageNet as
target models. They are off-the-shelf models provided by
the torchvision project, i.e., they have been trained under
clean conditions with no special considerations with re-
spect to adversarial attacks.

• Defense: we train an S2SNet for each of the classifiers
under attack, following the scheme described in Sec-
tion 3.1. These defenses are denoted as AR and AI for
S2SAEs fine-tuned on ResNet50 and Inception v3 re-
spectively.

• Perturbation Magnitude: we report the normalized L2

norm [13] between a clean sample x and its adversary
x̂ = x + δ denoted as L2(x, x̂) = 1

N

∑N
n=1

||xn−x̂n||2
||xn||2 .

ε-bounds for each attack are listed below.

• Defense Strength Metric: to compare classifiers with
differing baseline accuracy, vulnerability to adversarial
attacks is measured in terms of the number of newly
misclassified samples. More precisely, for any given at-
tack to classifier f , we calculate

∑
x∈TP L2(x,x̂)

|TP | , where
TP = {x ∈ X|f(x) = y∗} is the set of true positives
and x̂ is the adversarial example generated by the attack,
based on x.



• Attack Methods: defended models are tested against a
collection of common gradient-based attacks. All sam-
ples are cast to the valid integer range {0, . . . , 255} for
8-bit RGB images.

– Fast Gradient Sign Method (FGSM) [12]: an effec-
tive single-step method that is also fairly transfer-
able to other models. For this method we used ε ∈
{0.5, 1, 2, 4, 8, 16}.

– Basic Iterative Method (BIM) [17]: an iterative ver-
sion of FGSM that shows more adversarial effective-
ness but less transferable properties. We used ε ∈
{0.5, 1, 2, 4, 8}. The number of iterations is fixed at
10, producing perturbation of up to 10ε.

– Carlini-Wagner L2 (CW) [7]: an optimization-based
method that has proven to be effective even against
hardened models. Note that this attack typically pro-
duces perturbations that lay in a continuous domain.
We used ε ∈ {0.5, 1, 2, 4}; the number of iterations is
fixed at 100, κ = 0 and λf = 10.

• Other Attack Conditions: we test the proposed de-
fenses under a condition known as White-Box. Here,
we assume that the attacker has access to the entire en-
semble model, i.e., the classifier and the defense. The at-
tacker has therefore access to the predictions of the clas-
sifier, intermediate activations, and more importantly, in-
put gradients.

4. Experiments
This section delineates experiments quantifying the ro-

bustness of S2SNets and their baselines (Figure 2).

4.1. White-Box

In this experiment, input images flow first through the
S2SAE before passing on to the pre-trained classifier. Each
classifier requires a separate fine-tuning of an AE (origi-
nally trained on CU ), yielding a different S2SAE per classi-
fier. We use the notation AR and AI to refer to S2SAEs that
have been fine-tuned on ResNet50 and Inception v3 respec-
tively. For an attacker, input gradients come from the first
layer of the encoder. Perturbed samples are then passed on
again through the whole S2SNet ensemble and the predic-
tion is compared against the original clean sample (Figure 2,
bottom). We evaluate against two different baselines: (1) an
unprotected network as shown in Figure 2 (top), and (2)
an ensemble where the AE has not been fine-tuned on CX .
To distinguish between fine-tuned AEs and an AE which
has only been trained using the unsupervised cost, we add
to the latter the subscript “s”: AS . While baseline 1 es-
tablishes the vulnerability of a naı̈ve classifier, baseline 2
can be considered to be a large scale evaluation of the de-
fense used in [22]. We contrast the implications of these

Figure 2: Diagram of the proposed defense mechanism.
Top: vulnerable classifier f (black) and attacker α (red).
Bottom: same classification scenario with an S2SAE A de-
fense in place (cyan). To ensure that the defense is indeed
effective, f(x) ≈ f(A(x)) and ∇xf ∩ ∇xf ◦ A = ∅ need
to hold.
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Figure 3: White-Box attacks on ResNet 50 (R) and Incep-
tion v3 (I), with (solid) and without (dashed) S2SNet as
a defense. Adversarial logit pairing (ALP) [15] added for
reference.

results with the ones in [22] in subsubsection 4.1.1. Results
of White-Box attacks are shown in Figure 3.

We see how undefended models are only able to moder-
ately resist FGSM attacks, while completely failing for the
more capable iterative attacks. Surprisingly, the ensemble
with AS already provides some level of non-trivial robust-
ness against adversarial attacks. For reference, we plot the
most comparable result of a defense proposed in [15] and
observe that adversarial resiliency is already similar.

When S2SNets are used, we observe a large increase in
robustness against all adversarial attacks for all networks.
In fact, none of the attacking configurations was able to en-
tirely fool any of the defended classifiers even for the largest
ε-values that we tested.Note that these white-box results are
also similar to ones obtained in [13, 46] albeit under a more
forgiving gray-box setting (known classifier but unknown



defense).

4.1.1 Adversarial Robustness for AS

The baseline experiment using AS can be compared with
the earlier work of Meng et al. [22] where it was re-
ported that unsupervised AEs were unsuccessful as a de-
fense against white-box adversarial attacks. However, those
experiments were conducted on much smaller datasets:
MNIST and CIFAR-10. Our experiments show that, once
the problem scales up and both the input space and latent
semantic manifold lie in a higher dimensional space, an
AE does partially succeed at defending a pre-trained classi-
fier. We argue that this newly discovered resiliency is con-
nected to the presence of much more structurally complex
inputs. For ImageNet samples, the distribution of semanti-
cally relevant structures (e.g. the edges of an airplane) and
background structures (e.g. the edges of the clouds) will
certainly condition which areas of the input produce high
gradients when computed w.r.t. AS . In other words, the
structure-to-signal ratio increases for tasks like ImageNet
while simpler datasets preserve a more balanced ratio2.

4.2. Properties of the Gradient Space

Experiments from Section 4.1 show that S2SNets add a
substantial resiliency to all adversarial attacks in our tests.
In this section, we investigate the sources of said adversar-
ial tolerance. In particular, we need to establish that (1) gra-
dients have not been obfuscated i.e. they have not simply
become unstable, and that (2) the information conveyed by
input gradients from an S2SNet are fundamentally different
of those from the vulnerable pre-trained classifier.

As defined in [2], testing for gradient obfuscation is done
by falsifying the existence of the following conditions:

• Shattered Gradients: occurs when the solution is non-
differentiable or numerically unstable. S2SNets are end-
to-end differentiable through the composition function
f ◦ A.
• Stochastic Gradients: produced by randomized pro-

cesses in the defense. S2SNets, as proposed in this pa-
per, do not rely on any stochastic process during either
the forward, backward, or pre-processing step.
• Exploding or Vanishing Gradients: caused by iterative

forward passes or networks of increased depth. The com-
position function f ◦A adds more layers to the ensemble
network. This results in input gradients that are lower in
magnitude compared to the classifier on its own. How-
ever, FGSM and BIM rely purely on the sign of the gradi-
ent and not its norm. A similar re-weighting of the gradi-
ent is done for CW. Therefore, since gradients in the 2D
2Structure-to-signal ratio, refers to how much semantically relevant in-

formation is conveyed by low level features like edges, color, blobs, etc.
Non-structural features are, by contrast, higher-level features.

input space can be consistently computed, this change
in magnitude does not impair the examined attack meth-
ods. Experiments supporting this claim are described in
the following section.

To further verify that the Structure-to-Signal training
scheme produces large shifts in the distribution of input
gradients for each sample, we measure the local 2D sim-
ilarity of the gradients obtained from a vulnerable classi-
fier, the corresponding S2SNet via CX . We conduct a pair-
wise evaluation of input gradients coming from the origi-
nal ResNet50 classifier (R), the original unsupervised AE
(AS), the fine-tuned AE (AR), an ensemble of classifier
and original AE (R ◦ AS), and the proposed S2SNet en-
semble (R ◦ AR). For each pair of models we compute the
structural similarity [45] (SSIM; a locally normalized mean
square error measured in a sliding window) of the input gra-
dients of a single image. Our comparison also includes As
and AR with gradients for CU , i.e., only the unsupervised
reconstruction loss. We then compute the mean of each in-
dividual measurement over the whole ImageNet validation
set. To stress the differences of the spatial distribution, the
SSIM is calculated on the magnitude of the gradients and
not on the raw values. Results are summarized in Table 1.

From this experiment we can conclude that input gradi-
ents from R are least similar to any other model combina-
tion. This supports the claim that the S2SAE changes the
spatial distribution of the input gradients. We can also con-
firm that the distribution change is indeed focused on the
low level structure e.g. edges, blobs, etc. by comparing the
higher similarity of (R◦AR,AS) compared to (R◦AR, R).
Intuitively, this comparison indicates that input gradients
from S2SNets are more closely related to the unsupervised
reconstruction objective CU than the class-dependent CX .
Evidence of the representational bottleneck is also measur-
able by the large dissimilarity between reconstructions from
AS and AR. In fact, the combination of AR and R ◦ AR
bear the most similarity, despite the use of CU and CX re-
spectively to obtain gradients.

As additional baseline, we compare the SSIM of an input

Table 1: Pairwise mean SSIM of input gradient magnitudes
for ResNet 50 (R) on the ImageNet validation set, with and
without being passed through AR or AS . SSIM values of R
w.r.t. any AE variant show the least similarity.

R R◦AR R◦AS AR AS
R 1.00 0.17 0.18 0.12 0.14

R ◦ AR 0.17 1.00 0.40 0.46 0.32
R ◦ AS 0.18 0.40 1.00 0.37 0.36

AR 0.12 0.46 0.37 1.00 0.36
AS 0.14 0.32 0.36 0.36 1.00



gradient w.r.t. its ground-truth label and a randomly selected
label. More formally, let x be some input image and y∗ its
true label. We then randomly select a different label ŷ 6= y∗

and compute:

SSIM(||∇xCX (f(x), y∗)||, ||∇xCX (f(x), ŷ)||) (3)

for all x in the ImageNet validation set, and f ∈ {R,R ◦
AR, R ◦ AS}. The SSIM values were: 0.50 for R ◦ AR,
0.47 for R ◦ AS , and 0.34 for R. This shows that the influ-
ence of the label is smaller when gradients are propagated
through the AE, but also emphasizes how dissimilar gradi-
ents of just ResNet50 are, compared to any AE at just 0.12
to 0.18 SSIM (Table 1).

Figure 4 shows the magnitude of the input gradients for
the models evaluated in Table 1 to get a more visual intu-
ition of the SSIM results. Here, we observe how gradient
magnitudes for AEs (AS , AR) predominantly correspond to
low level structural features like edges and corners. This
is expected, since it is more difficult to accurately repro-
duce the high frequencies required by sharp edges, com-
pared to the lower frequencies of blobs. Extracting magni-
tudes based on classification from AEs show similar struc-
tures (R◦AR, R◦AS). Some coincidental overlap between
ResNet 50 (R) and AE variants is unavoidable, since edges
are also important for classification [48]. However, input
gradients from only the classifier are least similar among
all model variants. Overall, SSIM is at least twice as high
between AE variants, than between the classifier and any
of the AE configurations. This evaluation of similarity pro-
vides consistent evidence supporting the strong compliance
of S2SNets with the second property in Equation 1.

4.2.1 Counterfactual Evaluation of the Structure-to-
Signal

One additional experiment to validate our findings comes
from using counterfactual thinking. We start by assuming
that input gradients of S2SNets do not change when flow-
ing from the classifier to the S2SAE, but rather they are in-
fluenced by the forward pass through the S2SAE. In other
words, we assume that resiliency to adversarial attacks is
not caused by ∇xf ◦ A but by the intermediate ∇A(x)f . If
this were the case, crafting attacks based on ∇A(x)f and
evaluated on the full S2SNet should yield similar results to
the ones in Section 4.1. Conversely, perturbations based on
∇xf ◦ A should fail when evaluated against the classifier
alone.

Results for the first counterfactual experiment are shown
in Figure 6. Under these conditions, we observe that
S2SNet models revert back to the behavior shown by their
corresponding unprotected classifiers. In general, this con-
dition is expected, and confirms once more that S2SNets are
being trained to preserve the information that is useful to

Figure 5: Counterfactual experiments. a) Attacks from gra-
dients at the classifier w.r.t. an input reconstruction, and
evaluated on the ensemble S2SNet. b) Attacks based on
∇xf ◦ A and evaluated directly on the classifier. If A is
not changing the distribution of input gradients, experiment
(a) should fail and experiment (b) should succeed. Nei-
ther of these assumptions hold therefore concluding that the
S2SAE (A) does change the distribution of gradients.
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Figure 6: Counterfactual evaluation: perturbations from in-
termediate input gradients∇A(x)f and evaluated on the en-
semble S2SNet. Adversarial logit pairing (ALP) [15] added
for reference.

the classifier. Intuitively, gradients collected directly from a
vulnerable model convey – by definition – information that
relates to the semantic manifold and hence, perturbations
based on those gradients will be preserved by the S2SAE.
The first counterfactual experiment has therefore failed to
produce evidence to disprove the change in the gradient dis-
tribution∇xf ◦ A.

Results for the second counterfactual experiment Fig-
ure 5 (b) are shown in Figure 7 indicate that the attacker
is unable to generate perturbations that the classifier alone
is vulnerable to. This result in conjunction with the main
experiments of section Section 4.1 indicates that input gra-
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Figure 4: Gradient magnitudes for ResNet 50 (R) given a single input x from the ImageNet validation set, propagated through
AR or AS . SSIM values are in comparison to ||∇xR ◦ AR(x)||.
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Figure 7: Counterfactual evaluation: perturbations using in-
put gradients from the ensemble S2SNet and evaluated di-
rectly on the classifier.

dients coming from the S2SAE are in a domain where an
adversarial attacker cannot reach the range of perturbations
that is adversarial for the classifier.

In summary, we show that both counterfactual experi-
ments have failed. Therefore, we conclude that the S2SAE
imposes a change in the distribution of the gradients that
renders them useless for an adversarial attacker.

5. Conclusions & Future Work

In this paper we presented S2SNets as an effective
method to defend pre-trained neural networks against
gradient-based adversarial examples. We designed the de-
fense strategy by treating adversarial attacks as functions
mapping a domain (gradients from the model) to a range
(perturbations for input samples). The defense is based on
the notion of both an architectural bottleneck and a repre-
sentational bottleneck. While the former is realized through
the compression layer of an AE, the latter provides further
concentration of the information of each input sample that
gets reconstructed. Furthermore, S2SAEs impose a change
of distributions in the input gradients they produce due to
the use of two cost functions: an unsupervised reconstruc-
tion cost for the encoder and a supervised one for the de-
coder.

We empirically show that S2SNets add non-trivial lev-
els of robustness against white-box adversarial attacks on

the full ImageNet validation set. A comparison of the base-
lines indicates that AEs can already offer resiliency to said
attacks, compared to previous claims of the contrary that
were based on much smaller datasets.

Experiments to validate the extent of our claims regard-
ing the transformation of input gradients of S2SAEs have
been conducted. These include a measurement of struc-
tural similarity, visual inspections and two counterfactual
hypotheses that were disproved experimentally.

As future work, we would like to explore other ways in
which the representational bottleneck can occur. In particu-
lar, looking for functions that map back to a different space
i.e. A : Rn → Rm. On the other hand, the preservation of
the signal make the S2SAE a promising mechanism to ex-
plore and understand the semantic manifold by projecting
it back to the input space. We are also interested in ana-
lyzing the relationship between the structural complexity of
datasets and the ability of AEs to approximate the semantic
manifold. Comparing classification consistency of a clean
sample, before and after being passed through an S2SNet,
has potential implications for detection of adversarial at-
tacks by learning abnormal distribution fluctuations.
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