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Sparse Scanning Electron Microscopy can be used in combination with Inpainting algorithms to reduce 
acquisition time and electron dose. In many situations, this approach leads to a higher image quality 
compared to images obtained by a conventional raster scan acquired at the same dose per pixel [1]. But 
what is the definition of image quality in this context? Human observers are unavoidably biased to 
prefer images that look good to humans. Most modern image quality metrics contain some “perception 
factor” as well that links the definition of image quality to the human visual systems. However, images 
are increasingly processed by machine learning systems such as Deep Neural Networks and evaluated 
automatically. In this context, the definition of image quality should be linked to the capability of a 
machine learning system to extract information from the image, not the human visual system. 
 
In this study [2] we demonstrate a workflow that acquires data by performing a sparse scan at random 
positions on a specimen. The sparse data is reconstructed to a full grid image by a dictionary based 
inpainting algorithm, implemented using high performance computing techniques on a graphics 
processing unit (GPU) [3]. The reconstructed data is suitable to be used for automatic semantic 
segmentation of neuron structures, for example using U-net shaped Convolutional Neural Network 
(CNN). We found that: (1) If the network is trained from perfect data acquired from a full raster scan at 
high dwell time, the segmentation quality suffers from the unavoidable reconstruction results present in 
the inpainted images. (2) If the network is trained from reconstructed sparse data that suffers from the 
same type of artifact as the evaluation set images, the network “learns” to handle the artifacts in the data 
and the final segmentation improves. We demonstrate the procedure on two key segmentation 
applications in connectomics (cell membranes and mitochondria) and show that the overall segmentation 
quality improves notably compared to data from a conventional raster scan acquired with the same total 
dose per image. Alternatively, the total dwell time per pixel can be reduced by 33% while maintaining 
the same level of quality of the segmentation. These results demonstrate that sparse scanning and 
reconstruction can increase the effective data acquisition rates without sacrificing on quality for the end 
user segmentation application. However, the training data must be generated by the same procedure that 
will be used during the final imaging [4].  
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Figure 1.  Results of the segmentation procedure on sparse images. The left column (a,d) shows the 
input images, the middle column (b,e) shows the segmentation results with mitochondria in green and 
membranes in blue. The right column (c,f) shows errors in the segmentation. Red pixels are false 
positives, pink pixels are false negatives. The first row (a-c) shows results from a full scan acquired with 
a pixel dwell time of 1µs, The bottom tow (d-f) shows results from a sparse scan where only 20% of all 
pixels are acquired, also at a pixel dwell time of 3µs. 
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