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Abstract— We propose a new approach called LiDAR-Flow to
robustly estimate a dense scene flow by fusing a sparse LiDAR
with stereo images. We take the advantage of the high accuracy
of LiDAR to resolve the lack of information in some regions of
stereo images due to textureless objects, shadows, ill-conditioned
light environment and many more. Additionally, this fusion can
overcome the difficulty of matching unstructured 3D points
between LiDAR-only scans. Our LiDAR-Flow approach consists
of three main steps; each of them exploits LiDAR measure-
ments. First, we build strong seeds from LiDAR to enhance the
robustness of matches between stereo images. The imagery part
seeks the motion matches and increases the density of scene flow
estimation. Then, a consistency check employs LiDAR seeds to
remove the possible mismatches. Finally, LIDAR measurements
constraint the edge-preserving interpolation method to fill the
remaining gaps. In our evaluation we investigate the individual
processing steps of our LiDAR-Flow approach and demonstrate
the superior performance compared to image-only approach.

I. INTRODUCTION

Robust perception is an essential task for reliable au-
tonomous driving platforms. Achieving this goal requires
more awareness of the dynamic changes of the environment.
For this purpose, dense scene flow estimation became an
active research area. It seeks to compute the 3D geometry
as well as the 3D motion field and serves as comprehensive
representation of a dynamic environment. In the past, this
was often approximated by optical flow in 2D space.

Scene flow is usually computed based on dense pixel
matches in stereo images. Dense pixel matching is well
established [1], [2], [3] and achieves reasonable quality in
many scenarios. However, in image regions with textureless
objects, shadows, ill-conditioned light environment, etc.,
image-based matching is extremely challenging. However,
exactly these regions are of high importance for autonomous
vehicles and inaccuracies can anticipate accidents scenarios.

Unlike image-based technologies, LiDAR sensors are
much less sensitive to the aforementioned environmental
conditions. Thus, LiDAR is a core technology for mapping
3D surroundings of autonomous vehicles. However, dense
LiDAR sensors are expensive and matching unstructured 3D
point clouds is challenging [4]. Our approach fuses sparse
LiDAR values and stereo images (see Fig. 1) in order to
overcome the deficiencies of each technology which leads to
increase in the robustness of scene flow estimation. To the
best of our knowledge, LiDAR-Flow is the first attempt for
this fusion in the context of scene flow.
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Fig. 1: We introduce LiDAR-Flow which fuses a sparse
LiDAR and stereo images for dense scene flow. Compared
to image-only approach [5], we achieve high robustness in
challenging image regions with our fusion. The green pixels
of the error map represent the inliers of scene flow compared
to the ground truth.

Our LiDAR-Flow utilizes LiDAR measurements as anchor
points to support each processing step across the framework.
We utilize a sparse-to-dense approach for our LiDAR-Flow,
which is established for image-only scene flow already [5],
[6], [7], [8]. We initialize disparity with the LIDAR measure-
ments, estimate flow based on image matching and iteratively
propagate these measurements with random search into the
neighborhood. During propagation process, each scene flow
pixel will be optimized by minimizing a matching cost
function. Mismatches will be removed through consistency
check with the help of LiDAR measurements afterwards.
The sparse set of matches is robustly interpolated with
the LiDAR-support. Fig. 2 illustrates an overview of our
LiDAR-Flow approach.

In a summary, our contributions are the following:

+ We propose LiDAR-Flow — the fusion of sparse LiDAR
and stereo images for scene flow estimation.
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Fig. 2: Overview of our LiDAR-Flow. We show the optical flow (FI) estimation after each step. The color-wheel encodes
the motion direction and the black color maps the removed outliers after consistency check and sparsification.

« Using LiDAR measurements, we increase the constancy
of pixel-based matches for untextured regions.

« We propose an edge-preserving interpolation con-
strained by LiDAR.

+« We show the impact of LiDAR-Flow in each step and
compared to the state-of-the-art image-based scene flow
on KITTL

II. RELATED WORK

The initial approaches for dense scene flow were based on
a stereo camera setup. Vedula et al. [9] combine optical flow
estimation with the first-order approximations of depth maps
as variational optimization framework. Wedel et al. [10] use
stereo images for scene flow estimation and decouple the
motion from geometry for real time use. In contrary, other
methods [11], [12] couple the motion and geometry consis-
tency to improve the scene flow accuracy under stereo use.
In the same context, [2], [13] add the cross constancy and
an assumption of gradient constancy [13], [14] increase the
robustness of matches against illumination change. Further
contribution of [15] assumes local rigid regularization instead
of variational regularization in using stereo images. In that
way, a method of Menze et al. [1] segments the object scene
into a set of rigid objects and uses CRF to estimate the
association between them. That method does not consider
the non-rigidly moving objects like pedestrians or bicyclists.
To handle non-rigidly objects, Schuster et al. [8] builds the
concept of sparse matching and uses an edge-preserving
interpolation method [16] to spread the sparse matches
into the entire image. The reliability of generating these
matches against light change, perspective deformations and
occlusions is increased more by considering multiple frames
of stereo [5] and using a robust interpolation method [6].
The existing stereo-based methods achieve impressive results
for seeking correspondences across the images. However,
they are not reliable with matching textureless objects or
challenging illumination.

Alternatively, some methods use active sensors for scene
flow estimation. All approaches relying on RGB-D cameras
— such as Kinect [17] — provide commendable results [18],
[19], [20] but perform poorly in outdoor scenarios with large
distances. Thus, LIDAR approaches were used mainly for our
use-case. Dewan et al. [21] associate correspondences across
LiDAR scans on point cloud space. They formulate the scene
flow estimation as an energy minimization problem based on
matching signature of histograms SHOT feature descriptors
[22]. However, such descriptors can be subjected to errors
with sensor noise and they do not overcome the sparse nature
of LiDAR data. Following the use of LiDAR, learning-based
solutions exist to predict matches from point cloud. Some
algorithms train neural network models from unstructured
LiDAR point clouds [23], [24]. However, training from that
domain is a challenging task. Occupancy grids are used
to structure LiDAR data [25], [26] for building network
models for feature learning on 3D space. Vaquero et al. [27]
estimate dense optical flow for automotive applications from
LiDAR scans only, but do not estimate scene flow. They
build dense ground truth of the optical flow from the imagery
part and they facilitate structuring LiDAR measurements by
an alignment on the image domain. Overall, LiDAR-based
solutions result in competitive accuracy compared to stereo
and RGB-D approaches. However, they are not generating
dense estimation of scene flow such as image-based solutions
(e.g. stereo systems).

The fusion of a sparse LiDAR and the imagery part
has not yet been investigated in the context of scene
flow. However, this fusion was applied to other related
components. Ma et al. [28] propose a deep regression
network for dense depth estimation using one single camera.
They use RGB-D raw data to train their model due to the
lack of large-space data set with dense LiDAR. The fusion
of LiDAR and stereo is suggested to speed up the disparity
map computation for outdoor scenes [29], [30]. They
interpolate LiDAR measurements on the image domain



and utilize them as a prior information for computing the
space of stereo disparity map. Park at el. [31] utilize deep
convolutional neural network (CNN) architecture to fuse
sparse LiDAR into dense stereo. Our work is the first among
the aforementioned fusion methods to fuse a sparse LiDAR
and stereo images for computing dense scene flow.

III. THE PROPOSED APPROACH

For scene flow estimation, we require consecutive scans
at times fp and #; from synchronized LiDAR and stereo
frames (D?,D},I?,I}JO ) where D denotes sparse LIDAR
measurements and ([;,1,) are the left and right of the stereo
images (see Fig. 2). We assume the LiDAR measurements
and left images are aligned (i.e. all sensors are calibrated).
In other words, D([) and Dl1 are aligned to the images of IIO
and Il1 respectively. The stereo images are rectified and the
baseline B is known.

Scene flow is represented by the optical flow components
(u,v)" and the disparity values (do,d;)” at a given pixel p
on image IIO (i.e. the reference frame).

SF(p) =

We are denoting the image space information as well as
LiDAR frames with capital letters and the pixel parameters
with small letters.

(u,v,do,dy)" (1)

A. LiDAR-based Support Window

A prior smoothness assumption is made to improve the
matching algorithm. A constant LIDAR measurement is used
within a support window to facilitate the initialization and
the propagation. In detail, within one support window, dj is
initialized on the coarsest level with the value of the closest
LiDAR measurement of D(z) to support the propagation of
robust LiDAR measurements into regions with less reliable
image matching cost (i.e. minimum matching cost does not
necessarily meet optimal scene flow in untextured regions).
Even with accurate optical flow components (u,v)T, it is
unlikely to match a measurement of Dl1 because of the spar-
sity. This problem can be solved using the proposed support
window also. Increasing the size of the support window has a
big advantages in occluded areas (i.e. not visible in the right
view) as long as the windows do not overlap. However, the
support window can loose its advantages if a strong depth
discontinuity occurs within the support window.

To compensate this drawback, a consistency check for
the geometry within the support window is applied. The
reliable LiDAR measurements of D? are not subjected to
the consistency check.

B. LiDAR-Supported Matching

We follow the coarse-to-fine approach of [7] for seeking
the matches across the images. Starting with the coarsest
level of the reference view, dy for each pixel will be ini-
tialized with the nearest LiDAR measurement. The proposed
support window limits the search area. The other scene flow
components are initialized with an image-based method. This
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Fig. 3: Our constrained propagation: Pixel with LiDAR
measurement (green), pixels within LiDAR-based support
window (blue) and image-based matches (red). Propagating
into pixels should minimize matching cost (constraint 1) and
yield geometry matches within the disparity space (constraint
2) defined by LiDAR measurement. Propagation of (u,v) into
all pixels as well as dyp and d; into red pixels is applied only
by constraint 1. Propagating d; into green and blue pixels
as well as dy into blue pixels follows two constraints 1 & 2.
Propagation of dj into green pixel is not admitted.

is also used for dj if no LiDAR measurement is met. On each
pyramid level, the initial matches will be propagated into
neighboring pixels with random search for a fixed number
of iterations. The results of the finest level yields our final
matches.

The initialization and the propagation algorithm follow
[8] but with further constraints to account for the additional
sparse LiIDAR measurements.

Since we are considering LiDAR of D? as exact, propaga-
tion of dy into LiDAR seeds will not be allowed. Propagation
from LiDAR seeds into the neighbor pixels within the
LiDAR support window will be possible under a constraint
(called constraint 2). This constraint reduces the possibilities
of the disparity values coming from propagation or random
search. Fig. 3 illustrates the initialization and the propagation
constraints in our algorithm. Optimal scene flow matching is
obtained by minimizing the matching cost (called constraint
1) for each pixel. The cost function is the sum of Euclidean
norms between SIFT Flow features [32] over a patch window.
If pixel ps in image I4 matches pp in image Ip, then
matching cost yields:

E(Ia,I5,pa,p5) = ) 16 (I (pa)) =0 (s (pe)) | (2)
Q

Where Q is 7x7 patch window and ¢ (I(p)) is the SIFT

Flow vector of pixel p in image /. Depending on whether

a LiDAR measurement in D? or Dl1 is hit during matching,

four different cases for the matching are considered. The first

case is purely image-based, i.e. no LIDAR measurement:
Cr= 10 1! +E 19,19 +EIIO,I,1 3)

where
Eppn=E (0.4, pp+ )", )

EI,O,IQ ZE(I?a197P7P_(d070)T)> o)
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Fig. 4: Matching cost computation: The scheme of pure
image-based constancy (a), the constancy if a LiDAR mea-
surement in D(l) is met (b), if a LiDAR measurement in Dzl
is met (c) and if both LiDAR D? & Dl1 measurements are
met (d).

Epp=E (.1}, p,p+(u—di,v)7). (6)

The second case is applied when a LiDAR measurement
is available in D?. In that case, the term E 1010 in Eq. 3 will
be replaced with two other constancy terms:

CD? = E’lo’lll +E110Jr1 +E19,[,1 +E19,I,1 (7)
where

EI?,I} =E(19,1}7]7—(d070)T7p+(u—d1,V)T)7 (3)

Epp=E (10,1}, p— (do,0)" . p+ (u,v)7) . 9)

The third case covers the availability of a LiDAR mea-
surement in Dll. Two other constancy terms replace the term
of Ep ;1 in Eq. 3:

1

Cpr =Epp+Epp+Eon+Epp (10)

(1)

The last case involves LiDAR measurements in both frames
DY and D}:

Epp =E (10 p+ )’ p+(u—div)7)

CD?D} = Elz()*lzl +E19J,' +2'E1971’! +E11171r1 (12)

The optical flow constancy of the right camera (Eq. 8) is
used twice in this case, to avoid an improper deviation of
the optical flow to match sparse LIDAR measurements in Dll.
The proposed schemes of the matching cost are visualized
in Fig. 4 and the overall process of matching is shown in
Fig. 2.

C. LiDAR-Supported Consistency Check

Since we have sparse LiDAR measurements not covering
the entire image, a consistency check is required to remove
mismatches caused by image matching. Removing outliers is
performed through two stages, each followed by a clustering
algorithm. During all filtering stages sparse LIDAR measure-
ments will never be filtered. Moreover, LIDAR measurements
are employed as reference values during the clustering algo-
rithm.

The first stage involves checking the consistency of the
disparity at #y (see Fig. 2). To this end, the dy values of
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Fig. 5: Constraints of the plecewise model computation for a
superpixel (orange); whose center (solid white) in different
regions (green, blue and red) in an image. Edge map (1),
associated superpixels (e.g. 4 segments) to each region (2),
associated matches to each region (crosses) (3) and consistent
matches within the sketch (4). LIDAR match (yellow cross)
initializes a piecewise model and assists in selecting more
support matches for a final model (a), the same if the distance
d from LiDAR match (yellow cross) to superpixel center is
less than a defined threshold (b), otherwise a closest pure
image-based match (closest white cross) is the best choice
for initialization and estimating consistent matches (c).

the scene flow matching are compared to a disparity map of
(19,1°) computed with SGM [33]. Values within the support
windows are middle rank confident values and will not be
subjected to filtering in this first stage.

The second stage compares the scene flow matches using
a forward-backward scene flow consistency check (see Fig.
2). In the backward scene flow, the correspondences will
be computed with respect to Il1 by the matching framework
proposed in the previous section. Scene flow matches that
yield differences bigger than a defined threshold will be
removed. During the second stage, scene flow matches within
the support window, as well as the components (u,v,d;) of
LiDAR pixels, are also subjected to filtering.

The clustering algorithm segments the remaining scene
flow matches into similar regions. The scene flow of LiDAR
pixels will be used as reference values in the clustering
algorithm. Small clusters which are having less pixels than
a given threshold, will be removed.

D. LiDAR-Supported Robust Interpolation

The proposed consistency check algorithm generates a
sparse set of matches. To speed up the interpolation, the
remaining scene flow pixels, except LiDAR measurements,
will be subjected to a sparsification process as in [8] (see Fig.
2). It selects within non-overlapping 3 x 3 blocks the scene
flow match with the highest consistency. After sparsification,
we need to interpolate the remaining matches across the en-
tire image into a dense scene flow (see Fig. 2). The geometry
and motion matches of LiDAR pixels will initialize piecewise
models of the edge-preserving interpolation approach [6]
during which the remaining outliers due to image matching
are rejected. The reference view image IIO is over-segmented
into a set of superpixels and edges. The initial anchor point
for each superpixel is its center of mass. Each superpixel is



associated with the closest LIDAR measurement and LiDAR
match for interpolation of geometry and motion respectively.
If the closest LiDAR point lies within the superpixel or is
in its proximity (defined by a certain threshold), it will be
used as new anchor point for this superpixel. The edge-aware
neighborhoods for each superpixel are computed with respect
to its anchor point. A geodesic distance transformation,
which is built with respect to an input edge map, assists
in finding the edge-aware neighborhoods. We use the result
of the Structured Edge Detector framework [34] to compute
our edge map of the reference image. Fig. 5 visualizes the
use of LiDAR matches for interpolation.

Based on the anchor points and their neighborhoods,
each superpixel will be initialized with piecewise models
for superpixel flow. These models are refined with random
search and propagation between superpixels. During model
refinement, hypotheses for geometry and motion are directly
rejected if they are inconsistent with the associated LiDAR
measurement or match.

IV. EXPERIMENTS AND EVALUATION

We perform a series of experiments to verify the results
of our new LiDAR-Flow algorithm. First, we quantify the
impact of fusing a sparse LiDAR into each step of the
proposed pipeline (overview in Fig. 2). Then, we follow with
quantitative and qualitative comparison against a state-of-the-
art image-only approach. Finally, the impact of using more
samples of LiDAR measurements is evaluated.

A. Evaluation Data

Evaluation Data: The first aim of our evaluation is
emphasizing the capability of LiDAR-Flow under challeng-
ing conditions. To the best of our knowledge, KITTI [1],
[35] is the only data set that provides stereo images in
a combination with LiDAR measurements for real traffic
scenarios. The train set of KITTI-2015 consists of 200
consecutive frames; each with ground truth of the scene
flow components (u,v,dp,d;). The ground truth has been
generated by synchronizing the stereo with a high dense
LiDAR and the augmentation with 3D CAD models for all
vehicles in motions [1]. The evaluation on KITTI computes
the average of percentage pixels whose the endpoint error of
at least one scene flow component exceeds 3 pixels or 5%.
The results of scene flow are quantified as an average over
all frames in terms of endpoint error and outlier rate for the
disparity maps (Dg, D), the optical flow (FI) and the scene
flow (SF).

LiDAR-Flow Input Data: To carry out our LiDAR-Flow
approach, we take the advantages of KITTI-2015 train set
to build the input frames (mentioned in Section III). Since
the LiDAR measurements of KITTI are semi-dense and
have been aligned into the reference view I°, we have
to preprocess the ground truth over all 200 frames. The
preprocessing employs the optical flow ground truth to de-
warp each geometry pixel of Dl1 into Ill. That mimics the real
capture of the second LiDAR frame. The de-warping process
is supported with an occlusion-handling algorithm. Finally,
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Fig. 6: Impact of the window support size on the final scene
flow outliers.

we conduct a dense-to-sparse algorithm on each LiDAR
frame DY and the de-warped D] to remain only 88 sparse
LiDAR measurements (i.e. around 0.1% of ground truth) as
an average over all train set frames. Each sparse LiDAR map
is generated by moving a 5 X 5 window with regular steps
over the image and picking a LIDAR measurement within the
defined window which is the nearest one to its center pixel.
After de-warping and sparsification, the correspondences
of the two sparse measurements (D?,D}) are completely
dissolved in our input data.

B. LiDAR-Flow Pipeline Evaluation and Comparison to an
Image-only Approach

Table I quantifies the results after each fusion step in
our LiDAR-Flow pipeline. Since LiDAR-Flow incorporates
LiDAR measurements and stereo images into dense scene
flow estimation on image domain; [21], [23], [24] can not be
conducted to our evaluation. They exploit the full resolution
of LiDAR on point cloud domain and they remove LiDAR
points on grounds which is inconsistent to our algorithm.
As mentioned in related work, there is no directly related
algorithm utilizing a sparse LiDAR and stereo images for
scene flow computation. Thus, we compare to the image-only
scene flow algorithm SFF++ [5] in its dual-frame version. We
compare against SFF++ [5], since it follows a similar concept
of sparse-to-dense interpolation; although it does not utilize
any LiDAR data. The comparison to SFF++ [5] involves the
main steps of matching, consistency check and interpolation
in Sections III-B, II-C and II-D respectively. Fig. 7 vi-
sualizes also the superior performance of our LiDAR-Flow
against SFF++ [5] under three challenging scenarios in terms
of (FL), (Dy) and error map which maps the inliers of scene
flow with green color.

Support Window: Various sizes of the proposed support
window are tested to check the impact into the final accuracy.
We assume a symmetrical support window in our investiga-
tion. Fig. 6 illustrates that increasing the size performs better
accuracy until 15 x 15. However, the use of bigger sizes can
drop the final accuracy down for the reasons mentioned in
Section III-A. The following results are performed using the
15 x 15 support window.

Matching: Matching between stereo images only results in
outlier rate 39.09%. With pushing the LiDAR measurements
directly into matching algorithm, we constraint the space
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Fig. 7: Three examples visualize the impact of our LIDAR-Flow compared to an image-only SFF++ [5]. Our LiDAR-Flow
performs superior in challenging image regions with shadows and low illumination. Exactly these regions are of high
importance for applications like autonomous driving or mobile robots.

TABLE I: Quantitative evaluation for each single processing in Fig. 2, and comparison of LiDAR-Flow against image-only
SFF++ [5] across the main steps: matching, consistency check and interpolation.

EPE [px] Outliers [%] Density
Dy | D | FI Dy | D | FIL | SF [%]
im-only 7.30 | 1098 | 38.64 12.48 | 28.86 | 32.02 | 39.09 100
im+LiDAR 6.90 | 14.19 | 3691 12.48 | 28.70 | 32.67 | 39.55 100
Matching im+LiDAR+win 648 | 1220 | 37.72 11.66 | 27.95 | 32.15 | 38.89 100
im+LiDAR+win+const1 6.56 | 10.65 | 35.11 11.67 | 27.62 | 31.82 | 38.62 100
LiDAR-Flow: im+LiDAR+win+const1+const2 6.57 | 10.61 | 34.81 11.65 | 27.59 | 31.70 | 38.46 100
SFF++ [5] 7.30 | 11.14 | 38.02 12.48 | 28.82 | 31.95 | 39.04 100
Disp+LiDAR 0.85 6.50 23.49 2.01 16.00 | 20.15 | 22.71 63.75
Consist. Check  LiDAR-Flow: disp+LiDAR & backward+LiDAR 0.71 0.93 1.46 1.21 2.46 2.97 4.21 37.30
SFF++ [5] 0.89 1.01 1.11 2.66 3.39 2.37 5.04 40.89
Spars+LiDAR 0.75 1.36 2.98 1.50 3.69 4.40 6.01 5.78
Interpolation Spars+LiDAR & Interp-only 1.17 1.69 5.05 5.30 8.55 10.32 | 12.27 100
LiDAR-Flow: Spars+LiDAR & Interp+LiDAR 1.14 1.62 4.46 5.02 8.07 9.61 11.52 100
SFF++ [5] 1.33 1.88 5.32 6.44 9.67 12.24 | 14.51 100

of finding other matches of (u,v,d1) on the untextured
regions. However, we affect badly reaching the optimal flow
components in neighbor pixels during the propagation. One
of the neighbor pixels within the proposed support window

can reach the optimal matches with minimum matching cost.
In addition, the use of matching cost constraint (constl) in
Fig. 4 and the disparity space constraint (const2) optimize
the outlier rate to 38.46%. The improvement is performed not



TABLE II: Quantitative evaluation of the final scene flow
results for the LiDAR seeds, the 15 x 15 support window
and overall pixels compared to SFF++ [5].

SF Outliers [%]
Seeds [ Window [ Dense

SFF++ [5] 16.05 13.89 14.51
LiDAR-Flow 7.88 8.70 11.52
Average no. of evaluated points 88 ‘ 6820 ‘ 91875

only for the disparity map of Dy but also for the matches of
optical flow components (FI) and the disparity map of (D).
The quantitative values of our LiDAR-Flow approach show
improvement overall scene flow components compared to
SFF++ [5]. The error map shows in Fig. 7 more inliers with
low illuminated regions of the cars, in which the matching
algorithm of SFF++ [5] fails.

Consistency Check: The consistency check of the
disparity map at fy using sparse LiDAR measurements
(disp+LiDAR) removes the inaccurate geometry matches in
which no contribution of LiDAR measurements is. That
decreases the density of scene flow to 63.75%, but re-
mains the reliable geometry matches. The forward-backward
consistency (backward+LiDAR) removes unreliable matches
of optical flow (u,v) and disparity d;. That decreases the
density of matches to 37.30%. Together, consistency check
of LiDAR results in more inliers to the critical regions (e.g.
untextured) where consistency check of SFF++ [5] fails (see
Fig. 7). The quantitative comparison compared to SFF++
[5] shows that less outlier rate of scene flow (SF) and
disparity maps (Do, D1) but not with (F1). The reason of that,
the contribution of LiDAR measurements in estimating the
optical flow (FI) components is less than that with disparity
maps (D, D).

Interpolation: The sparsification (spars+LiDAR) contin-
ues removing less confident scene flow components and
decreases the density of scene flow results to 5.7%. The
interpolation before fusing LiDAR measurements (interp-
only) is compared to the interpolation algorithm constrained
by LiDAR measurements (interp+LiDAR). Overall compo-
nents, LIDAR-Flow interpolation algorithm achieves a bet-
ter outlier rate (11.52 %) than the rate of SFF++ [5] of
14.51%. Not only with the disparity (D), but even with
the optical components (FI) and disparity (D), the use of
88 LiDAR measurements only, can resolve the challenging
regions. Beside the quantitative comparison, Fig. 7 shows
the substantial improvement under the challenging regions
of shadowed areas and low illuminated areas compared to an
image-only approach. In the aforementioned evaluation, error
metrics are computed on average over the whole image. Table
II indicates the final scene flow results in different image
regions. The results are given for the position of the 88 input
LiDAR measurements only, indicating a halved outlier rate
compared to the image-only approach. In addition, the out-
liers in the 15 x 15 support window are substantially reduced.
This indicates that the utilized sparse LiDAR measurements
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Fig. 8: Impact of number of LiDAR measurements on the
final scene flow outliers.

serve as anchor points for these regions.

Run Time: Estimating scene flow for a consecutive frame
requires 78 seconds on a single 4 cores CPU @ 3.5 GHz base
frequency with C++. Parallelism is utilized for a small part
of the algorithm.

C. Impact of Number of LiDAR Measurements

We test the utilization of more LiDAR measurements
and their impact on the final scene flow outlier rate. The
proposed support window in Section III-A is neglected in
order to avoid overlapping between LiDAR support windows.
Fig. 8 illustrates that the accuracy tends to be better with
more LiDAR measurements. However, even with very sparse
LiDAR measurements (88 points only), we achieve already
significant improvement. Such sparse LiDARs are compara-
bly cheap and lead — in combination with our LiDAR-Flow
— to the desired increased robustness in challenging image
regions.

V. CONCLUSIONS

In this paper, we proposed LiDAR-Flow to estimate dense
scene flow from a fusion of sparse LiDAR and stereo images
for resolving the challenges of textureless objects, shadows
and poor illumination. We tightly integrated highly accurate
LiDAR measurements into each processing step of our
pipeline. They initialized image-based matching as well as
served as anchor points for the consistency check in remov-
ing mismatches. In addition, we incorporated the sparse Li-
DAR measurements as constraints to increase the robustness
of the sparse-to-dense interpolation. In our comprehensive
evaluation on KITTI, we demonstrated the impact of each
design decision of our LiDAR-Flow. Compared to image-
only approaches, LIDAR-Flow resolved robustly the lack of
information in challenging image regions and improves the
overall accuracy of scene flow. Especially in critical scenarios
— see Fig. 7 with oncoming cars, low illumination, shadows
— our LiDAR-Flow performed superior.
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