
Let’s Prove it Later —
Verification at Different Points in Time

Martin Ring1 and Christoph Lüth1,2

1 Deutsches Forschungszentrum für Künstliche Intelligenz, Bremen, Germany
2 FB 3 — Mathematics and Computer Science, Universität Bremen, Germany

Abstract. The vast majority of cyber-physical and embedded systems
today is deployed without being fully formally verified during their de-
sign. Postponing verification until after deployment is a possible way to
cope with this, as the verification process can benefit from instantiat-
ing operating parameters which were unknown at design time. But there
exist many interesting alternatives between early verification (at design
time) and late verification (at runtime). Moreover, this decision also has
an impact on the specification style. Using a case study of the safety
properties of an access control system, this paper explores the implica-
tions of different points in time chosen for verification, and points out
the respective benefits and trade-offs. Further, we sketch some general
rules to govern the decision when to verify a system.

1 Introduction

Contemporary embedded and cyber-physical systems have become so common-
place that we, almost unconsciously, rely on their correct functioning — we just
expect our smartphone to work. This is contrary to the fact that these systems
have reached a complexity where the verification of their correct behaviour be-
comes prohibitively expensive. Subsequently, a full correctness proof is only ever
done for the most safety-critical systems. For all other devices, errors during the
design process may remain undetected in the final product. This is due to the
way these systems are currently designed.

The current design flow for embedded and cyber-physical systems is (ideal-
ized) as follows: we first specify the system’s intended behaviour, then construct
a model of the system and finally an executable implementation. Some of these
steps may be conflated or missing; e.g. in model-based specification, the specifi-
cation is the model, or one may generate an implementation from the model. In
this design flow, verification refers to all activities which show that the imple-
mentation of the system satisfies its specification [6].

Current verification techniques such as theorem proving, model checking,
static analysis or testing are conducted at design time and finished before de-
ployment, for two reasons: firstly, we want to make sure the system has no errors
before putting it into operation, and secondly, it is not entirely clear how to con-
duct verification at runtime. But this approach has the drawback that the time
for verification is limited; errors which are not caught by the time the system is



2 Martin Ring and Christoph Lüth

going into operation will remain undetected and may later on have unintended,
unpleasant, or even catastrophic consequences.

On the other hand, verification does not necessarily need to terminate with
the end of the development. In runtime verification, we check whether a particu-
lar run of the system satisfies desired properties. This has the advantage that we
do not need to stop verification if we deploy the system, and checking whether
a specific run of the system satisfies the desired property is of lower complexity
compared to model-checking [7]. The drawbacks are that it may be costly to
continuously monitor the behaviour of the system at runtime, and once we find
an error, it may be too late to do anything about it. This is particularly true for
hardware, and systems where the split between hardware and software is decided
rather late in the development process.

The idea of self-verification is to investigate the middle ground in between:
verify properties of the system as soon as practically possible, but as late as
necessary. In other words, verification does not terminate with deployment, but
is also not kept until the last moment. The present paper investigates the idea of
self-verification as proposed in [8, 11] further. The key contribution is to examine
the implication of self-verification on the development process. We do so by
means of a case study, an access control system, which is simple to understand
yet offers subtle effects and is easy to visualize.

The paper is structured as follows. Section 2 introduces the basic concepts
of self verification, which are elaborated more concretely in Section 3 using the
case study, an access control system. Section 4 shows our approach to realizing
self-verifying systems, and Section 5 concludes with a general discussion of the
wider applicability.

2 Self-Verification

Modern cyber-physical systems are designed to be versatile, such that they are
able to handle numerous operating contexts and operate in many different envi-
ronments. Thus, they have a large number of parameters which become instan-
tiated at runtime. The key advantage of self-verification is hat after deployment,
the concrete values of these parameters may become known for verification. Some
may be instantiated early on after deployment, and not change after that at all,
or only very infrequently; others may change, but not that often; and even oth-
ers may be sensor data which are read in small intervals, but where the rate of
change may be limited. All of this information may be utilized at runtime for
more efficient verification.

This observation hinges on the fact that proving a property φ depends, inter
alia, on the number of free variables in φ, and that parameters as mentioned
above usually occur as free (or universally quantified) variables in φ. Then,
proving φ

[
t
x

]
with a ground term t instantiated for x is typically orders of

magnitude easier than proving φ.
Self-verification provides some challenges. At runtime, we do not have as

many resources in terms of memory and computing power as at design time, and



Let’s Prove it Later — Verification at Different Points in Time 3

1 2

3 4

Fig. 1. Four different points in time chosen for verification, from design time (leftmost)
to runtime (rightmost). Trigger transitions are marked with small boxes; they trigger
verification tasks which show that every possible path through the state space which
does not include other trigger transitions is safe. Green boxes mark successful verifi-
cation, and red boxes mark failed verification tasks. The solid red state is unsafe; it
violates the safety property φ. Grayed-out states are not reachable, because they come
after a failed verification (open red box). Design time verification (on the left) would
identify the system as erroneous and prohibit its execution. Second to left, the system
is verified early after deployment and thus is allowed to execute only a small fraction (6
transitions) of the system, blocking two transitions and leaving 6 transitions unreach-
able. Third to left, most of the system is executable (11 transitions) but two transitions
are blocked and one transition is not reachable. The rightmost example allows all but
one transition. Note that in the last example the system gets deadlocked in state 4
when taking the leftmost path.

we need to transport the proof obligations derived from the specification into
the runtime environment. So, self-verification needs a design flow to support it:
a format and logic in which to encode the properties at design time, and light-
weight proof engines which run under the resource constraints of an embedded
system. We will show in Section 4 how such a design flow can be implemented.

However, the focus of the present paper is to investigate the effects of self-
verification on the development. That is, we want to explore when to prove
properties and which ones, and we want to investigate how self-verification in-
teracts with the development process.

Comparing self-verification to runtime and a priori design time verification
on a more abstract level, we consider specific runs of the system 〈σi〉i∈N, consist-
ing of states σi, and a safety property φ. Usual design time verification proves
the general property that for all runs, ∀i. φ(σi), i.e. the safety property holds
for all states. In OCL and related formalisms, this is achieved by an inductive
argument, showing that we start in a safe state, φ(σ0), and that from a safe state
we can only get to a safe state, φ(σi) implies φ(σi+1). Runtime verification, on
the other hand, considers whether a specific run satisfies ∀i. φ(σi) and does not
restrict the transitions of the system; unsafe states can be reached, but this is
always detected. In self-verification, instead of restricting transitions, we classify



4 Martin Ring and Christoph Lüth

them into trigger transitions and ordinary transitions. The idea is that when the
system goes through a trigger transition σi → σi+1, self-verification shows that
all states σk reachable with ordinary transitions from σi+1 are safe, i.e. φ(σk).
If another trigger transition is reached, the self-verification is run again. Note
that the classification of trigger transitions and ordinary transitions depends on
the particular φ, and is a design decision (see Section 3 below). A priori and
runtime verification can be seen as extreme cases of self-verification: in design
time verification only one transition (the one leading to the initial state of the
system) is classified as a trigger transition, while in runtime verification every
transition is a trigger transition. Figure 1 illustrates the effect of different sets
of trigger transitions for one system. Because the effort to state and prove φ
increases with the number of states we want to cover, self-verification allows us
to strike a balance: we may prove φ with little effort for a small number of states,
and so have to reprove it more often, or we may prove φ for more states, but
with more effort.

When we specify the desired behaviour of the system with design time veri-
fication, we need to state the required preconditions very precisely — they need
to be strong enough to be able to actually show that the system globally satisfies
the specified properties, and to preclude unwanted behaviour, but weak enough
to still allow all desired implementation. If we move verification into runtime, we
can relax preconditions at design time, allowing for more readable specifications
and speeding up the development process. Consider Figure 1 again: to make the
system usable as well as correct, one would have to, e.g. refine the specification
(or the implementation) to exclude the transitions from states 1 and 2 to 3. With
self-verification, we can allow a more liberal specification or implementation and
still remain safe, making the development process easier.

Thus, in essence specification becomes easier and faster to write, and more-
over we are liberated from having to prove everything a priori, and can instead
adapt the proving strategy to the problem at hand.

3 Case Study

In the following, we will demonstrate our methodology in a case study (building
loosely on Abrial [1]). The case study is simple enough to be easily understood,
yet complex enough to show the subtle effects of verification at different points
in time.

3.1 Informal Description

To motivate our case study, think of a building where fine-grained access control
is needed for security or safety reasons, e.g. a nuclear power plant, but which also
needs to be able to be evacuated very fast in the case of an emergency. In that
case, we want to be able to eliminate access control (to allow fast evacuation)
and just open some of the doors in such a way that all users are able to get out,
but no user gains access to a room where they are not allowed to enter.



Let’s Prove it Later — Verification at Different Points in Time 5

a b

c

s

A B

Fig. 2. Example of a very simple building. The user with card A is authorized for room
a, user B is authorized for room b, both are authorized for rooms c and s. Room s is
the only safe room (it is the outside). The situation shown violates the safety property.

More precisely, we have a building consisting of several rooms. The rooms are
connected by doors, which are unidirectional (think of turnstiles; normal two-
way doors are an obvious generalization). Thus, doors lead from one room to
another one, which is equivalent to each room having a set of entries and exits.

Users are represented in the system by cards which regulate the access to
rooms. (In the following, we use cards and users interchangeably; the formal
specification only has cards.) Each card authorizes access to a set of rooms, by
restricting passage through the doors. The access control system operates in two
modes: in normal mode, a door may only be passed (using a card) if the card
authorizes access to the room the door is leading to. However, we can declare
an emergency for the whole building; in that modus, some doors are opened,
allowing anyone to pass through.

Opening doors in an emergency is subject to two safety properties: firstly, it
should allow any user (card) to eventually arrive in a safe room, and secondly, it
should not allow any user to enter a room they are not authorized to. A subset of
rooms is considered to be safe; in the simplest case, this can just be the outside
modelled as a room. As an example for the necessity of the safety properties,
take the nuclear power plant: even in case of an emergency, one would not want
anybody to exit through the reactor core.

This rather innocuous specification allows some subtle effects. Consider the
simple building in Figure 2; the depicted situation violates the safety property,
as in case of an emergency, we cannot disable access control and open the doors
in such a fashion that neither user A or user B are allowed to access rooms they
are not authorized to (rooms b and a, respectively), and both are able to get to
a safe room (s).

Hence, we need to prevent a situation like this from happening. This could
be done by

– either restricting the layout of the building in such a way that situations like
this do not happen (this is what is usually done, with layouts were corridors
are the default escape route, and users do not have to traverse long sequences
of rooms);



6 Martin Ring and Christoph Lüth

Block Definition Diagram [package] selfie::acs ACS

«block»
Building

values
emergency: Boolean

«block»
Door

values
isOpen: Boolean

operations
pass(card: Card): Unit

«block»
Card

«block»
Room

values
isSafe: Boolean

rooms[*]building[1]

cards[*]

exits[*]

from[1]

entries[*]

to[1]

authorized[*]

authorizations[*]

checkedIn[*]

location[1]

Fig. 3. Formal specification of an access control system.

– or by restricting the authorizations of the cards in such a way that a situation
like above does not happen;

– or by checking that before a users enters a room no situation violating the
safety property like above is created.

3.2 Formal Specification

We can now give a formal specification of our access control system. We will use
a subset of SysML[10] and OCL[9], where block definition diagrams (BDDs, the
SysML equivalent to UML class diagrams) model the structure of the system,
and OCL constrains the dynamic behaviour.

In Figure 3, we can see blocks modelling the building, doors, rooms and cards
respectively. The building has a Boolean attribute emergency. A door leads from
exactly one to another room, but a room may have many (or no) entries and
exits. A door may only connect rooms which are part of the same building:

context Door
inv: from.building = to.building

Furthermore cards are also associated to buildings and may only authorize
access to rooms which belong to the same building:

context Card
inv: authorizations→forall(r| r.building = self.building)

Cards have a set of authorizations (rooms which the holder of the card is
allowed to enter) and exactly one location, which determines the current location



Let’s Prove it Later — Verification at Different Points in Time 7

of the card, and which must always be contained in the set of authorizations. On
the other hand, rooms have a set of authorized cards (those cards which have
the room in their set of authorizations), and a set of checkedIn cards (the set of
cards whose location is this room).

context Room
inv: checkedIn→forall(p |authorized→contains(p))

context Card
inv: location→forall(r |authorizations→contains(r))

Rooms have a Boolean attribute isSafe which determines whether the room is
safe during an emergency. A door has a method pass, which determines whether
a given card is allowed to pass. This is the case if either the door is open (see
immediately below), or if the card is in the room this door is opening from, and
the card is authorized for the room the door is opening to. We have encapsulated
this precondition as an OCL function mayPass in order to reuse it later. The
postcondition of the pass method is that the location of the card has changed
to the room the door is opening to. Doors are only allowed to be opened in case
of an emergency.

context Door
def: mayPass(card: Card): Boolean =
isOpen or from.building.emergency
and card.authorizations→contains(to)

inv: isOpen implies from.building.emergency

context Door::pass(card: Card):
pre: mayPass(card) and card.location = from
post: card.location = to

We now want to formalize the safety property: in an emergency, users can
always reach a safe room, yet no user has access to a room they are not authorized
to. To formalize a user being able to reach a room, we formalize the notion of
recursive access, which models the traversal along a sequence of connected rooms:
users have access to the room they are currently in, and recursively to all rooms
which can be reached through doors which may be passed (i.e. rooms which have
an entry from an accessable room that this card has access to). We formulate
this notion as an OCL function hasAccess which for a given room determines
whether a given card has access to this room. Since OCL does not allow non-
terminating functions we pass the set of already traversed rooms to the helper
function hasAccess$ such that we do not traverse cycles:

context Room
def: hasAccess(card: Card): Boolean = hasAccess$(card,Set{})
def: hasAccess$(card: Card, visited: Set(Room)): Boolean =
card.location = self or
visited.excludes(self) and entries→exists(e |



8 Martin Ring and Christoph Lüth

a b

c

s

A

d
B

a b

c

s

A

B

d

e

Fig. 4. Situations which are safe. On the left, user B cannot enter room c until user A
has left. On the right, a similar situation, but the user B may have taken the long path
through room e and d quite unnecessarily before not being able to proceed further.

e.mayPass(card) and
e.from.hasAccess$(card, visited→including(self)))

We can now specify the safety properties: firstly, that users can always reach a
safe room, and secondly, that users only have access to rooms they are authorized
for:

context Card:
inv safe1: building.rooms→exists(r |
r.isSafe and r.hasAccess(self))

inv safe2: building.rooms→forall(r |
not r.authorized→contains(self) implies not r.hasAccess(self)))

3.3 When to Verify

In order to preclude an unsafe situation as in Figure 2, we have to show our
system satisfies the safety property. Of course, in full generality — universally
quantified over all buildings and all authorizations — the safety property does
not hold; we can easily find counterexamples (such as Figure 2). If we want to
show the safety property at design time, we have to formalize conditions which
are sufficient for the safety property (i.e. preclude unsafe buildings).

With self-verification, we can show the safety property after deployment, at
different points in time:

(a) right after deployment to a specific building, for all possible cards, autho-
rizations and allocations of users to rooms; or

(b) after authorization has changed, for a specific building, but for all possible
allocations of users to rooms; or

(c) when a user requests access to a different room: if the new configuration of
the user in this different room is unsafe, access is not granted.



Let’s Prove it Later — Verification at Different Points in Time 9

In case (a), we would either need an explicit and sufficient characterization of
“every user always has a safe exit route”, or we need to search a lot of instances
(all paths for all users from all rooms). For most buildings, we will be able to
find counterexamples of unsafe configurations of users and access rights, but we
may be able to restrict access rights in such a way that we can prove the safety
property. If we can prove the safety property at this point, we are done, but this
may not always be possible.

The other extreme case is (c); this is fairly straightforward to verify, but
might be inconvenient to the user. (Thus, this is an example of making a system
safe by restricting its availability.) Consider the situation in Figure 4 with the
same authorizations as in Figure 2. On the left, user B cannot enter room c until
user A has left, because otherwise we would have the situation from Figure 2
which is not safe. This might result in situations like on the right of Figure 4,
where user B might take a long tour through room e to room d only to find they
cannot proceed any further.

A good compromise is case (b): we verify the safety property each time
the authorizations change, for a specific building and specific authorizations. In
most cases, this should be reasonably efficient — the search space is through all
possible allocations of users to rooms — but still precludes unsafe allocations.

Note how self-verification allows us to relax the development process: because
we can prove the safety property at runtime, we do not need to specify all its
preconditions at design time (here, we do not need to characterize the precon-
ditions to make buildings and authorizations safe). This makes the development
process more agile without compromising safety.

4 Realization

4.1 A Design Flow for Self-Verification

Our design flow targets hardware-software co-design for embedded and cyber-
physical systems. As demonstrated in Section 3, we use a subset of SysML (block
definition diagrams and state machine diagrams3) together with OCL as a spec-
ification formalism. Block definition diagrams and state machine diagrams can
be given a formal semantics (which is not the case for all SysML diagrams), so
our specifications have a mathematically well-defined, formal meaning. This is
indispensable if we want to perform formal correctness proofs. Figure 5 sketches
the design flow.

We have developed a textual representation of block definition diagrams and
state machine diagrams (in the spirit of USE [4]), which we use in our design
flow. Figure 6 shows an excerpt; parts of the corresponding OCL specifications
have been shown in Section 3 above. We can also use commercial tools like
Astah SysML, but their OCL support tends to be not as sophisticated. Instead,
we make use of the OCL implementation of the Eclipse Modelling Foundation.

3 The case study only uses block definition diagrams.



10 Martin Ring and Christoph Lüth

SysML + OCL

bdd [package] controller [Controller]

«block»

Controller

operations

tick()

«block»

Sensor

values

value: Int

«block»

Light

values

status: Boolean

«block»

Configuration

values

e_lo: Int
e_hi: Int
delay: Int

1
1

11 1 1

ClaSH 

Bitvector logic

Instantiated
CNF

Lightweight
SAT-Solver

D
e
si

g
n
 t

im
e

In
 t

h
e
 fi

e
ld

CNF SAT solver
(e.g. MiniSat, zChaff)

SMT prover
(e.g. Yices, Z3)

Instantiated configuration varia

State space to be verified

Verilog, VHDL

FPGA

Model

Implementation

Verification 

Specification

Deployment

Fig. 5. A design flow for self-verification.

Moreover, our textual representation makes the design flow fairly light-weight,
allowing users to employ any editor and versioning system at their disposal.

The implementation is given as an executable system model. To stay inde-
pendent of a specific programming language, we use the functional hardware
description language CλaSH [2] as modelling language, since it allows us to sim-
ulate the system as well as synthesize an implementation in VHDL or VeriLog.
Another possibility with more commercial traction would be SystemC, but that
has a less clear semantics and it is embedded in C++, technically a lot more
awkward to handle (in CλaSH, adding proof support was merely a question
of adding an additional backend; in SystemC, we do not even have an explicit
representation of the model to start from).

Our tool chain reads the SysML and OCL specification, performs the appro-
priate type checks, reads the CλaSH model, and generates the corresponding
first-order proof obligations in bitvector format (first-order logic with limited
width integers as datatypes). The proof obligations are essentially obtained by
taking a representation of the system model in bitvector logic, and showing they
satisfy the OCL constraints (pre/postconditions and invariants). They can be
either processed at design time by an SMT prover such as Yices or Z3, or trans-
ferred to runtime. Proving at runtime is either performed by an SMT prover
running on the target system, if the latter is powerful enough, or by converting
the proof obligations into conjunctive normal form (e.g. using the Yices prover)
before transferring it to the target system, and using a SAT solver at runtime (ei-
ther as a lightweight software SAT solver [3] or even a hardware SAt solver [12]).
We have evaluated this design flow using a ZedBoard (which consists of a Xilinx
FPGA controlled by an ARMv7 core), see [11]. Our evaluation has shown that



Let’s Prove it Later — Verification at Different Points in Time 11

bdd [package] selfie::acs [ACS]

-------------------------------

block Building

references

rooms: Room[*] <- building

cards: Card[*] <- building

values

emergency: Boolean

Fig. 6. Textual representation of the SysML block definition diagram (bdd). The ex-
cerpt shows the bdd for Building.

SysML + OCL

bdd [package] controller [Controller]

«block»

Controller

operations

tick()

«block»

Sensor

values

value: Int

«block»

Light

values

status: Boolean

«block»

Configuration

values

e_lo: Int
e_hi: Int
delay: Int

1
1

11 1 1

Instantiated
prf. obl.Z3 via

websocat

D
es

ig
n 

tim
e

In
 th

e 
fie

ld

Bitvector logic
SMT prover
(e.g. Yices, Z3)

Instantiated parameters

State space to be verified

SVG, TypeScript

TypeScript

Model

Implementation
Verification 

Specification

Deployment

SVG
DOM

Fig. 7. Design flow adapted to our demonstrator.

verification at runtime can cope with systems where a priori verification fails,
precisely because of the reduction in search space by instantiating parameters
which become known at runtime.

4.2 The Demonstrator

If we implement the case study in our usual design flow, we derive a hardware
implementation, e.g. on an FPGA. In order to explore the implications of proving
at different points in time, and to demonstrate the effects of self-verification in
an easily accessible setting, we implemented the case study as an interactive
demonstrator.

Simulating the hardware turned out to be very slow, so instead we chose
to adapt our flow: the implementation is an interactive SVG, with the dynamic
behaviour implemented in TypeScript. The core of the system is generated as im-
plementation stubs, using an adapted form of our design flow (see Figure 7). We



12 Martin Ring and Christoph Lüth

Fig. 8. The demonstrator is implemented as an interactive SVG document, displayed
here in a web browser.

have chosen TypeScript [5] as the target language (TypeScript is like JavaScript,
but with added type security), because it allows us to dynamically modify the
abstract syntax tree (the DOM) of the SVG. This allows the demonstrator to
be displayed and run on any recent web browser. In addition to the specified be-
haviour we manually implemented means to add and remove cards and change
their access rights, and reading building topologies from a non-interactive SVG.
We have implemented access cards (and implicitly their owners) as automated
agents which randomly roam the building. This allows us to observe the im-
plications of the different points in time of the verification; for example, the
behaviours mentioned for case (c) in Section 3 above manifest themselves in
agents hovering in one place unable to proceed because of the violation of the
safety property this would incur.

The generated SMT proof obligations are a general equivalence proof which
can be processed by an SMT prover at design time. As mentioned above, the
prover quickly finds counter examples since our specification can easily be vio-
lated in general. By adding runtime information in the form of assertions, we
refine the instance on the fly. This was realized by establishing a WebSocket
connection between the SVG and the Z3 prover. For this, we use the webso-
cat utility, which wraps a WebSocket server around a command-line program.
This allows us to load the general proof and then incrementally send assertions
restricting the state space.



Let’s Prove it Later — Verification at Different Points in Time 13

Technically, the arbitrarily mutable state of our simulation is in principle
not compatible with the monotonous nature of adding assertions: assertions can
only add information but not change or remove. Fortunately, SMT-LIB (the
common language used by most SMT provers) allows us to use scopes (with
the commands push and pop) for this. In order for this to work, we introduce
a fixed order in which information is added, which is based on the order of
execution in the system, ideally corresponding to the frequency of change. First
we add the general building topology, then the access rights, and after that,
the tracked locations of the card holders. Between every assertion, we save the
current size of the assertion stack with the push command. If any information
changes, we remove the assertion with the now outdated information as well as
any assertion which came afterwards. Then we only need to add the updated
assertions. Depending on the point in time chosen, we can check satisfiability
anywhere between.

An interesting feature of our implementation is that we did not implement
any algorithm which opens the doors. Instead, we use the prover to give us a
model of the existentially quantified safety property, which states that there must
be a safe way to exit (i.e. a set of doors to open in case of emergency). Through
self-verification not only did we not have to characterize buildings, access rights
or safe paths through the building, we even did not have to implement a path
finding algorithm at all.

The demonstrator is shown in Figure 8. It connects the implementation to
the proof engine running the SMT instance. We can manually choose one of the
three different information levels for the proof, which result in different assertions
being added as well as different triggers for the proof.

Users can explore the consequences of the different points in time for the
self-verification. For example, if they choose to verify early on (after a new card
has been added or access rights change) and add a lot of cards, they will notice
a considerable slow-down when adding new cards or changing access rights. If
they choose to verify late (before a user enters a room), and construct situations
like in Figure 4, they will realize how users congregate in front of a room unable
to get in. (The demonstrator is intended to be used together with additional
interactive explanation, not stand-alone, as situations like this will have to be
constructed consciously.)

The source code of the demonstrator is publicly available on GitHub.4

5 Discussion and Conclusions

This paper has elaborated on earlier proposals of self-verification — systems
which are not verified a priori, during the design phase, but where the proof
obligations incurred during the development are postponed until after deploy-
ment, and are proven at runtime. This makes proofs more easy, as we can in-
stantiate a number of the parameters of the system which are unknown at design

4 https://github.com/DFKI-CPS/selfie-demo



14 Martin Ring and Christoph Lüth

time, but become known at runtime. This reduces the state space, turning the
exponential growth of the state space — the bane of model-checking — into
exponential reduction. Self-verification is supported by a tool chain we have de-
veloped, which allows specification in SysML/OCL, system modelling in CλaSH,
and verification using SMT provers and SAT checkers.

It should be noted that self-verification is in no way intended to replace design
time verification. If proof obligations can be shown at design time, they should
by all means be discharged; however, self-verification offers a different way to
tackle proof obligations which can not be shown at design time, supplementing
design time verification, and offering the designer to pick the best of all possible
worlds.

5.1 When to Prove

The focus of the present paper has been to investigate the implications and
consequences of the point in time at which the proof of safety properties take
place at runtime. Generally, the earlier we can prove, the more general the proven
safety property, but the larger the search space is and subsequently the longer it
will take. How to pick the right points in time depends on the actual system and
is very much a design decision. In future work, we want to further investigate
how the designer can be assisted in this decision; in particular, the system should
suggest which variables offer the most reduction in proof time when instantiated.

However, we have made a number of observations which can help to assist in
finding the right set of trigger transitions. The set of trigger transitions should
be large enough such that verification tasks can be completed in a timely man-
ner (again, acceptable verification times depend on the concrete use case), but
reduced in a way such that no critical transition is included. Trigger transitions
might be prohibited by self-verification in case the specification is violated (fails
to verify in the concrete instance), so critical transitions should not be included
in the set of trigger transitions: e.g. if we verify the existence of an escape route
in case of an emergency it is clearly too late to handle failure. On the other
hand administrative operations like changing access rights are far better suited
to be included as trigger transitions, since a potential failure is presented to a
trained user of the system. Lastly, one should avoid transient states (e.g. a user
is inside a security gate) which can only be left through trigger transitions since
self-verification may lead to a system dead-locked there, as in Figure 1.

5.2 Conclusions

The vehicle of our investigations was a case study consisting of an access control
system, which is parameterized in many dimensions (the building under control,
the access rights, the users) that can be instantiated at different points in time.
In order to make our results concrete and tangible, we have developed a demon-
strator — the access control system implemented as an interactive SVG, which
can be viewed and run in any web browser. Users can directly experience the
effect of choosing different verification triggers.



Let’s Prove it Later — Verification at Different Points in Time 15

The demonstrator also exhibits the general applicability of self-verification
and the versatility of our tool chain, which could be adapted to support a dif-
ferent implementation platform (SVG and TypeScript instead of CλaSH) with
moderate effort.

This raises the question of the general applicability of the approach. As pre-
sented here, some kinds of safety-critical systems could not be addressed ade-
quately, namely fail-safe systems, where there is no default safe state which we
can always revert to if self-verification does not succeed. On the other hand, an
attractive avenue for further exploration is “just-in-time verification”, where one
tries to prove properties at run time as they are needed.

References

1. Abrial, J.R.: System study: Method and example (1999),
http://atelierb.eu/ressources/PORTES/Texte/porte.anglais.ps.gz

2. Baaij, C., Kooijman, M., Kuper, J., Boeijink, W., Gerards, M.: ClaSH: Struc-
tural descriptions of synchronous hardware using haskell. In: Proceedings of the
13th EUROMICRO Conference on Digital System Design: Architectures, Meth-
ods and Tools. pp. 714–721. IEEE Computer Society, United States (9 2010).
https://doi.org/10.1109/DSD.2010.21

3. Bornebusch, F., Wille, R., Drechsler, R.: Towards lightweight satisfiability solvers
for self-verification. In: 7th International Symposium on Embedded Computing
and System Design (ISED). IEEE (2017)

4. Gogolla, M., Richters, M.: Development of UML Descriptions with USE. In:
Shafazand, H., Tjoa, A.M. (eds.) Proc. 1st Eurasian Conf. Information and
Communication Technology (EURASIA’2002). pp. 228–238. Springer, Berlin,
LNCS 2510 (2002)

5. Hejlsberg, A.: Typescript (2012), https://www.typescriptlang.org
6. IEEE: IEEE std 1012-2016, IEEE standard for software verification and validation.

Tech. rep., IEEE (2016)
7. Leucker, M., Schallhart, C.: A brief account of runtime verification. The

Journal of Logic and Algebraic Programming 78(5), 293–303 (May 2009).
https://doi.org/10.1016/j.jlap.2008.08.004

8. Lüth, C., Ring, M., Drechsler, R.: Towards a methodology for self-verification.
In: 2017 6th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions) (ICRITO). pp. 11–15 (Sep 2017).
https://doi.org/10.1109/ICRITO.2017.8342390

9. OMG: Object Constraint Language (OCL), Version 2.4 (February 2014),
http://www.omg.org/spec/OCL/2.4/

10. OMG: Systems Modeling Language (SysML), Version 1.5 (May 2017),
http://www.omg.org/spec/SysML/1.5/

11. Ring, M., Bornebusch, F., Lüth, C., Wille, R., Drechsler, R.: Better late than never
— verification of embedded systems after deployment. In: 2019 Design, Automa-
tion Test in Europe Conference Exhibition (DATE). pp. 890–895 (March 2019).
https://doi.org/10.23919/DATE.2019.8714967

12. Ustaoglu, B., Huhn, S., Große, D., Drechsler, R.: SAT-lancer: A hardware SAT-
solver for self-verification. In: 28th ACM Great Lakes Symposium on VLSI
(GLVLSI) (2018)


