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a b s t r a c t 

Simultaneously estimating the 3D shape and pose of a hand in real time is a new and challenging com- 

puter graphics problem, which is important for animation and interactions with 3D objects in virtual 

environments with personalized hand shapes. CNN-based direct hand pose estimation methods are the 

state-of-the-art approaches, but they can only regress a 3D hand pose from a single depth image. In this 

study, we developed a simple and effective real-time CNN-based direct regression approach for simul- 

taneously estimating the 3D hand shape and pose, as well as structure constraints for both egocentric 

and third person viewpoints by learning from the synthetic depth. In addition, we produced the first 

million-scale egocentric synthetic dataset called SynHandEgo, which contains egocentric depth images 

with accurate shape and pose annotations, as well as color segmentation of the hand parts. Our net- 

work is trained based on combined real and synthetic datasets with full supervision of the hand pose 

and structure constraints, and semi-supervision of the hand mesh. Our approach performed better than 

the state-of-the-art methods based on the SynHand5M synthetic dataset in terms of both the 3D shape 

and pose recovery. By learning simultaneously using real and synthetic data, we demonstrated the fea- 

sibility of hand mesh recovery from two real hand pose datasets, i.e., BigHand2.2M and NYU. Moreover, 

our method obtained more accurate estimates of the 3D hand poses based on the NYU dataset compared 

with the existing methods that output more than joint positions. The SynHandEgo dataset has been made 

publicly available to promote further research in the emerging domain of hand shape and pose recovery 

from egocentric viewpoints ( https://bit.ly/2WMWM5u ). 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent years, major advances in deep learning and the

vailability of low cost depth sensors have significantly facilitated

esearch into the 3D hand pose estimation task. This task has im-

ortant applications in computer vision and graphics, such as the

andling of objects in virtual environments and signing in the air

1] . Deep learning-based direct regression methods (discriminative)

3,4] can achieve state-of-the-art accuracy with depth-based hand

ose datasets. However, these methods only regress the sparse

D hand pose from a single depth image, and thus they do not
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onsider the hand’s structure. A hand mesh (i.e., shape) is a richer

nd more useful representation that is much needed in many

omputer graphics applications, such as animating a personalized

and shape in virtual reality (VR) and augmented reality (AR). An

gocentric viewpoint is important in these applications because

he camera is mounted on the head. Inferring only a sparse hand

ose is not sufficient for modern gaming environments. Hence,

ecovering real hand shapes from an egocentric viewpoint is essen-

ial, but this is a very challenging task because of finger occlusion

nd field-of-view limitations. Algorithms for direct regression

and shape estimation from an egocentric viewpoint are not

vailable because none of the existing hand pose datasets provide

gocentric ground truth shape information. Annotating real images

ith shape representations is highly challenging and the results

an be sub-optimal. In addition, the SynHand5M synthetic dataset

5] provides information about hand shapes and poses from a third 

erson viewpoint but it lacks realism. The differences between real

https://doi.org/10.1016/j.cag.2019.10.002
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Fig. 1. 3D hand shape and pose recovery from a real depth image. We developed a simple and effective real-time convolutional neural network (CNN)-based direct regression 

approach for simultaneously recovering the 3D hand shape and pose from a single depth image. (a) and (b) show the recovery of the real hand pose and shape based on 

samples from the BigHand2.2M [2] dataset. Feasible real hand shapes can be recovered when no shape annotations are available in the real dataset. 
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and synthetic data can be decreased according to recent studies

[6,7] . In particular, Malik et al. [5] estimated the hand shape

and pose using a model-based deep network, which was trained

end-to-end based on a combination of real and synthetic data.

However, this method does not support the egocentric viewpoints

that are essential for VR/AR applications and it is hindered by low

accuracy and the generation of artifacts during shape estimation

because of the limited representational capacity of their hand

model, difficulty optimizing highly nonlinear kinematic models,

and the linear blend skinning function inside the deep network. 

In this study, we developed a simple and effective real-time

convolutional neural network (CNN)-based approach for regressing

the sparse hand joints and hand structure constraints, as well as

a 3D hand mesh for both egocentric and third person viewpoints.

The structure constraints (i.e., bone lengths, kinematic distances,

and inter-finger distances [8] ) are optimized simultaneously to

maintain the structural relationships between the estimated joints

[9] . To the best of our knowledge, directly regressing the 3D hand

shape and pose based on a single depth image has not been

reported previously. In addition, we produced SynHandEgo as the

first egocentric synthetic hand dataset containing accurate ground

truth data for 3D meshes, 3D poses, and color segmentations

of hand parts. This dataset can facilitate the reconstruction of

egocentric hand shapes using learning-based algorithms given that

the annotation of real depth images with accurate hand shape

information is almost impossible due to severe occlusion issues.

Our joint training strategy based on real and synthetic datasets

allows shapes to be reconstructed from real depth images without

requiring ground truth hand shape data. Our method successfully

recovered plausible hand shapes from two real benchmarks, i.e.,

NYU [10] and BigHand2.2M [2] . Our approach also outperformed

the state-of-the-art methods with the SynHand5M [5] dataset. Ex-

periments demonstrated that our method improved the hand pose

estimation accuracy based on the NYU dataset compared with

the existing methods that produce more than joint positions. We

demonstrated that joint regression of the hand pose, shape, and

structural constraints improved the accuracy of pose estimation

compared with the baseline architecture [11] by 10.6% using the

real NYU dataset and by 20.7% using the synthetic SynHand5M

dataset. The qualitative shape estimation results were improved

compared with the state-of-the-art method [5] using the NYU

dataset. The main contributions of the present study are listed as

follows. 

1. We developed simple and effective real-time CNN-based direct

regression approach for simultaneously estimating full hand

mesh and 3D pose from a single (egocentric view ( Fig. 1 (a)) and

a third person viewpoint ( Fig. 1 (b))) depth image. Our approach

enhanced the accuracy of 3D hand pose estimation by simulta-
neously estimating the full 3D hand mesh and the 3D pose (see

Sections 5.2 and 5.3 ). 

2. We constructed the first egocentric synthetic hands dataset

called SynHandEgo, which provides accurate ground truth data

for the 3D shapes, poses, and color segmentation of hand parts

from an egocentric viewpoint. This dataset has been made pub-

licly available to promote further research in this emerging do-

main. 

. Related work 

Yuan et al. [2] provided a detailed comparative analysis of sev-

ral state-of-the-art deep learning-based networks for 3D hand

ose estimation from a single depth image. Zhou el al. [12] pre-

ented a hand model-based deep learning approach that ensures

he geometric validity of the estimated 3D pose. This approach

as extended by Malik et al. [5,13] for learning bone lengths and

he shape of the hand skeleton from a single depth image. How-

ver, these methods are hindered by their low accuracy because

he kinematic model is highly nonlinear and difficult to optimize

n deep networks [9] . Obreweger et al. [14] proposed a CNN-

ased feedback network for estimating and refining 3D poses. Ye

t al. [15] introduced a hybrid method based on a spatial atten-

ion mechanism and hierarchical particle swarm optimization. Re-

ently proposed CNN-based methods ( [4,16–20] ) obtain higher ac-

uracy compared with the model-based deep learning approaches.

n particular, Ge et al. [21] regressed a 3D hand pose using a 3D-

NN. Rad et al. [4] simultaneously learned the mappings between

ynthetic images and their real counterparts with the 3D pose.

oon et al. [3] introduced a voxel-to-voxel network for accurate

D pose estimation. However, these methods may yield unstable

D poses because they lack some physical constraints. A solution

o this problem was proposed by Malik et al. [8] , which we inte-

rate into our approach. 

All of the approaches mentioned above focused only on esti-

ating sparse 3D hand poses using deep neural networks. Malik

t al. [5] firstly proposed an end-to-end model-based deep learn-

ng network for estimating 3D hand poses and shapes from a sin-

le depth image. However, the shape representation capacity of

heir hand model is limited. Moreover, their method is affected

y the generation of artifacts because of the difficulties associated

ith optimizing complex hand shapes, bone scales, and joint angle

arameters inside the deep network. In a recent study, Ge et al.

22] estimated 3D hand shapes and poses from a single RGB im-

ge. They also addressed a different and harder problem but their

pproach depends greatly on pseudo-ground truth data for the real

and shapes. Moreover, the 3D poses were estimated based on

econstructed 3D shapes, and thus the accuracy of the estimated

D poses was dependent on the recovered 3D shapes, which is
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Fig. 2. Overview of our approach for hand shape and pose regression. A depth input (I D ) is given to the convolutional neural network (CNN), which provides a feature map 

for four distinct regions of I D . After applying the regions ensemble strategy [11] , the structural constraints S, joint positions J, and mesh vertices V are directly regressed. The 

indicator function specifies whether the ground truth is available for the vertices or not, which allows the network to be trained using a combination of real and synthetic 

data. FC: fully connected layer. 
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ot feasible in practice because accurate real hand shape ground

ruth data are not available in the existing benchmarks. To the

est of our knowledge, a direct regression approach is not avail-

ble for simultaneously estimating the 3D hand shape and pose

rom a single depth image. Thus, we developed a simple and effec-

ive real-time CNN-based 3D hand pose and shape regression ap-

roach for both egocentric and third person viewpoints by learning

rom the synthetic depth. We showed that our approach effectively

econstructed hand shapes based on real images and obtained bet-

er qualitative results compared with the state-of-the-art DeepHPS

ethod [5] with the NYU hand pose dataset. In order to facilitate

he learning of real hand shapes from an egocentric viewpoint, we

roduced the first egocentric synthetic hands dataset (i.e., SynHan-

Ego), which provides 1M depth images with accurate 3D shape

nd pose annotations as well as color segmentations of hand parts.

iven that the annotation of real images of hand shapes from an

gocentric viewpoint is extremely difficult because of frequent fin-

er occlusion, our dataset will facilitate the development of algo-

ithms for reconstructing hand shapes from egocentric viewpoints.

. Proposed approach 

Fig. 2 presents an overview of our approach. Given a single view

nd gray scale depth image I D , the task involves directly regress-

ng the hand joints J ∈ R 

3xP , mesh vertices V ∈ R 

3xN , and structure

onstraints S, where P is the number of joints and N = 1193 is the

umber of vertices. As mentioned earlier ( Section 2 ), direct hand

ose regression methods (e.g., [4,11] ) may lead to unstable pose es-

imation because they do not explicitly consider the hand structure

n the learning process. In order to maintain the structural rela-

ionships between the estimated joints, we follow the method pro-

osed by Malik et al. [8] and simultaneously optimize S ∈ R 

(3xP −8) ,

ncluding the bone lengths, kinematic distances, and inter-finger

istances. The ground truth for S can easily be obtained from J (see

8] for details). The loss equations are given by the Euclidean dis-

ances as: 

 J = 

1 

2 

‖ 

J − J G T ‖ 

2 
, L V = 

1 

2 

‖ 

V − V G T ‖ 

2 
, 

 S = 

1 

2 

‖ 

S − S G T ‖ 

2 (1) 

here L J , L V , and L S represent the joint, vertex, and constraint

osses, respectively, and J G T , V G T , and S G T are the ground truths for

he pose, shape, and constraints. The combined loss equation can
e written as: 

 = L J + L S + 1 L V , (2)

here 1 is an indicator function. During the forward pass, 1 se-

ects V only for synthetic images using a binary flag value. This

alue is 1 for synthetic images and 0 for real images. Similarly,

ack-propagation for V is disabled for real images. 

.1. Network architecture 

We employ a state-of-the-art CNN architecture [11] used only

or pose regression and modify it to simultaneously regress S, J,

nd V (see Fig. 2 ). A depth input I D with a size of 96 ×96 is

assed through a shared CNN to produce the feature map measur-

ng 12 ×12 ×64. The shared CNN comprises six convolutional layers

sing a filter size of 3 ×3. Three max pooling layers with a stride

f 2 are used after each pair of convolutional layers. Two residual

onnections are made between the last two pairs of convolutional

ayers (for more details of the CNN architecture, see [11] ). The fea-

ure map is divided into four regions where each measures 6x6x64.

hese regions are flattened to produce fully connected (FC) layers

here each has a size of 2048. The FC layers are then ensembled

sing feature concatenation to create a high-dimensional feature

ector with a size of 8192. Finally, three lower dimensional regres-

ion FC layers are connected to produce S, J, and V separately (as

hown in Fig. 2 ). V is semi-supervised (see Eq. (2) ) so we intro-

uce a layer that implements an indicator function 1 . This layer

orwards only the valid V to the vertex loss layer. Back-propagation

s enabled only for synthetic images. 

. Egocentric synthetic dataset 

The SynHandEgo dataset was generated with Blender [23] using

 humanoid created with the MB-Lab add-on [24] . A virtual charac-

er was created and provided with an inverse kinematics controller

or moving and rotating its right hand, wrist, elbow, shoulder, and

lavicle. Rotation limits were set for the whole arm, including the

ngers, according to realistic ergonomic ranges. A virtual camera

hat simulated a Senz3D depth sensor [25] was mounted between

he eyes of the character. Mueller et al. [26] mounted the camera

n a shoulder whereas our camera position is optimal for VR/AR

pplications. The hand was set at the initial position in front of

he character (as shown in Fig. 3 ). Our custom code routine gener-

ted 1 million hand configurations by uniformly sampling random
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Fig. 3. Setup of the Blender scene used to create the SynHandEgo dataset. The vir- 

tual camera was placed between the eyes of the character. 

Fig. 4. Proposed egocentric hands dataset. (a) We provide accurate hand segmen- 

tation and full 3D hand mesh representations in addition to the 3D pose and depth 

image. (b) Large hand shape variation. We used realistic hand size measurements 

provided in the DINED anthropometric database [27] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Quantitative results obtained using the SynHand5M [5] test set. The results show 

that simultaneously learning the pose, shape, and structural constraints improved 

the accuracy of 3D hand pose estimation by 20.7% compared with the baseline ar- 

chitecture (J) [11] . All of the errors are reported in millimeters (mm). 

Method \ Error(mm) 3D Joint Loc. 3D Vertex Loc. 

DeepModel [12] 11.36 –

HandScales [13] 9.67 –

DeepHPS [5] 6.3 11.8 

J [11] 5.83 –

J ∪ V [Ours] 5.14 7.12 

J ∪ V ∪ S [Ours] 4.62 6.61 
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values within the allowed ranges for three categories of degrees

of freedom. The first category was hand rotation where the hand

was rotated on three axes in ranges that respected ergonomically

realistic positions. The second category was finger rotation where

all of the fingers were simultaneously rotated within their rotation

limits, which allowed the inclusion of uncomfortable or even un-

realistic poses in order to provide samples from border-line condi-

tions in the explored space. A collision detection routine discarded

the poses where the fingers penetrate each other. Fig. 5 shows

samples of the depth images with overlaid ground truth 3D poses

and the respective 3D hand shapes. The third category was hand

shapes where the size and proportions of the hand were modu-

lated in the following seven dimensions: length, mass, size, palm

length, inter-finger distance, finger length, and fingertip size . The re-

alism of the resulting hand proportions was ensured by measuring

the hand sizes within the ranges provided in the DINED anthro-

pometry dataset [27] (see Fig. 4 (b)). Moreover, we provide accurate

color segmentations of the hand parts, as shown in Fig. 4 (a), which

may be useful for hand part segmentation-based methods such as

that proposed by Neverova et al. [28] . Segmentation was conducted

at the polygon level by manual assignment of the polygon’s color

to either a phalanx, the palm, or forearm. The colors were gener-

ated by sequentially assigning the value of each RGB component

to 0.0, 0.5, or 1.0. These colors might seem similar to the human
ye but their values are very different in the RGB color space. We

ivided the dataset into a training set T E containing 900K images

nd a test set of 100K frames. As proposed by Malik et al. [5] , P

nd N are the same in SynHand5M. 

. Experiments and results 

In the following, we provide the implementation details and

valuations based on three public datasets (i.e., real NYU [10] , real

igHand2.2M [2] , and synthetic SynHand5M [5] ) and the proposed

ynHandEgo dataset. SynHand5M comprises 4.5M training set (T S )

nd 500K test set. The NYU provides a training set (T N ) containing

2,757 images from a third person viewpoint and a test set with

252 frames. BigHand2.2M is the largest real dataset where it con-

ains 956K depth frames with mixed egocentric and third person

iewpoints. The test set for pose estimation contains 296K images.

owever, the annotations for the test set are not publicly avail-

ble. Therefore, we treated 90% of 956K (i.e., 860K) as the train-

ng set (T B ) and the remaining frames (i.e., 96K) as the test set.

hree common evaluation metrics are used for public comparisons

omprising the average 3D joint location error, average 3D vertex

ocation error, and fraction of images within thresholds. 

.1. Implementation details 

We used the method described by Guo et al. [11] for stan-

ard preprocessing of the depth frames and the annotations. All

f the images were normalized using the hand mass centers and

 bounding box with a fixed size of 150. The final values for the

reprocessed depth images and annotations were in the range of

 −1 , 1] . To augment the data, we randomly scaled and rotated the

raining data in the ranges of [0.8, 1.1] and [ −45 ◦, 45 ◦] , respec-

ively. We trained our network using the Caffe framework [29] .

n order to conduct training based on T S , the learning rate (LR)

as set to 0.0 0 05, SGD momentum to 0.9, and the batch size

o 512. For combined real and synthetic data training, LR was

et to 0.0 0 0 05. Training was performed on a desktop PC with an

vidia Geforce GTX 1070 GPU. A single forward pass required only

.2 ms to generate both the 3D pose and shape. The networks were

rained until they reached convergence. 

.2. Synthetic hand shape and pose recovery 

SynHand5M dataset : We trained three different im plementa-

ions of our network to determine the effectiveness of simulta-

eously learning the hand shape, pose, and structure constraints.

n the first implementation, which is similar to that given by Guo

t al. [11] , 22 3D joint key-points from the SynHand5M dataset

i.e., J ∈ R 

66 ) were directly regressed. The network converged af-

er 10 0 0K iterations using LR = 0.05. The quantitative results are

hown in Table 1 . In the second implementation, the shape was

ptimized together with the pose (J ∪ V) by adding two additional

ayers to the first implementation: an FC layer with a size of 3579
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Fig. 5. Sample images from the SynHandEgo egocentric dataset. Preprocessed depth images with overlaid ground truth 3D hand poses and the respective ground truth 3D 

hand meshes from two different viewpoints. Our dataset includes a wide range of hand poses and shapes. 

Fig. 6. Qualitative 3D hand pose and shape inference results based on the 

SynHand5M [5] synthetic dataset. 

Fig. 7. Qualitative results obtained with the SynHandEgo dataset: 3D hand shape 

and pose recovery from sample egocentric images with high occlusion. 
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or regressing the mesh vertices and a non-parametric indicator

unction layer (as shown in Fig. 2 ). This network implementation

equired 20 0 0K iterations to converge with LR = 0.0 0 05. The es-

imated pose improved by 11.8% compared with the first imple-

entation. In addition, the shape estimation accuracy improved by

9.6% compared with DeepHPS [5] . In the third implementation,

he structural constraints were learned simultaneously with the

ose and shape (J ∪ V ∪ S), where convergence occurred in 2500 K

terations with LR = 0.0 0 05 and the performance was better than

he other approaches ( Table 1 ). This network implementation con-

ained an additional FC layer with a size of 58 to regress S (see

ection 3 ). Fig. 6 shows the qualitative 3D pose and shape estima-

ion results for some challenging hand poses. 

SynHandEgo dataset : We trained our network (J ∪ V ∪ S) on T E 
ith full supervision based on the joint positions, mesh vertices,

nd structural constraints. The network required 500K iterations to

onverge with LR = 0.0 0 05. Fig. 7 shows the qualitative 3D pose
nd shape recovery results. Quantitatively, the joint and vertex lo-

ation errors with the test set were 5.5 mm and 7 mm, respec-

ively. 

.3. Real hand shape and pose recovery 

The synthetic data provided weak supervision of the mesh ver-

ices for real hand shape recovery. However, training using both

he synthetic and real data allowed our network to learn the

hapes and poses of real hands despite the lack of ground truth

hape information for real images. We aimed to simultaneously re-

over both the real hand shape and the pose. However, for the sake

f completeness, we conducted comparisons with the state-of-the-

rt hand pose estimation methods using the NYU dataset. 

NYU dataset : We trained our network (J ∪ V ∪ S) based on four

atasets, which were combined to form a single training set:

 NBSE = T N ∪ T B ∪ T S ∪ T E . Not all of the joints in the NYU dataset

ere consistent with the other datasets, so we followed the

ethod proposed by Malik et al. [5] for selecting the 16 closely

atching joints present in all of the datasets. After training based

n T NBSE with full supervision for J and S, and semi-supervision for

 (see Eq. (2) ), we recovered the plausible 3D hand shapes from

he NYU dataset. Fig. 9 shows reconstructions of the 3D shapes ob-

ained from the sample test depth images in the NYU dataset. The

etwork required 50 0 0K iterations to reach convergence using LR

 0.0 0 0 05. We qualitatively compared our reconstructed 3D hand

hapes with those obtained using the state-of-the-art DeepHPS

ethod [5] . DeepHPS is hindered by the generation of artifacts

uring shape reconstruction because of the limited representa-

ional capacity of the hand model as well as difficulties optimizing

omplex hand shapes, bone scales, and joint angle parameters in-

ide the deep network. Moreover, all of these parameters were im-

licitly learned. To compare the performance of our method in the

D pose estimation task, we trained our network using a subset

f 14 joints from the NYU dataset and the corresponding closely

atching joints in other datasets. Fig. 8 shows quantitative com-

arisons with several state-of-the-art methods. Fig. 8 (left) shows

he errors based on individual joints from the NYU dataset and the

ean error. Fig. 8 (right) shows the fraction of successful frames

ithin various thresholds (in mm ). The joint location errors over

ll of the test frames are presented in Table 2 . As mentioned ear-

ier, DeepHPS [5] is the only existing method that estimates both

D the hand shape and pose with the NYU dataset. Our approach
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Fig. 8. Comparisons with state-of-the-art methods based on the NYU [10] dataset: mean error (left) and fraction of successful frames (right). Our method improved the 

accuracy in the 3D pose estimation task compared with the state-of-the-art methods that output more than the joint positions , i.e., DeepModel [12] , HandScales [13] , lie-X 

[30] , Feedback [14] , and DeepHPS [5] . 

Fig. 9. Qualitative comparison of the 3D hand shapes recovered with the state-of- 

the-art DeepHPS method [5] using the NYU [10] dataset. The DeepHPS method pro- 

duced artifacts due to the limited representational capacity of their hand model as 

well as difficulties optimizing complex hand shapes, bone scales, and joint angle 

parameters. By contrast, our algorithm recovered more accurate real hand shapes. 

Table 2 

Quantitative comparison based on the NYU [10] test set using several state-of-the- 

art methods. Our method improved the accuracy compared with the methods that 

output more than the joint positions. In addition, our method improved the accu- 

racy by 10.6% compared with the baseline method [11] . All of the errors are re- 

ported in mm. 

Methods 3D Joint Location Error 

Crossing Nets [31] 15.5 

Feedback [14] 15.9 

DeepHPS [5] 14.2 

REN-4x6x6 [11] 13.2 

Ours 11.8 

 

 

 

 

 

 

 

Fig. 10. Failure case: Our method failed to recover correct hand shapes from real 

depth images when large amounts of depth information were missing (a), or when 

the hand pose in the real depth image was not covered by the pose space in the 

synthetic dataset, which was a rare occurrence (b). 
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performed significantly better than the DeepHPS method in the

pose estimation task, thereby demonstrating the benefit of directly

regressing the dense mesh together with the sparse joints. In addi-

tion, our approach improved the accuracy by 10.6% compared with

the baseline REN architecture [11] , which only regresses the joint

positions. Thus, our method significantly improved the accuracy of

hand pose estimation compared with the state-of-the-art methods
hat produce more than joint positions, i.e., DeepModel [12] , Hand-

cales [13] , Feedback [14] , and DeepHPS [5] . In addition to 3D pose

stimation, DeepModel [12] estimates the joint angle parameters,

andScales [13] predicts the joint angles and bone lengths in the

and skeleton, Feedback [14] synthesizes 2D depth images, and the

eepHPS [5] method estimates the joint angles, bone lengths, com-

lex hand shape parameters, and 3D hand mesh vertices. We did

ot conduct comparisons with direct regression methods [3,4] that

o not incorporate hand structure in their pipelines and that only

roduce 3D hand poses. 

BigHand2.2M dataset : We combined the BigHand2.2M, Syn-

and5M, and SynHandEgo datasets into one training set: T BSE =
 B ∪ T S ∪ T E . The 21 joints in the BigHand2.2M dataset were consis-

ent with the joints in both of the synthetic datasets. However, the

alm center positions were missing from the BigHand5M dataset.

hus, we calculated the palm centers by taking the mean of the

enters of the metacarpal joints and the wrist joint. Hence, all 22

oints were used in the combined training process. After simulta-

eously training with the real and synthetic data, we recovered 3D

and shapes for the challenging poses in BigHand2.2M from both

gocentric and third person viewpoints (as shown in Fig. 1 ). The

etwork converged within 50 0 0K iterations using LR = 0.0 0 0 05.

uantitatively, the 3D joint location error with the test set was

3.5 mm. 

Failure cases : When significant depth information was missing

rom the real images, our algorithm failed to recover the plausi-

le hand shapes (as shown in Fig. 10 (a)). In addition, if the hand
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ose in the real depth image differed significantly from the pose

pace covered by the synthetic dataset, which occurred rarely, our

etwork could not recover the correct hand shape (see Fig. 10 (b)). 

. Conclusion and future work 

In this study, we developed a simple and effective real-time

NN-based approach for directly regressing the 3D hand shape and

ose for both egocentric and third person viewpoints by learn-

ng from the synthetic depth. We also produced the first egocen-

ric synthetic hand pose dataset, which provides accurate anno-

ations for 3D hand shapes and poses. In addition, we provided

olor segmentations of the hand parts. This dataset will facilitate

uture research into full hand shape and pose estimation from ego-

entric viewpoints, provided that obtaining the real hand shape

round truth is a hard and sub-optimal problem. Our network is

rained simultaneously using real and synthetic data, which al-

ows the successful recovery of plausible real hand shapes. Learn-

ng the pose and structural constraints is fully supervised, whereas

hape learning is semi-supervised. Experiments showed that our

pproach performed better than the state-of-the-art methods with

he synthetic SynHand5M dataset in terms of both hand shape and

ose estimation tasks, and it also improved the pose estimation ac-

uracy based on the real NYU dataset compared with the existing

ethods that output more than the joint positions. Inspired by the

eep learning-based approaches proposed in previous studies [6,7] ,

e plan to generate a realistic egocentric synthetic hands dataset

nd to extend our approach for improved hand shape and pose es-

imation to allow its direct use in real-time VR/AR applications. 
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