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Abstract

This issue of Natural Language Engineering journal reports on recent achievements in the

domain of hpsg-based parsing. Research groups at Saarbrücken, CSLI Stanford and the

University of Tokyo have worked on grammar development and processing systems that

allow the use of hpsg-based processing in practical application contexts. Much of the research

reported here has been collaborative, and all of the work shares a commitment to producing

comparable results on wide-coverage grammars with substantial test suites. The focus of this

special issue is deliberately narrow, to allow detailed technical reports on the results obtained

among the collaborating groups. Thus, the volume cannot aim at providing a complete survey

on the current state of the field. This introduction summarizes the research background for the

work reported in the issue, and puts the major new approaches and results into perspective.

Relationships to similar efforts pursued elsewhere are included, along with a brief summary

of the research and development efforts reflected in the volume, the joint reference grammar,

and the common sets of reference data.

Relevant only to some extent. State-of-the-art parsers are moving away

from complex feature structure systems.

(Anonymous NAACL 2000 Reviewer)
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1 Do we need (deep) linguistic processing?

Much like the global economy, the stock exchange and haute couture, natural lan-

guage engineering (the field) exhibits a cyclic progression of dominating paradigms

and development currents. And although Natural Language Engineering (the jour-

nal) has demonstrated a respectable degree of independence from the streams of

fashion, we view the production of this Special Issue as an indicator of a new devel-

opment: the return of precise linguistic grammars and constraint-based processing

for practical applications.

The goal of capturing linguistic knowledge – providing a model of the system

of language in a form suitable for computer-based, algorithmic processing – has

always been among the central concerns of Computational Linguistics and Natural

Language Processing (NLP). Formal clarity, descriptive adequacy, declarativity, mod-

ularity, re-usability and related concepts have been desiderata for NLP theories and

systems from the very beginning. (Context-free) Phrase structure grammar (Chom-

sky 1959), augmented transition networks (Woods 1970), definite clause grammars

(Pereira and Warren 1980), chart parsing (Younger 1967; Kay 1973), feature struc-

tures and unification (Kay 1979), taxonomic logics (Brachman and Schmolze 1985)

and constraint-based approaches to grammar and processing (Sells 1985; Shieber

1986) mark some of the milestones in the development of the field. The 1980s saw an

immense increase in the number of research projects and development efforts (some

in industrial environments) working on the production of declarative grammatical

resources and suitable processing techniques, many of them aiming for (often very

complex) query processing, dialogue system, or machine translation applications.

This traditional strain of NLP is now often referred to as ‘deep’ processing.

The 1996 final report of the European Expert Advisory Group (EAGLES) on

Linguistic Formalisms lists about a dozen implemented grammar development and

processing environments (Uszkoreit, Becker, Backofen, Calder, Capstick, Dini, Dörre,

Erbach, Estival, Manandhar, Mineur, van Noord and Oepen 1996).1 Head-Driven

Phrase Structure Grammar (hpsg) (Pollard and Sag 1994) and to a slightly lesser

extent, Lexical Functional Grammar (lfg) (Dalrymple, Kaplan, Maxwell and Za-

enen 1995) and Tree Adjoining Grammar (tag) (Joshi 1987) are the predominant

paradigms according to the EAGLES survey. In retrospect, it may seem little has

changed in the past five years. hpsg and lfg continue to be the most widely ac-

cepted unification-based theories of grammar within computational linguistics, and

are gaining ground as non-transformational alternatives to Chomskyan grammar

in formal and theoretical linguistics proper. The majority of established grammar

development environments are still around, though some have disappeared or lost

importance, and we are not aware of new developments started recently.

At the same time, however, the 1990s – and especially the past five years – have

seen a shift of emphasis: a large number of current NLP applications focus on a

slightly different, linguistically often less demanding problem than (proto-)typical

1 The complete report can be accessed on-line from the EAGLES home page at Pisa; see
http://www.ilc.pi.cnr.it/EAGLES96/home.html.
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systems ten years earlier. Precise, in-depth syntactic and semantic analysis are far less

important in text retrieval, message understanding or information extraction contexts

than they are for a dialogue or machine translation system, for example. Instead, the

applicability to large amounts of naturally-occurring input (typically text), overall

system coverage and robustness, domain-oriented processing, and general fitness

for a specific task are among the primary requirements for what have come to

be known as ‘shallow’ (text) processing systems. The DARPA-sponsored TREC

and MUC conferences – a series of competitive, task-oriented system evaluation

meetings – have made at least two significant contributions to the field: (i) because

the common evaluation metric is strictly black-box and task-driven, a diversity of

approaches ranging from finite-state to probabilistic (and often hybrid) systems were

encouraged; and (ii) given the large funding body behind the evaluations, public

research efforts, especially in the US, were polarized between working either within

the shallow processing paradigm, or deliberately outside of it.

Shallow processing techniques have produced useful results in some classes of

applications, but they have not met the full range of needs for NLP, particularly

where precise interpretation is important, or where the variety of linguistic expression

is large relative to the amount of training data available. For such applications,

especially ones involving (non-trivial) semantic processing and language generation

such as machine translation, automated response systems, or speech prostheses, the

quality of each output from the system will be judged against a readily accessible

human standard. While robustness remains important, it is in tension with the

user expectation of correct, natural results from the system, and deep processing can

provide informed estimates of correctness, either because a given linguistic expression

is within the scope of the grammar, or because it falls outside of the grammatical

coverage in some quite specific respects. These measures of how confident the system

is of its results can be of real use, both in avoiding deceptive or confusing output,

and in ranking logically correct outputs when the available context is not rich

enough to resolve ambiguous expressions.

2 Why is (deep) linguistic processing a hard problem?

Linguistic expressions taken out of context are incomplete and ambiguous, since

the speaker counts on the hearer to supply common sense and world knowledge as

part of the understanding process. Not only is a lot left unsaid, but many words in

what is said have multiple meanings, and the ways they are combined give rise to

even more possible meanings for a given utterance. Yet humans succeed very well in

processing natural language, apparently unaware of most of the logically possible

interpretations of what they say or hear.

Contemporary NLP systems cannot hope to have access to the vast amount of

real world knowledge that humans enjoy, nor can they expect to reason very well

about the modest amount of knowledge that is formally represented in current

machines. But contemporary systems can exploit the rich and steadily growing

store of detailed linguistic knowledge to at least identify those interpretations of an

utterance which are logically possible, and to avoid false understandings. Linguists
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can provide precise descriptions of the words of a language, and of the rules that

govern how they can be combined to produce meaningful utterances. Implementing

such lexicons and grammars in an NLP system requires sustained collaboration

between the theoretical linguist and the grammar writer, since even the formal

tools for representing linguistic knowledge undergo steady refinement. And the

grammar writer must often find engineering solutions to fill in gaps in the body

of theoretical work on a language, since in any NLP application there are quite

ordinary expressions that remain unanalyzed within a given theoretical framework.

Deep processing of language necessarily involves making a great number of fine-

grained distinctions about how the words and phrases of a language relate form

to meaning, and this level of detail can prove to be expensive computationally.

Within the hpsg framework adopted for the grammars reported on in this volume,

the descriptions of linguistic signs (both words and phrases) are large, and will

only get larger as more of the language is analyzed. The size and nature of these

signs presents an interesting challenge for the NLP system developer who wants to

meet the efficiency requirements of a given application. Let us substantiate these

observations with a few real-world numbers obtained from the LinGO grammar

(Flickinger, this issue) and using the pet parser (Callmeier, this issue): each feature

structure built in the parser, on average, has some 300 internal nodes, each of around

80 bytes in size (including outgoing arcs). While parsing a representative sample

(viz. the ‘blend ’ test set described below), the unifier on average executes more than

4000 top-level unifications per sentence (in an average total time of less than a

second), which corresponds to close to 100 Mbytes of memory that are being visited

(i.e. dereferenced, not necessarily allocated). Not surprisingly, nearly 40% of total

parsing time is spent in the unifier, and another 45% in feature structure copying.

While it is this issue of efficient processing that provides the focus for the papers in

this volume, we note that consumption of time and space are not the only challenges

facing the developers of a useful deep NLP system. Competing with the desire for

efficiency are the goals of (i) broader coverage of the linguistic expressions needed

for a given application; (ii) avoiding false analyses of utterances (which can easily

arise as coverage grows); (iii) correctly ranking the alternatives for utterances that

the grammar finds ambiguous; and (iv) retaining a close connection between the

implemented grammar and the theoretical work that informs its design.

3 Multilateral collaboration: our setup

In early 1994, research groups at Saarbrücken2 and CSLI Stanford3 started to

collaborate on the development of large-scale hpsg grammars, suitable grammar en-

2 See http://www.dfki.de/lt/ and http://www.coli.uni-sb.de/ for information on the
DFKI Language Technology Laboratory and the Computational Linguistics Department
at Saarland University, respectively.

3 The http://lingo.stanford.edu/ web pages list hpsg-related projects and people in-
volved at CSLI, and also provide an on-line demonstration of the lkb system and LinGO
grammar. As a Stanford visiting scholar, John Carroll of Sussex University had a great deal
of influence on the efficient reimplementation and optimization of core lkb components
and (now back at home in Sussex) continues to be an active lkb developer.
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gineering platforms, and efficient processors. Since the early 1990s, the Saarbrücken

group had been developing an hpsg-based dialogue system, including a highly ex-

pressive typed feature formalism, a medium-coverage grammar of German, and an

application prototype for distributed email-based appointment scheduling (Uszko-

reit, Backofen, Busemann, Diagne, Hinkelman, Kasper, Kiefer, Krieger, Netter,

Neumann, Oepen and Spackman 1994; Krieger and Schäfer 1994; Erbach, Kraan,

van der Manandhar, Ruessink, Thiersch and Skut 1995). csli, on the other hand,

had long been among the driving forces in the theoretical development of the hpsg

theory of grammar, and could at the same time build on system and grammar build-

ing experience gained in the Hewlett-Packard NL and the EU-funded ACQUILEX

projects (Flickinger, Nerbonne, Sag and Wassow 1987; Copestake 1992). The close

collaboration developed when both sites started participating in Verbmobil (Wahlster

1997), a distributed project on spoken dialogue translation4 comprising more than

twenty groups, and adopting hpsg as the common grammar model for deep process-

ing. The English grammar was developed at Stanford, whereas the German grammar

and core processing environment was contributed by DFKI Saarbrücken; Saarland

University supplied the Japanese Grammar and robust semantics. The multi-site

efforts in grammar-based analysis were coordinated by Hans Uszkoreit. Collabora-

tion has greatly increased productivity, resulted in a mutual exchange of knowledge

and technology, and helped building a collection of grammar development environ-

ments, several highly engineered parsers (Kiefer, Krieger, Carroll and Malouf 1999),

and an efficient generator (Carroll, Copestake, Flickinger and Poznanski 1999).

In 1998, the grammar formalisms and parsing group at Tokyo University5 joined

the consortium and now supplies additional expertise on (abstract-machine-based)

compilation of typed feature structures, Japanese hpsg, and grammar transforma-

tion and approximation techniques (Torisawa and Tsujii 1996; Makino, Yoshida,

Torisawa and Tsujii 1998; Tateisi, Torisawa, Miyao and Tsujii 1998).

The primary goal of this multilateral collaboration is to synchronize efforts on the

development and deployment of efficient, large-scale hpsg processors, thereby en-

hancing the effectiveness of each group in doing its own focused research. Grounded

in these common goals, the sites have agreed on a joint descriptive formalism and

reference grammar and are now engaged in a constructive competition for premium

processing performance within this framework.

3.1 Converging on a joint formalism and reference grammar

Given a broad acceptance of unification-based approaches to computational gram-

mar – and in particular of the hpsg and lfg frameworks – it may seem from the

outside that the formal foundations of (typed) feature structures have long been

established. While this may well be true from a mathematical point of view (Rounds

4 Verbmobil was funded by the German Federal Ministry of Education, Science, Research
and Technology (BMBF) under Grant 01 IV 701 V0.

5 Information on the Tokyo laboratory, founded and managed by Professor Jun-ichi Tsujii,
can be found at http://www.is.s.u-tokyo.ac.uk/.
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and Kasper 1986; Carpenter 1992), it is less so seen from the implementation per-

spective. The main degree of variation here is not in different interpretations of

individual concepts, but in the particular choice of descriptive devices that a token

system makes from a set of options and alternatives that has been growing con-

tinuously. Open- vs. closed-world reasoning, single vs. multiple inheritance, various

approaches to disjunction and negation (in different flavours), set-valued feature

structures, the precise semantics of the type system, and the inclusion of impli-

cational or relational constraints are some of the dimensions that, when applied to

the systems listed in the above mentioned 1996 EAGLES survey, for example, make

each implementation distinct in the range of formal devices that it has to offer.

Although the individual systems developed within our consortium often supply

extra functionality, the groups have converged on a common descriptive formalism –

a conservative blend of Carpenter (1992), Copestake (1992) and Krieger and Schäfer

(1994) – that allows grammars6 to be processed by five different platforms. But this

joint formalism is by no means the mere intersection (or, loosely speaking, the

smallest region of overlap) between the environments represented among the partic-

ipating groups; instead, the selection of formal and descriptive devices was guided

by two major concerns: (i) linguistic adequacy, grounded in nearly three decades

of joint experience in building large-scale hpsg-type grammars; and (ii) processing

requirements, informed by earlier work on efficient implementations. The decision

to eliminate (explicit) disjunction from the linguistic specification language, for ex-

ample, is motivated by theoretical and engineering considerations alike. Flickinger

(this issue) argues that a grammatical stipulation that makes disjunctive information

explicit in underspecified types in the grammatical ontology (rather than by dis-

junctive enumeration) can be interpreted as a stronger model of what (co-)variation

the grammar actually foresees. At the same time, moving to a purely conjunctive

feature logic allowed the adaptation and fine-tuning of existing, very efficient unifi-

cation techniques (Malouf, Carroll and Copestake, this issue) that avoid expensive

backtracking and duplication of redundant structure.

The joint descriptive formalism can be informally characterized as a closed-world,

conjunctive-only, multiple inheritance type system that enforces strong typing and

strict appropriateness, but allows types to be associated with arbitrary (complex) con-

straints that are inherited and applied both at compile and at run-time (e.g. when two

types unify to a more specific, constraint-introducing subtype). hpsg well-formedness

principles, immediate dominance schemata, and constituent ordering constraints are

all spelled out in the type hierarchy (and cross-multiplied), yielding a set of phrase

structure schemata that can be interpreted as rewrite rules over complex (typed fea-

ture structure) categories by a suitable parser or generator. A precise mathematical

specification of this formalism as it is assumed throughout the volume is given in the

Appendix (Copestake, this issue). And although our conservative choice of descrip-

tive devices is fairly restrictive – in particular when compared to a general-purpose

6 In the hpsg universe (and accordingly the present volume) the term ‘grammar’ is typically
used holistically, referring to the linguistic system comprised of (at least) the type hierarchy,
lexicon, and rule apparatus.
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inference and type deduction system like TFS (Emele 1994), for example – it has

enabled the development of several large grammars as well as the implementation

of hpsg processing systems that perform with previously unmatched efficiency.

The LinGO grammar, a multi-purpose, broad-coverage grammar of English devel-

oped at CSLI and to our best knowledge the largest hpsg implementation currently

available, serves as a common reference for all three groups (while of course, the

sites continue development of additional grammars for English, German, Japanese

and other languages). The grammar primarily serves as a representative sample of

the common approach to linguistic description and the joint specification language,

rather than as a fixed target to which systems are being tuned. As each site regularly

evaluates their system(s) against other, only abstractly similar grammars, and since

it has often been confirmed that the techniques evolving from the collaboration

proved beneficial beyond the LinGO grammar, the contributions in this volume

can be taken as a representative report on this particular line of research in hpsg

processing. Flickinger (this issue) provides details on the LinGO grammar, including

reasoning about some of the design decisions made in the underlying formalism;

unless stated otherwise, all contributions in the volume refer to the August 1999

LinGO version, which was frozen as a common reference point.

With 100,000 lines of source, roughly 8000 types, an average feature structure

size of some 300 nodes, 27 lexical and 37 phrase structure rules, and some 6000

lexical (stem) entries, the LinGO grammar presents a fine challenge for processing

systems; a multiple-inheritance ontology with several thousand types, for example, is

a rare configuration, even in large-scale object-oriented applications. While scaling

the systems to the rich set of constraints embodied in the LinGO grammar and

improving processing and constraint resolution techniques, the groups have regularly

exchanged benchmarking results, in particular at the level of individual components,

and discussed benefits and disadvantages of particular encodings and algorithms.

Precise comparison has been found to be essential in this process and has facilitated

a degree of cross-fertilization that has proved beneficial for all participants.

3.2 The reference data

For comparison and benchmarking purposes with the LinGO grammar three test

suites and development corpora were chosen: (i) the csli test suite derived from

the original Hewlett-Packard data (Flickinger, Nerbonne, Sag and Wassow 1987),

(ii) a small collection of transcribed dialogue utterances collected in the Verbmobil

project, and (iii) a larger extract from recent Verbmobil corpora that was selected

pseudo-randomly to achieve a balanced distribution of one hundred samples for

each input length below twenty words. Some salient properties of these test sets are

summarized in Table 1.7 Looking at the degrees of lexical (i.e. the ratio between

7 While wellformedness and item length are properties of the test data proper, the indicators
for average ambiguity and feature structure (fs) size were obtained using the current release
version of the LinGO grammar, frozen in August 1999. Here and in the tables to come the
symbol ‘]’ indicates absolute numbers, while ‘φ’ denotes average values.
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Table 1. Reference data sets used throughout the issue

total word lexical total parser passive
Set Aggregate items string entries results analyses edges

] φ φ ] φ φ

‘csli ’
wellformed 918 6·45 15·3 732 2·16 115
illformed 375 6·11 14·9 85 2·31 84

‘aged ’ wellformed 96 8·41 23·1 72 7·00 292

‘blend ’
wellformed 1910 11·13 32·1 1008 51·39 1181
illformed 142 11·05 34·2 24 20·33 611

columns five and four), global (column seven), and local (approximated in column

eight by the number of passive edges created in pure bottom-up parsing) ambiguity,

the three test sets range from very short and unambiguous to mildly long and highly

ambiguous. Contrasting columns six and three (i.e. items accepted by the grammar

vs. total numbers of well- or ill-formed items) provides a measure of grammatical

coverage and overgeneration, respectively.8

The ‘blend ’ test set is a good indicator of maximal input complexity that the avail-

able parsers can currently process (in plausible amounts of time and memory). See

the benchmarking results presented by Callmeier (this issue) for precise performance

data on this test set. For improved comparability, all systems were allowed to impose

an upper limit on the number of passive edges built in non-predictive bottom-up

parsing; using a limit of 20,000 edges resulted in the exclusion from the comparison

of 67 items from the original ‘blend ’ set.

3.3 Benchmarking and comparison

In system development and optimization, subtle algorithmic and implementational

decisions often have a significant impact on system performance, so monitoring

system evolution very closely is crucial. System performance, however, cannot be

adequately characterized merely by measurements of overall processing time (and

perhaps memory usage). Properties of (i) individual modules (in a classical setup,

especially the unifier, type system and parser), (ii) the grammar being used, and

(iii) the input presented to the system all interact in complex ways. In order to

obtain an analytical understanding of strengths and weaknesses of a particular

configuration, finer-grained records are required. Among the participating groups

(and in particular, during the production of this special issue) a common approach

to benchmarking and comparison has served as a ‘clearing house’ in the production

and exchange of comparable, reproducible data sets.

8 Coverage on the ‘blend ’ corpus is comparatively low, as this test set became available only
after the LinGO reference version had been frozen, and in particular some frequent lexical
items are missing from the grammar.
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The methodology was introduced using the term competence & performance pro-

filing (by analogy to standard software engineering techniques) by Oepen and

Flickinger (1998); a competence & performance profile is defined as a rich, pre-

cise and structured snapshot of system behaviour at a given development point.

The production, maintenance and inspection of profiles is supported by a special-

ized software package (called [incr tsdb()]9) that supplies a uniform data model,

an application program interface to the grammar-based processors, and graphical

facilities for profile analysis and comparison. Profiles are stored in a relational

database which accumulates a precise record of system evolution, and which serves

as the basis for flexible report generation, visualization and data analysis via basic

descriptive statistics. Oepen and Carroll (this issue) review some of the details of

the profiling approach used within the consortium, inasmuch as they are relevant to

this Special Issue. Additionally, complete profiles for most of the contributions in

the volume are available on-line; see below.

4 Scope of this issue – related work

The research contributing to this volume was first presented at an internal working

meeting of the three cooperating groups (held in Berlin, Germany, in March 1999),

and subsequently as part of a topical workshop (held at Schloß Dagstuhl, Germany,

in October of the same year).10 The current collection documents a large body

of practical research and engineering, ranging from linguistic adaptation of the

grammatical specification (Flickinger, this issue), over improved constraint resolution

(Malouf et al., and Miyao, Makino, Torisawa and Tsujii, this issue) and parsing

strategies (Oepen and Carroll, this issue), down to the compilation of a context-free

approximation for large-scale hpsg grammars (Torisawa, Nishida, Miyao and Tsujii,

this issue); also, a comparative assessment of what broad progress has been achieved

through the synthesis of several of these techniques, compared to system performance

in 1996, is included (Callmeier, this issue). The volume presents a representative

snapshot of where the joint effort on efficient hpsg processing has taken us so

far, and at the same time provides a good summary of previously unpublished

implementation experience. Given this narrow focus, the Special Issue cannot serve

as a survey of the state-of-the-art in hpsg processing, let alone constraint-based

grammar in general. There are, in fact, a large number of ongoing activities, some

directly related to work reported here, and others similar in spirit, which we cannot

reflect in this volume.

Closely related projects pursued at DFKI Saarbrücken (and involving the LinGO

reference grammar) which are not represented in our current collection include

(i) the adaptation of the Platform for Advanced Grammar Engineering (page) –

the environment that was initially used for LinGO and other Verbmobil grammar

9 See http://www.coli.uni-sb.de/itsdb/ for the (draft) [incr tsdb()] user manual, pro-
nunciation guidelines and instructions on obtaining and installing the package.

10 We are grateful to Verbmobil and Deutsche Bank Ag Berlin for financial support of the
March meeting, and to the Dagstuhl Foundation for supporting the October workshop.
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engineering – for the robust and efficient parsing of word recognizer output in

Verbmobil (Kiefer et al. 1999); (ii) the development of a compiler for LinGO-type

grammars that – by virtue of an intermediate abstract-machine-based representation

– generates ANSI C program code for an efficient parser (chic: Compiling hpsg

into C; (Ciortuz 2000)); and ongoing research on (iii) context-free approximation

techniques for (large-scale) hpsg grammars (Kiefer and Krieger 2000); and on

(iv) the acquisition of domain-specific, stochastic tree substitution grammars from

parsing corpus data (Neumann and Flickinger 1999).

Taking a slightly wider perspective for a brief moment, we see related work being

pursued at several sites in Europe and the US. Among others, the Department of

Linguistics at Tübingen University (Germany) continues research on formalism and

grammar development (in the ConTroll system; (Götz and Meurers 1997)), though

with a different focus: unlike our own consortium, the Tübingen group explores

a logically very rich and advanced formalism that facilitates the direct encoding

of hpsg principles and well-formedness constraints as they were articulated in the

original hpsg theory (Pollard and Sag 1987; Pollard and Sag 1994). The theoretical

and formal development of the framework, accordingly, are primary concerns for the

basic research done at Tübingen, whereas the construction of large-scale grammars

and efficient processors take more of a back-seat position.11 In a similar, theory- more

than application-driven vein, the Linguistics Department at Ohio State University

(USA) is investigating linearization-based extensions to hpsg (Kasper, Calcagno and

Davis 1998), which aim at addressing the ‘free’ word order challenges encountered

in languages like German, the Slavic language family, and others. Again, primary

emphasis in this and similar efforts is not on the engineering and scaling aspects,

but on advancing the underlying linguistic theory.

This is very different in the work carried out within the multi-site ovis (public

transport information system) project at the University of Groningen (The Nether-

lands); van Noord, Bouma, Koeling and Nederhof (1999) demonstrate that a robust

analysis component based on a linguistically sophisticated grammar (inspired by

hpsg) can compete with a probabilistic, ‘data-oriented’ (DOP) parser. In fact, for

the limited ovis domain, the grammatical analysis module outperforms the shallow

processor in both accuracy and its demand for computational resources. This is

made possible by, among others, restricting the linguistic formalism to a subset of

Definite clause Grammar (DCG), specialized and robust word graph (pre)processing,

and thorough parser engineering (van Noord 1997).

We have seen comparatively few reports on (the use or extension of) systems

like alep, cuf, ProFit or tfs for several years, although these platforms doubtlessly

continue to be used in research and educational environments. Thus, it appears that

the wealth of hpsg-related projects and approaches observed in the early 1990s has

11 Incidentally, Gerald Penn, one of the developers of the Attribute Logic Engine (ale), was
based at Tübingen University until recently, where he was engaged in an extension to
ale (called trale) that integrates a restricted amount of constraint resolution of general
implicational constraints at run-time from controll into an efficient logic programming
and grammar parsing and generation implementation. trale development has not been
completed yet; see http://www.sfsnphil.uni-tuebingen.de/∼gpenn/ale.html.
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in the meantime coalesced into a smaller number of synchronized and focused (and

in some cases, comparatively large) research and development initiatives. Our own

experience strongly suggests that this tendency of convergence can be beneficial

both to consortium members and to the wider community.

Perhaps the closest similarity to the work reported in this Special Issue can

be found in a development within the lfg community, where the Lisp-based, only

moderately efficient Grammar Writers Workbench has effectively been replaced with

a very efficient reimplementation in ANSI C, the Xerox Linguistic Environment (xle)

developed at Xerox PARC. The design and realization of the xle was guided by

extensive grammar engineering and system implementation experience; restricting

the lfg formalism somewhat and re-engineering of central algorithms resulted in a

net speed-up of more than an order of magnitude. The xle platform has facilitated

the development of parallel, large-scale grammars for English, French and German

(Butt, King, Niño and Segond 1999) (with other languages underway) and has – by

virtue of its previously unmatched processing performance – enhanced and energized

language engineering work in lfg.

From the limited parser performance data presented in Butt et al. (1999), it seems

that the xle performs on a scale broadly equivalent to the current best system(s)

within our consortium (see Callmeier, this issue): medium-complexity input of ten

to twenty words, say, is analysed in average parsing times of around or less than

one second per sentence. Obviously, more detailed and systematic comparison will

be required between the two frameworks.

5 The virtual appendix

Besides the Appendix that gives a mathematical summary of the typed feature

formalism assumed throughout the volume (Copestake, this issue), this Special Issue

provides a second, virtual appendix that is not included in the printed distribution.

The virtual appendix gives access to the raw data collections (profiles) used in the

individual contributions to the volume; profiles are available for public download

from the following address:

http://www.coli.uni-sb.de/nlesi/

Complete raw data is provided for interested readers who want to study a specific

property or aspect of the profiles in more detail than can be given as part of the

manuscripts. Additionally, the collection of on-line profiles may facilitate compari-

son across manuscripts (i.e. between different systems and techniques), beyond the

relative assessments that some of the authors already give. Although profile inspec-

tion, analysis, and comparison may be simplified using the [incr tsdb()] software

package (see above), the data is represented in ASCII files, suitable for manipulation

using standard text processing utilities (like, for example, grep(1), wc(1), awk(1)

and others).
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