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Abstract Autonomous underwater manipulation is still nowadays an open research
challenge. This paper describes the approaches to tackle some of the open challenges.
On the one side, the use of machine learning techniques for the online identification
and adaption of vehicle dynamics (dealing with drift compensation, mass changes,
etc) as well as the use of high-level context-based configuration of controllers to
adapt to changes in system morphology, hardware, and/or tasks. On the other side,
a robust control of underwater manipulators based on an extension of whole-body
control techniques is envisaged which takes into account the heterogeneous actuation
(thrusters on the base, actuators on the arm joints) as well as the uncertain underwater
vehicle dynamics. The result is a highly-reconfigurable system than can automatically
adapt its behaviour to cope with changes in the environment, in its own morphology
and/or in the task goals. The outcomes are planned to be validated in two different
scenarios: a floating-base dynamics testbed originating from space applications and
aerial robots at DLR and an underwater pool at DFKI.

1 Introduction

Manipulatorsmounted on commercial and research underwater vehicles are predomi-
nantly remotely teleoperated. The open challenges impeding autonomous operation
are mostly coming from two sources: on the one side, one problem is the uncertainty
and complexity in the models (both vehicle and hydrodynamics models). This chal-

José de Gea Fernández
DFKI Robotics Innovation Center, Bremen, Germany, e-mail: jose.de_gea_fernandez@dfki.de

Christian Ott
DLR, Institute of Robotics and Mechatronics, Wessling, Germany, e-mail: christian.ott@dlr.de

Bilal Wehbe
DFKI Robotics Innovation Center, Bremen, Germany, e-mail: bilal.wehbe@dfki.de

1



2 José de Gea Fernández, Christian Ott, Bilal Wehbe

lenge affects as well the control of the underwater vehicle, but it is especially critical
for the performance and control of a manipulator mounted on such an underwater
vehicle, particularly due to the dynamic coupling of forces between manipulator
and vehicle (e.g. the manipulator’s motion and contact forces ’disturb’ the vehicle’s
motion and vice versa). The second challenge comes from the underactuation of the
vehicle (usually equipped with less actuators than degrees of freedom to be control-
led). The fact that underwater vehicles are underactuated becomes more prominent
and critical the moment a manipulator is mounted on the vehicle, which requires
higher dexterity and precision. And this challenge has two effects: first, the impos-
sibility to generate arbitrary trajectories to reach a desired point in space brings the
needs for more complex trajectories and nonlinear control techniques and, secondly,
the use of poor performance ’slow’ thrusters compared to the ’faster’ actuators em-
ployed in the manipulator requires a robust control architecture able to deal with this
heterogeneous actuation system.

Currently, remotely operatedmanipulators are standard equipment formostROVs,
while on the contrary autonomous manipulation is still a research challenge and very
few examples of the latest are available (one such example is the work in [18]).
In principle, the equations of motion of underwater manipulators are similar to the
equations of fixed manipulators. However, there exists some crucial differences such
as the uncertainty in the model knowledge (mainly due to the poor knowledge about
the hydrodynamic effects), the complexity of the mathematical model, the kinematic
redundancy of the system (vehicle plus arm), the difficulty in controlling the vehicle
in hovering (mainly due to poor thruster performance) and the dynamic coupling
between the vehicle and the manipulator.

Control of floating manipulation structures was the focus of research since the
1980s, especially in the field of space robotics, leading to important results in
hierarchical control architectures. With regard to the underwater domain, initial
work was carried out in the 1990s in the control of a manipulator [23] and the
problem of coordination between vehicle and arm control for teleoperation [16].
One of the first successful attempts at underwater autonomous manipulation were
made within the SAUVIM (Semi Autonomous Underwater Vehicle for Intervention
Mission, University of Hawaii) project also in the late 1990s [26]. Since the first
works, a key aspect have been the exploitation of redundancy through some kind
of task-priority framework and this is also the main focus of the recent work in
[18]. Here, a control framework is presented to develop a multipurpose Intervention
Autonomous Underwater Vehicle (I-AUV) including a 7-DOF manipulator arm
within the TRIDENT EU FP7. In particular, the work focuses on the exploitation of
the highly redundant system for achieving a dexterous object grasping. A survey on
the developed control architectures for underwater robots up until the late 1990s can
be found in [25].

In recent years, holistic approaches to control robotic systems as a whole have ap-
peared which are known as ’whole-body control’ techniques, especially for complex
and highly-redundant systems composed of a mobile platform (either wheels or legs)
and a manipulation system. These whole-body control frameworks take care of mul-
tiple and simultaneous control objectives (posture control, manipulation, walking,
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etc). Since whole-body control uses real-time feedback, robots using those appro-
aches are more adaptive and can react promptly to unexpected sensory feedback
signals, resolving at runtime for the optimal use of the all available robot degrees of
freedom. The origins of whole-body motion generation is found on the generation
of walking on humanoid robots while trying to ensure balance of the system.

In [17], the term ’whole-body control’ was used for the first time to refer to a
floating-base task-oriented dynamic control and prioritization framework that ena-
bles a humanoid robot to fulfill simultaneous real-time control objectives. Priori-
tization and coordination of several controllers is achieved using a hierarchy that
handles conflicts and selects the one with highest priority. As soon as manipulation
comes into play and, consequently, the contact with the environment is desired and
not treated as a disturbance, complex robotic systems need to deal with simultaneous
multi-contact forces (feet and mobile base with the ground, manipulator or manipu-
lators with the objects being manipulated), and with the task of keeping balance or an
optimal posture, among others. This requires efficient and online control strategies
based on real-time feedback which can make optimal usage of the redundancy of
such robotic systems. This is not only relevant for humanoids, but also in applications
in which we have highly-redundant systems, for instance dual-arm robotic systems
that need to cope with simultaneous tasks [4]. Given the nature of a free-floating
system such as those composed of an AUV and a manipulator, it seems suitable to
use the concepts of whole-body control for the underwater domain, especially when
manipulation actions (and thus, contact forces) come in to play. However, there are
challenges to be faced in this new domain, such as the heterogeneous nature of
the actuation, the automatic reconfiguration based on current context or tasks, and
dealing with the dynamics effects previously mentioned.

The next sections will provide some details of the methods to be used to deal with
those challenges.

2 Methods

2.1 Machine Learning for Context-Adaption and Automatic
Reconfiguration of Whole-Body Control Tasks

As previously mentioned, one of the predominant challenges in underwater manipu-
lation arises from the complex and nonlinear interaction between the manipulator’s
body and its surrounding fluid. Nonlinearities in the dynamics arise naturally due to
several hydrodynamic effects such as added mass, damping and lift effect, buoyancy
due to Archimedes as well as external disturbances [6]. Precise estimation of hyd-
rodynamic parameters is nearly impossible due to variations in the environmental
parameters such as temperature, water density and salinity [1]. Classical modeling
techniques of the hydrodynamics of such submersibles suffer from inaccuracies due
to the simplification of the mathematical equations, i.e., assuming geometrical sym-
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metries of the body and neglecting the effects of high order nonlinearities. In this
manner, machine learning appeals as a promising technique for learning complex
nonlinear models provided their inputs and outputs, and can therefore account for
unmodeled aspects of the vehicle’s hydrodynamics [21]. In the case of a free-floating
manipulation such as the one mounted on an AUV, it is of utmost relevance to be
able to perform high precision manipulation actions. This process gets even more
complex when the manipulator has to handle objects which different shapes and
sizes, which renders any pre-programmed hydrodynamic equations obsolete. As a
result, two challenges at hand can be seen, where the first is developing a model that
provides accurate predictions and with an estimated uncertainty of these predictions
that can be used for navigation purposes. The second challenge is faced when the
dynamics of the robot change (for example carrying a different weight or parts of
the robot’s body has been changed). Here is when online learning comes into play
to adapt the dynamics model by learning the dynamics in real-time from the stream
of data extracted form the robot’s sensor suite. Consequently, the first task is to deal
with the development of a software library using machine learning techniques to
experimentally identify the dynamic motion models of the vehicle-arm system and
adapt these models accordingly with different manipulation tasks, as well as to in-
corporate those models into the whole-body control framework. In this regard, DFKI
has been using online model identification techniques based on machine learning to
identify motion models of underwater vehicles (in this case, without manipulator)
[9], [22] and [20]. Similarly, there are experiences in experimental identification
of robot dynamics using classical techniques and machine learning approaches [2],
or using data-driven methods for dynamics identification [24]. Those methods could
be used to augment the information from the simulations models with experimental
data.

Figure 1 depicts the concepts behind these developments. On the top, the challen-
ges: the environmental disturbances and the load changes or hardware reconfigura-
tion desired in a modular multipurpose unterwater manipulator. The goal envisioned
would be to achieve a persistent operation, that is, long-term autonomy by accurate
and adaptive dynamics estimation. Finally, the methodology is based on using ma-
chine learning techniques for identifying the system dynamics by using experimental
data and online learning to cope with changing dynamics.

Finally, one of the main hurdles of whole-body controllers is that their confi-
guration is a tedious task, which is usually done by hand given a certain system
and/or task. For this reason, the development of automatic strategies to configure
the parameters of the whole-body controllers given high-level contextual and task
information using machine learning techniques is a key requirement to succeed on
their practical usage. Moreover, the required controllers need to be also automati-
cally selected and configured given the different hardware modules selected to build
a specific system. In turn, the configuration information can be used as prior know-
ledge for modelling and adapting the system dynamics. Thus, the result is a system
than can adapt its behaviour using contextual information as well as changes the
morphology of the software control nextwork using information about the hardware.
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Fig. 1 Conceptual idea of the challenges, goals and approach followed for the whole-body system
dynamics identification using machine learning techniques

2.2 Extension of Whole-Body Control for Underactuated and
Heterogeneous Systems

The application of underwater robots with actuated base and articulated arms requi-
res to combine mobility and manipulation skills. Consequently, whole-body control
approaches, which allow to integrate multiple control objectives with different pri-
orities, have been proposed for this class of systems [1]. In the context of physical
interaction a hierarchical compliance control framework was proposed in [15] for
fixed base manipulators using passivity arguments. The combination of such com-
pliance controllers with a position/velocity controlled mobile base was considered
in [5]. Moreover, the same framework has also been appied to the floating base
dynamics of a legged robot, but under the assumption that the available contacts
allow a proper control of the contact forces [10]. In order to apply similar control
approaches to underwater manipulators, we can utilize a structural similarity be-
tween different robot systems with floating base dynamics. When comparing the
main rigid body dynamics in space manipulators [8], legged robots [7], as well as
aerial manipulators [11], one can observe a common dynamic structure in which the
foating base dynamics is used in combination with different contact conditions and
different actuator properties. In the context of underwater manipulators, in particular
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the vehicle underwater dynamics and the possibly underactuated control system of
the vehicle play impotant roles. For the controller design, particular attention has to
be put on the robustness of the controller with respect to uncertainties in the under-
water dynamics. The theoretical robustness analysis can be based on the concept of
input-state-stability and can take usage of a system formulation in which the model
uncertainty is considered as a disturbance of the nominal controlled dynamics. The
redundancy of the complete kinematic chain allows to consider different task vari-
ables including vehicle pose and momentum variables at different priorities in the
control hierarchy. In fact, the use of the total system’s momentum variables instead
of the vehicle pose and orientation recently has led to efficient controllers in the
context of space robotics [8] and it is very likely that similar properties can be also
utilized in underwater systems. Furthermore, one of the fundamental challenges will
be the question how to cope with the dynamic interaction between the (required)
contact forces for manipulation and the possibly underacted dynamics of the base.

Based on a general hierarchic framework for controlling underactuated underwater
manipulators, the next challenge is the extension of this framework towards more
realistic actuator models and control architectures appearing in underwater systems.
The thrusters of the underwater vehicle have relatively slow dynamics and control
rates as compared to state-of-the art robot manipulators. Moreover, also distributed
computing for the base and the manipulator needs to the considered. Therefore,
one finally has to cope with a heterogeneous control architecture in which different
subsystems and sensors are operated at different control rates. The Time Domain
Passivity concept (TDPC) presents a powerful framework for such heterogeneous
control architectures. The final goal is a generic controller designmethodologywhich
can isolate the effects of time delays, sampling, and actuator dynamics on the overall
performance. As a first step towards this goal, the TDPC can generate additional
corrective control components to improve the robustness of the overall whole-body
controllers against these model imperfections.

3 Evaluation

The control strategies developed are planned to be tested and evaluated in two
different testbeds. On the one side, the core whole-body control developments will
be initially validated in an existing floating-base dynamics simulation infrastructure
for space applications and flying robots located at DLR (see Fig. 2(right)). In parallel,
the whole-body system dynamics will be validated at the underwater pool at DFKI
(see Fig. 2(left)). At a later stage, the final developments will be validated as well at
the underwater pool at DFKI, using the available underwater manipulators at DFKI.

Model learning often requires sufficiently rich data that have to cover most of the
model’s state space, as it is nearly impossible to cover the full space [14]. Therefore,
acquiring large and rich datasets is an essential step for learning accurate models.
For such purposes, identification experiments will be carried out extensively at the
maritime testing facility at DFKI, where additional excitation of the system would be
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Fig. 2 left: Pool for testing underwater vehicles located at DFKI, right: floating-base dynamics
simulation infrastructure for space applications and flying robots located at DLR

required. For example, the robot would be commanded to traverse random-periodic
trajectories. Several methods that can be utilized to generate such trajectories are
discussed in more details in [19]. To ensure good generalization of the models,
separate experiments have to be conducted for testing the model’s performance.
Validation experiments would typically involve commanding the robot to perform
random point-to-point trajectories, and thereafter cross-validate themodel prediction
with the measured data. This methodology has been tested using two AUVs (wit-
hout a manipulator) at DFKI, where comparisons between several machine learning
methods and classical physics-based methods were presented in [21, 22].

For the on-line learning approach, data stream need to be acquired and processed
incremental and in real-time. In such situations additional methods for adding and
forgetting samples are required to deal with the continuous flow of data. As the
robot will physically interact with its environment, it is required to account for
unknown or unforeseen situations it might encounter. Therefore, experimental trials
that involve time-dependent dynamics are required. Several experimental scenarios
can be designed, where it is required from the robot to perform tasks that are not
accounted for previously, such as interacting with different objects of unknown
masses, or following a certain trajectory while equipped with different payloads,
etc. Such experiments are necessary to test and validate the capability of the on-line
learning to continuously adapt to new situations. Other than the prediction accuracy
of the learned models, two additional aspects to be tested are respectively, (1) the
speed of adaptation, and (2) the model’s capability to switch between previously
learned contexts or decide if a new model needs to be learned. A concept framework
of online learning of AUV dynamics was presented in [20], where we provide
methods adding and forgetting data samples as well as an outliers rejection method.
The frameworkwas validated on experimental data from anAUVwith amodification
in its mechanical construction.

Additionally, few approaches can be used to improve the overall performance
of on-line learning. One idea is the use of combine learning with expert know-
ledge which can be used as prior information to the learning method, [13]. Another
approach is increasing the speed of convergence of on-line learning by choosing
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appropriately the set of data samples, this approach is usually referred to as active
learning [3, 12].

The robotics hardware in the loop simulator Fig. 2(right) has been applied in the
past to the evaluation of various floating base systems including free-floating space
manipulators and aerial manipulators based on helicopters. Applying this system to
the development and evaluation of control approaches for underwater manipulation
requires to implement a representative approximation for the underwater effects in
the vehicle dynamics. One of the advantages of this system is the fact that various
different situations for the vehicle dynamics (i.e. different underwater effects in e.g.
stationary or dynamic fluid) can be emulated with small effort. Also, it allows to
separate the effects of the robot’s own dynamics and the effects of the environment
in which the robot is acting. The tests performed on this system will focus on the
use of momentum variables for the whole-body control under different emulated
underwater conditions. These tests are considered as a preliminary evaluation before
performing outdoor field tests in a real underwater environment.
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