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ABSTRACT 

The long term goal of this research is the development of 

a distributed autonomous low-cost platform for marine 

exploration. One application of such a platform could be 

the search for Submarine Groundwater Discharges 

(SGD) in a coastal environment. In order to design and to 

test new search strategies for such a platform, a 

simulation that effectively models the diffusion of 

groundwater discharge in shallow coastal waters is 

required. The simulation allows the evaluation of new 

search strategies without running the risk of losing 

expensive hardware during the field testing. 

In this paper a simulation based on cellular automata was 

adapted in order to resemble the behaviour of an existing 

physical model of a SGD. To speed up the optimisation 

process, a novel adaptation of the Parallel Asynchronous 

Particle Swarm Optimisation (PAPSO) algorithm was 

proposed.  

Experiments showed that the novel PAPSO was able to 

reduce the time needed for optimisation by 69.1 %. 

Furthermore, the results found by PAPSO are 2.1 % 

better than the results of the Parallel Synchronous 

Particle Swarm Optimisation (PSPSO) algorithm.   

INTRODUCTION 

The long term goal of this research is the development of 

a distributed and autonomous low-cost platform for 

marine observation. The observatory consists of an 

autonomous surface vehicle and a small swarm of 

autonomous underwater vehicles (AUV). Such a system 

could be used for locating submarine sources of interest, 

e.g. dumped waste or lost harmful cargo. The problem at

hand is the localisation of submarine groundwater

discharges (SGD) in coastal waters. SGD consist of an

inflow of fresh groundwater and recirculated seawater 

from the sea floor into the ocean (Figure 1) (Moore 

2010). The freshwater that flows into the ocean 

represents a continuous and significant source of 

nutrients for the costal marine environment (Nelson et al., 

2015). 

Figure 1: Submarine Groundwater Discharge of Fresh- 

and Recirculating-Water, modified after Evans and 

Wilson (2016) 

Marine scientists are interested in analysing these 

discharges, because the nutrients discharged by SGD 

have a significant influence on the marine ecosystem 

(Dugan et al., 2010; Beck et al., 2017; Kröncke et al., 

2018). However, due to the harsh environmental 

conditions, locating and analysing SGD requires 

technical effort (Nelson et al., 2015). Different tracers, 

including chemical substances, for example Radon 

(Santos et al., 2009; Kelly et al., 2018), Fluorescent 

Dissolved Organic Matter (FDOM) (Nelson et al., 2015), 

conductivity or temperature (Kelly et al., 2018; Röper et 

al., 2014) can be used to locate SGDs in coastal 

environments. In this research the temperature was 

chosen to trace the distribution of the inflow via SGD.  
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To guide the observatory towards the points of interest, a 

search strategy is needed. In this project the strategy will 

be based on Artificial Intelligence methods (Tholen et al., 

2018; Tholen & Nolle, 2017). To fine-tune the search 

algorithms developed, many test dives need to be 

conducted. To reduce the costs of development and the 

risk of losing expensive hardware, computer simulations 

should be used during the design phase. Previously, a 

simulation based on a cellular automaton was developed 

(Tholen et al., 2017).  

 

In this paper, this simulation was adapted in order to 

resemble the behaviour of a physical SGD model. For 

this adaptation, real measurement data gained from the 

physical model was used together with Parallel 

Asynchronous Particle Swarm Optimisation (PAPSO) 

(Kennedy & Eberhart, 1995; Koh et al., 2006).  

 

SIMULATION 

The simulation used here is based on cellular automata 

(CA). This section introduces the basic concepts of CA 

and introduces the rules developed during this research. 

 

Cellular Automata 

Cellular automata (CA) are mathematical models used 

for the simulation of complex systems. A CA discretises 

a system in space and time (Wolfram, 1984). It consists 

of a finite collection of identical cells. Each cell has a 

current state, which is updated after each time step and is 

based on its own previous state and the previous state of 

its neighbours. The neighbours are defined by the chosen 

neighbourhood scheme. The most popular schemes are 

the Moore-neighbourhood and the von-Neumann-

neighbourhood. Figure 2 shows an example of a two-

dimensional cellular automaton with the dimensions 3 x 

3. It uses the von-Neumann-neighbourhood, where the 

black cell’s state depends on its neighbour´s (grey cells) 

states. 

 

 

Figure 2: Cellular Automaton of Size 3 x 3 

The implemented simulation environment covers an area 

of 200 cm x 200 cm. This area is divided into a number 

of symmetric cells. Each cell has an x- and a y-position 

as well as a depth and a temperature.  

 

The interaction of cells with their neighbours is based on 

a set of application specific rules. These rules define the 

dynamic behaviour of the model (Wolfram, 1984; 

Tholen et al., 2017).  

 

The developed CA is based on a single simple rule only; 

the temperature of a cell x at time step t+1 is calculated 

as the weighted average of the temperatures of the cell x 

and its neighbouring cells yn and, if present, the 

temperature of an existing discharge at the position of the 

cell x. All values will be multiplied by the volume of the 

cells or by the volume flow rate of the spring 

respectively. The sum will be divided by the sum of the 

volume of all cells in the neighbourhood. The rule is 

given in Equation (1). Here I is representing the 

temperature in °C and V is representing the volume of the 

cells in m3. 

 

𝐼𝑥
𝑡+1 =

𝐼𝑥
𝑡 ∗ 𝑉𝑥

𝑡 +∑(𝐼𝑦
𝑡 ∗ 𝑉𝑦

𝑡) + 𝐼𝑠
𝑡 ∗ 𝑉𝑠

𝑡

𝑉𝑥
𝑡 + ∑(𝑉𝑦

𝑡) + 𝑉𝑠
𝑡

 (1) 

 

Where: 

Ix
t+1: temperature of cell x in iteration t+1 

Ix
t: temperature of cell x in iteration t 

Vx
t: Volume of cell x in iteration t 

Iy
t: temperature of neighbour cell yn in iteration t 

Vy
t: Volume of neighbour cell yn in iteration t 

IS
t: temperature of spring located at cell x in iteration t 

VS
t: Volume flow of spring located at cell x in iteration t 

 

In addition to the rule, the behaviour of a CA also 

depends on the chosen neighbourhood and cell shape 

(Tholen et al. 2017). 

 

PHYSICAL SGD MODEL 

The physical model used in this research was developed 

at Jade University. It consist of a basin with dimensions 

200 cm x 200 cm x 20 cm, a peristaltic pump and a heat 

exchanger to simulate the inflow of an SGD. The position 

of the SGD is located at position (x = 40 cm, y=130 cm). 

36 temperature sensors are installed at the bottom of the 

basin. In addition, an infrared camera is mounted on the 

top to measure the surface temperature of the water. A 

second pump and a vent are installed to enable the 

simulation of tides and currents. Figure 3 shows a picture 

of the physical SGD model containing the infrared 

camera at the top, a shielding against disruptive infrared 

radiation from the environment and the SGD composed 

of the peristaltic pump and the heat exchanger.  

 

 

Figure 3: Physical SGD Model with mounted Infrared 

Camera and Shielding against disruptive Infrared 

Radiation from the Environment  

SGD

Shielding

Infrared Camera



 

 

PARTICLE SWARM OPTIMISATION 

PSO is modelled on the behaviour of collaborative real 

world entities (particles), for example fish schools or 

flocks of birds, which works together to achieve a 

common goal (Kennedy & Eberhart, 1995). Each 

individual of the swarm searches for itself. However, the 

other swarm members also influence the search 

behaviour of each individual. 

 

In the beginning of a search, each particle of the swarm 

starts at a random position and a randomly chosen 

velocity for each direction of the n-dimensional search 

space. Then, the particles move through the search space 

with an adjustable velocity. The velocity of a particle is 

based on its current fitness value, the best solution found 

so far by the particle (cognitive knowledge) and the best 

solution found so far by the whole swarm (social 

knowledge) (2): 

 

 𝑣⃗𝑖+1 = 𝑣⃗𝑖𝜔 + 𝑟1𝑐1(𝑝𝑏 − 𝑝𝑖) + 𝑟2𝑐2(𝑔⃗𝑏 − 𝑝𝑖) (2) 

 

Where: 

𝑣⃗𝑖+1: new velocity of a particle, 

𝑣⃗𝑖:  current velocity of a particle, 

𝜔: inertia weight, 

𝑐1: cognitive scaling factor, 

𝑐2: social scaling factor, 

𝑟1: random number from range [0,1], 

𝑟2: random number from range [0,1], 

𝑝𝑖: current position of a particle, 

𝑝𝑏𝑒𝑠𝑡: best known position of a particle, 

𝑔⃗𝑏𝑒𝑠𝑡: best known position of the swarm. 

 

After calculating the new velocity of the particle, the new 

position 𝑝𝑖+1 can be calculated as follows: 

 

  𝑝𝑖+1 = 𝑝𝑖 + 𝑣⃗𝑖+1∆𝑡 (3) 

 

Where: 

𝑝𝑖+1: new position of a particle, 

𝑝𝑖:  current position of a particle, 

𝑣⃗𝑖+1: new velocity of a particle, 

∆𝑡:  time step (one unit). 

 

In (3) ∆t, which always has the constant value of one unit, 

is multiplied to the velocity vector 𝑣⃗𝑖+1 in order to get 

consistency in the physical units (Nolle, 2015). In this 

research the control parameter values for all experiments 

were chosen as follows (Eberhardt & Shi, 2000): 

𝜔 = 0.729,  

c1 = 1.49, 

c2 = 1.49. 

The values of the velocity vector 𝑣⃗0 will be initialised to 

zero, to speed up the search of the PSO (Engelbrecht, 

2012).  

 

 

 

Parallel Asynchronous Particle Swarm Optimisation 

Due to the high computational costs needed for the 

optimisation process of real world problems, different 

parallel adaptations of the PSO were proposed in the past 

(Schutte et al., 2004; Koh et al., 2006). Parallel 

optimisation algorithms can be divided into synchronous 

and asynchronous algorithms (Koh et al., 2006).  

 

The majority of parallel algorithms proposed in the 

literature use a synchronous software architecture 

(Koh et al., 2006). However a great disadvantage of using 

synchronous optimisation algorithms is the need of 

balancing the workload of all workers, to avoid idle states 

of workers. This cannot be guaranteed, if the time for 

fitness evaluation depends on the input vector of the 

fitness function (Koh et al., 2006).  

 

The version of the Parallel Asynchronous Particle Swarm 

Optimisation (PAPSO) introduced by Koh et al. (2006) 

avoid the disadvantages of the synchronous version of the 

PSO. This PAPSO algorithm follows the master-slave 

principle. The master thread containing a queue of all 

particles ready for evaluation. Also the master performs 

the decision making process, i.e. calculating the next 

position, of all particles. The master assigns the first 

particle, i.e. candidate solution, in the queue to a free 

thread, i.e. a slave. The slave does the evaluation of the 

fitness function and returns the fitness value to the 

master. The master checks if the returned value is better 

than the personal best of the particle or the global best. If 

that is the case, the master will update the appropriate 

value. Subsequently, the master assigns the next particle 

in the queue to the slave. The task-queue shall ensure that 

all particles will perform approximately the same number 

of function evaluations (Koh et al., 2006). 

 

In this work a different implementation of the PAPSO is 

introduced. This novel implementation does not use the 

master-slave principle. Instead, all particles are 

implemented as independent workers. The individual 

particles compete for the computing resources available. 

If a particle finds a new best position, it shares the 

information with the other particles.  

 

EXPERIMENTS 

In the first step, the physical model was allowed to run 

for approximately three hours with constant inflow rate 

and inflow temperature. During this time the infrared 

camera at the top took one picture of the surface 

temperature per minute. These pictures were stored for 

post processing. From each picture 25 positions were 

selected and the temperature profile of this points over 

time was used for the optimisation of the simulation. 

Figure 4 shows the position of the measurement points 

(circles) selected for the optimisation process as well as 

the position of the SGD (diamond shape).  
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Figure 4: Selected Points for Optimisation and Position 

of the SGD (Diamond) 

In the next step, the simulation based on a CA was 

optimised using PSPSO, PAPSO, and the temperature 

profiles of the measurement points. To adapt the 

behaviour of the CA five different design parameters 

were defined. The first parameter x1 is the size of the 

cells. The value of the cell size can be set to each value 

of the range 1cm ≤ x1 ≤ 100 cm. The second design 

parameter x2 define the cell shape and the neighbourhood. 

The value of the design parameter x2 can be set to integer 

values in the range 1 ≤ x2 ≤ 4. Table 1 provides maps the 

different values for the design variable x2. The third 

parameter x3 represents the inflow rate of the SGD in 

arbitrary units. The value of the parameter can be set to 

any value of the range 0.01 ≤ x3 ≤ 100. The parameter x4 

represents the inflow temperature of the SGD in °C. The 

value of the temperature can be set to any value of the 

interval 20.5 °C ≤ x4 ≤ 90 °C. The last design parameter 

represents the time base of the simulation, i.e. the time 

per iteration in milliseconds. The value of this parameter 

can be set to any integer from the interval 

500 ms ≤ x5 ≤ 60000 ms, with the constraint x5 modulo 

60000 ms = 0.  

Table 1: Lookup Table for Design Variable x2 

Value Meaning 

1 Moore neighbourhood 

2 Von-Neumann neighbourhood 

3 Hexagon shaped cell same perimeter length 

4 Hexagon shaped cell same area covered 

 

The following cost function was used for the optimisation 

of the cellular automaton: 

 

 fitness = √[∑ (∑ (𝑥𝑝,𝑡 − 𝑥𝑝,𝑡́ )
2𝑝𝑚𝑎𝑥

𝑝=1 )𝑡𝑚𝑎𝑥
𝑡=0 ] (4) 

 

Where: 

𝑥𝑝,𝑡:  Temperature value of the physical model at 

position p and time t, 

𝑥𝑝,𝑡́ :  Temperature value of the simulation at position 

p and time t, 

𝑝𝑚𝑎𝑥:  Number of measurement points (25), 

𝑡𝑚𝑎𝑥: Total time of experiment in minutes (168). 

 

The interaction between the different components of the 

optimisation process can be depicted from Figure 5. The 

fitness function represents the key part of the 

optimisation process. During the fitness evaluation, the 

measurement data from the physical SGD model are 

compared with the simulated temperature data generated 

by the CA (Equation 4). The output of the fitness 

function, i.e. the fitness for a specific set of design 

parameters, is used by the optimiser to generate new 

suitable values for the design parameters. The descried 

interaction represents one iteration for one particle.  

 

Figure 5: Interaction between the different components 

(physical model, CA and PAPSO) for the optimisation 

It is assumed that the selected values of the design 

parameters will have a huge impact on the computing 

time required for fitness function evaluation. To test this 

assumption, experiments were carried out were only one 

design parameter was changed at a time, whilst the others 

were kept constant. Figure 6 depicts the normalised 

computing time needed to evaluate the fitness function, 

using the specific input values of the design parameters. 

It can be observed from Figure 6, that the computing time 

needed for fitness evaluation depends on the cell size (x1), 

the cell shape and neighbourhood (x2) and the time per 

iteration (x5). The computing time needed for the fitness 

evaluation is independent from the inflow rate (x3) and 

the inflow temperature (x4).  

 

Figure 6: Normalised Computing Time for the different 

Design Variables  

physical 
model

CA model

PAPSO

fitness
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To compare the performance of PSPSO and the novel 

PAPSO, both algorithms were allowed to run for 200 

iterations with using different numbers of particles. The 

total time needed for the optimisation process and the gbest 

value over time as well as the parameter set of the best 

position are compared for the different settings.  

 

RESULTS 

Figure 7 shows the change of the gbest value over time for 

PAPSO and PSPSO for different swarm sizes. It can be 

obtained from Figure 7 that the novel PAPSO 

outperforms PSPSO in terms of time needed for the 

optimisation and in terms of best fitness values found by 

the swarm.  

 
Figure 7: Cost as Function of Optimisation Time (sec) for 

PAPSO and PSPSO with different Swarm Sizes 

 

Table 2 presents the values of the five design parameters 

for the best solution found by the PAPSO with a swarm 

size of 50 particles. The fitness value of this solution was 

gbest = 47.21 (arbitrary units).  

 

Table 2: Optimal Values for the Design Parameters 

found by PAPSO 

Design 

Parameter 
Optimal Value 

x1 37.6 cm 

x2 
Hexagon shaped cell same perimeter 

length 

x3 50.16 

x4 47.72 

x5 600 ms/iteration 

 

To compare the performance of the best solutions found 

by the PSPSO and the PAPSO, the simulation was set up 

using the optimal values for the design parameters found 

by the optimisers. During the run the Root Mean Square 

Error (RMS) over the time was measured following 

Equation 5: 

  RMS =
√(∑ (𝑥𝑝,𝑡−𝑥𝑝,𝑡́ )

2𝑝𝑚𝑎𝑥
𝑝=1 )

𝑝𝑚𝑎𝑥
 (5) 

Where: 

𝑥𝑝,𝑡:  Temperature value of the physical model at 

position p and time t, 

𝑥𝑝,𝑡́ :  Temperature value of the simulation at position 

p and time t, 

𝑝𝑚𝑎𝑥:  Number of measurement points (25). 

 

Figure 8 shows the RMS errors of the solutions found by 

PSPSO and PAPSO. It can be seen from the figure that 

the RMS of the solution found by PAPSO is slightly 

better than the RMS of the solution found by PSPSO.  

 

Figure 8: RMS over Time for the Best Solutions, found 

by PSPSO and PAPSO using a Swarm size of 50 

Particles 

Table 3 summarises the simulation results. It can be seen 

from the Table that the performance of the PAPSO with 

a swarm size of 50 particles is approximately 3.2 % 

better, than the performance of the PSPSO with the same 

swarm size. However for this swarm size, the PAPSO 

operates 6.4 times faster than the PSPSO. 

Table 3: Performance of PSPSO and PAPSO for 

different Swarm Sizes 

Algorithm 

Time for 

Optimisation 

(sec) 

gbest (arbitrary 

units) 

PAPSO – 

Swarm 16 
7,228 49.65 

PAPSO – 

Swarm 50 
19,967 47.21 

PSPSO – 

Swarm 16 
34,708 51.24 

PSPSO – 

Swarm 50 
64,572 48.21 

 

CONCLUSION AND FUTURE WORK 

In this research, a computer simulation based on cellular 

automata was optimised, in order to resemble the 

behaviour of a physical SGD model. To speed up the 

optimisation process, a novel adaptation of the Parallel 



 

 

Asynchronous Particle Swarm Optimisation (PAPSO) 

algorithm was proposed.  

 

It was shown, during experiments that the novel 

adaptation of the PAPSO was able to reduce the time 

needed for optimisation, i.e. the optimisation process 

took only 30.9 % of the optimisation time of the PSPSO. 

Furthermore, the results found by the PAPSO were 

slightly better, i.e. 2.1 %, than the results of the Parallel 

Synchronous Particle Swarm Optimisation (PSPSO) 

algorithm.  

 

In the next phase of this research, developed search 

strategies for a single AUV (Tholen et al., 2018) and for 

a small swarm of AUVs (Tholen & Nolle, 2017) will be 

tested using the tuned CA. Moreover, the performance of 

the PAPSO will be investigated further in future research.  
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