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Abstract

Purpose The purpose of the study was to provide a comprehensive review of recent machine learning (ML) and deep learning
(DL) applications in urological practice. Numerous studies have reported their use in the medical care of various urological
disorders; however, no critical analysis has been made to date.

Methods A detailed search of original articles was performed using the PubMed MEDLINE database to identify recent
English literature relevant to ML and DL applications in the fields of urolithiasis, renal cell carcinoma (RCC), bladder cancer
(BCa), and prostate cancer (PCa).

Results In total, 43 articles were included addressing these four subfields. The most common ML and DL application in
urolithiasis is in the prediction of endourologic surgical outcomes. The main area of research involving ML and DL in RCC
concerns the differentiation between benign and malignant small renal masses, Fuhrman nuclear grade prediction, and gene
expression-based molecular signatures. BCa studies employ radiomics and texture feature analysis for the distinction between
low- and high-grade tumors, address accurate image-based cytology, and use algorithms to predict treatment response, tumor
recurrence, and patient survival. PCa studies aim at developing algorithms for Gleason score prediction, MRI computer-aided
diagnosis, and surgical outcomes and biochemical recurrence prediction. Studies consistently found the superiority of these
methods over traditional statistical methods.

Conclusions The continuous incorporation of clinical data, further ML and DL algorithm retraining, and generalizability of
models will augment the prediction accuracy and enhance individualized medicine.

Keywords Artificial intelligence - Machine learning - Deep learning - Artificial neural network - Convolutional neural
network - Prostate cancer - Bladder cancer - Renal cell carcinoma - Urolithiasis

Introduction

The term artificial intelligence (AI) commonly refers to the
computational technologies that mimic or simulate intellec-
tual processes typical of human cognitive function, such as
reasoning, learning, and problem solving [1]. Al is a branch
of computer science and part of a multidisciplinary approach
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adopting principles from the fields of mathematics, logic,
computation, and biology in an attempt to build intelligent
entities often represented as software programs [2, 3]. Given
its broad, dynamic, and expanding computational power, Al
has been revolutionizing and reshaping our health-care sys-
tems, allowing physicians to improve their ability to perform
medical tasks [2]. As the medical community s understand-
ing and acceptance of Al grows, so does our imagination
in ways to improve diagnostic accuracy, expedite clinical
processes, and decrease human resource costs by assisting
medical professionals in what once were time-consuming
problems [4].

Machine learning (ML) is a subfield of Al involving
the development and deployment of dynamic algorithms
to analyze data and facilitate the identification of intri-
cate patterns [5]. ML tends to improve or ‘learn’ as more
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data are incorporated by using decision trees to explicitly
learn decision rules [6]. Recent advancements in Al have
also been driven by deep learning (DL), which involves the
training of artificial neural networks (ANN) with multiple
layers on large datasets [7]. An ANN is a collection of indi-
vidual information processing units or “artificial neurons”
that are arranged and interconnected in network architectural
layers to perform computational tasks and recognize com-
plex patterns [8]. They are trained with input/output tuples
where each input has a specific output assigned to arrange
concepts or functions beyond the means of traditional sta-
tistical analysis methods. A frequently used ANN that is
particularly efficient when applied to pattern recognition in
digitized images is the deep convolutional neural network
(DCNN). The depth and width of the network determine the
complexity and ‘learning potential’ of the network. In health
care, ML and DL have been increasingly and successfully
applied to preventive medicine, image recognition diagnos-
tics, personalized medicine, and clinical decision-making.

The aim of this review article is to address recent ML and
DL applications in urolithiasis, renal cell carcinoma, blad-
der cancer, and prostate cancer to predict patient outcomes.
Their utilization other than in these subfields is not in the
scope of this work.

Methodology

A comprehensive review of current literature was performed
using the PubMed-Medline database up to May 2019 using
the term “urology”, combined with one of the following

CLINNT

terms: “machine learning”, “deep learning” and “artificial
neural network” in combination with “urolithiasis”, “renal
cell carcinoma”, “bladder cancer”, and “prostate cancer”. To
capture recent trends in ML and DL applications, the search
was limited to articles published within the last 5 years, orig-
inally published in English. Review articles and editorials
were excluded. Publications relevant to the subject and their
cited references were retrieved and appraised independently
by two authors (R.S. and A.M.). In accordance with the
PRISMA criteria, Fig. 1 was included to delineate our article
selection process. After full text evaluation, data were inde-
pendently extracted by the authors for further assessment
of qualitative and quantitative evidence synthesis. The fol-
lowing information was extracted from each study: name of
author, journal and year of publication, Al method, number
of participants per study, and outcome prediction accuracy.

Urinary stone disease
Despite novel instrumental advancements in urinary stone

surgery, decision-making and patient counseling remain a
challenge for clinicians. Several investigators have studied
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the prognostic role of preoperative parameters on surgical
treatment outcomes in terms of stone-free rate (SFR) and the
need for secondary procedures [9-13]. An accurate preop-
erative outcome prediction would assist urologists in opti-
mizing patient selection, choosing ideal treatment options,
and personalize patient counselling.

Kadlec et al. developed an ANN that predicted out-
comes after various forms of endourologic intervention [9].
Input variables and outcome data from 382 endourologi-
cally treated renal units were used to assess SFR (defined
by no visible stone on KUB or <4 mm on CT) and need
for secondary procedures. The model predicted SFR with
75.3% sensitivity and 60.4% specificity, and the need for a
secondary procedure with 30% sensitivity and 98.3% speci-
ficity, yielding a positive and negative predictive value of
60% and 94.2%, respectively. Aminsharifi et al. trained an
ANN with pre- and postoperative data from 200 patients
and used it to predict various outcomes for 254 patients after
percutaneous nephrolithotomy (PCNL) [10]. The accuracy
and sensitivity to predict SFR, blood transfusion, and post-
PCNL ancillary procedures ranged from 81.0 to 98.2%.
Stone burden and morphometry received the highest weight
by the ANN as preoperative characteristics affecting post-
operative outcomes. Recently, Choo et al. developed and
validated a decision-support model using ML algorithms to
predict treatment success after a single-session shock wave
lithotripsy (SWL) in ureteral stone patients [11]. Using data
from 791 patients, a model constructed with 15 variables
exhibited 92.3% accuracy to predict SWL outcome. In the
decision tree analysis, stone volume, length, and Houns-
field units were the top three most important preoperative
variables. Similarly, Seckiner et al. collected data from 203
patients and developed an ANN to predict SFR and support
SWL treatment planning [14]. ANN analysis demonstrated a
prediction accuracy of 99.3% for SFR in the training group,
85.5% in the validation group, and 88.7% in the test group.

Other studies have investigated computer-assisted detec-
tion using image features for supporting radiologists in
identifying stones. Langkvist et al. developed a DCNN to
differentiate ureteral stones from phleboliths in thin slice
CT volumes due to their similarity in shape and intensity
[15]. The DCNN was evaluated on a database consisting
of 465 clinically acquired abdominal CT scans of patients
suffering from suspected renal colic. The model achieved
100% sensitivity and an average of 2.68 false positives per
patient on a test set of 88 scans. Kazemi et al. derived an
ANN for the early detection of kidney stone type and most
influential parameters to provide a decision-support system
[16]. Information pertaining to 936 patients who underwent
treatment for kidney stones was collected and included 42
image features. The model resulted in 97.1% accuracy for
predicting kidney stone type and identified gender, calcium
level, uric acid condition, hypertension, diabetes, nausea/
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Fig.1 Summary of study selec-
tion process Idel-tiﬁcation

Records identified through PubMed-Medline
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Articles screened

(n=181)

Eligibility
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vomiting, flank pain, and urinary tract infection as the most
vital parameters for predicting the chance of nephrolithiasis.

A future common goal is for ANNs to be exchanged
between institutions to overcome the limitation of having
networks trained with data from just one center. To this
extent, ML and DL methods hold promise for multi-institu-
tional dataset expansion in national registries and the devel-
opment of future predictive nomograms. Table 1 provides a
summary of studies using ML and DL methods applied in
various modalities of urolithiasis therapy.

Renal cell carcinoma

The incidence of renal cell carcinoma (RCC) has steadily
increased over the past decades as a result of incidental
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title and abstract review
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(i.e. not in English, reviews,
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Articles excluded after
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(Irrelevant to research question)

L
Studies included in

review

(n=43)

small renal mass (SRM) detection via cross-sectional
imaging [17]. Surgical series have shown that 20-30% of
SRMs <4 cm are benign, while 20% exhibit potentially
aggressive behavior [18]. However, there are currently no
clinical or radiographic features that accurately predict
histologic analysis. Magnetic resonance imaging (MRI)
and computed tomography (CT) have been employed in
an attempt to noninvasively differentiate tumors by their
degree, pattern, and heterogeneity of enhancement. While
promising, these approaches remain suboptimal as clini-
cal tools for differentiating SRMs. Recently, powerful
ML algorithms are being used to explore complex inter-
actions in clinical and imaging data to provide diagno-
sis, prognosis, treatment planning and assist in shared
decision-making.
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Given the limitations of conventional medical imag-
ing, there has been increasing interest in radiomics, which
involves automatically extracting quantitative features from
medical images. Radiomics may provide a novel approach
to develop predictive tools by correlating imaging features
to tumor characteristics including histology, tumor grade,
genetic patterns and molecular phenotypes, as well as clini-
cal outcomes in patients with renal masses. Pixel distribution
and pattern-based texture analysis have emerged as practical
quantitative methods to build image processing algorithms
for the detection of tissue differences that cannot be deter-
mined by subjective visual assessments [19].

Several studies have shown that texture analysis has
potential in differentiating SRM [20-22]. Yan et al. showed
that texture analysis may be a reliable quantitative strategy
to differentiate between angiomyolipoma (AML), clear cell
RCC (ccRCC), and papillary RCC (pRCC) with an accu-
racy in the range of 90.7-100% based on the analysis of
three-phase CT scans [23]. Feng et al. achieved a higher
accuracy and area under the curve (AUC) of 93.9% using a
similar ML strategy [24]. Cui et al. proposed an automatic
computer-identification system to differentiate AML from
whole-tumor CT images using an over-sampling technique
to increase the sample volume of AML [25]. Yu et al. evalu-
ated the utility of texture analysis for the distinction of renal
tumors, including various RCC subtypes and oncocytoma.
The ability of ML to distinguish ccRCC and pRCC from
oncocytoma was excellent with AUC of 0.93 and 0.99,
respectively [22]. Coy et al. investigated the diagnostic value
and feasibility of a DL-based renal lesion classifier to differ-
entiate ccRCC from oncocytoma in 179 patients with patho-
logically confirmed renal masses on routine four-phase mul-
tiple detector CT scans [26]. When using the entire tumor
volume, the excretory phase showed the best classification
performance with 74.4% accuracy, 85.8% sensitivity, and
PPV of 80.1%.

Furthermore, the nuclear grade of a tumor is widely
recognized as one of the most important independent prog-
nostic factors [27]. Determination of the Fuhrman grade
by percutaneous renal biopsy suffers from significant sam-
pling bias, making the preoperative recognition of biologi-
cal aggressiveness challenging. Studies have shown that ML
models constructed from CT imaging texture features can
accurately distinguish between ccRCC high and low grades,
with accuracy ranging from 0.73 to 0.93 [19, 28-32]. Ding
et al. showed high prediction accuracy in identifying ccRCC
grade and their results were superior to those obtained from
CT image features or the RENAL nephrometry score for
high- and low-grade ccRCC predictions [29].

In recent years, biomarkers and multiple gene expression-
based signatures have been developed to predict survival and
disease prognosis in ccRCC. Li et al. developed a prognostic
model based on 15 survival-related genes from The Cancer

Genome Atlas and showed that patients in the model’s
high-risk group had significantly worse survival than those
in the low-risk group. Risk group was independent of age
and sex, but was significantly associated with hemoglobin
level, primary tumor size, and grade [33]. Radiogenomics
is a field investigating the potential associations between a
disease’s imaging features and the underlying genetic pat-
terns or molecular phenotype. Kocak et al. evaluated the
potential of quantitative CT scan texture analysis to predict
the presence of PBRM1 mutations, which is the second most
commonly identified mutation in ccRCC, using ANNs and
ML algorithms [34]. Overall, the ANN correctly classified
88.2% of ccRCC with regard to PBRM1 mutation status,
while the random forest ML algorithm correctly classified
95% of ccRCC.

These are promising results for developing noninvasive
imaging biomarkers of histopathologic subtypes, progno-
sis, and treatment response. Moreover, they demonstrate that
noninvasive ML and DL models constructed from radiomics
features have comparable performance to percutaneous renal
biopsy in predicting the International Society of Urological
Pathology (ISUP) grading. Accurate preoperative nuclear
grading may substantially aid in risk assessment, patient
stratification, and treatment planning of RCC patients.
Table 2 summarizes the most significant findings of MDL
applications in the field of RCC.

Bladder cancer

The diagnosis and tumor staging of bladder cancer (BCa)
ultimately depend on cystoscopic examination of the bladder
and histological evaluation of sampled tissue by transurethral
resection (TURB). The main limitation of cystoscopy is its
difficulty in discriminating between areas of malignancy and
healthy urothelium given the multifocal nature of the dis-
ease and inconspicuous but significant lesions such as CIS.
However, CT/MRI image-based 3D texture feature analysis
of the bladder wall has demonstrated its potential as a non-
invasive, image-based strategy to accurately identify hetero-
geneous tumor distribution and preoperatively discriminate
BCa from normal wall tissue [35]. MRI textural features
extracted from cancerous volumes of interest and incorpo-
rated into ML models have further demonstrated their ability
to preoperatively distinguish low- and high-grade BCa with
83% accuracy [36]. DCNNs have also been used to clas-
sify and predict cystoscopic findings with a high degree of
accuracy [37]. Such a DL model can be integrated into an
Al-aided imaging diagnostic tool to support urologists dur-
ing cystoscopic examinations. ‘Al cystoscopy’ may serve as
an adjunct during surgical training and medical education to
help differentiate benign from malignant lesions using visual
evaluation and thereby reduce the number of unnecessary
biopsies. A different approach for image-based diagnosis

@ Springer
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has focused on the nanoscale-resolution scanning of cell sur-
faces collected from urine [38]. Atomic force microscopy
coupled to ML analysis has been shown as a noninvasive
method to detect BCa with 94% accuracy when five cells per
patient’s urine sample are examined. Moreover, it demon-
strated a statistically significant improvement in diagnostic
accuracy compared to cystoscopy alone. ML-based methods
have been further applied to accurately quantify tumor buds
from immunofluorescence-labeled slides of muscle-invasive
BCa (MIBC) patients [39]. Tumor budding was found to
correlate with TNM staging and patients of all stages were
stratified into three new staging criteria based on disease-
specific death. Tumor bud quantification through automated
slide analysis may provide an alternate staging model with
prognostic value for MIBC patients.

ML algorithms have been employed to create recurrence
and survival predictive models from imaging and operative
data. Patient recurrence and survival at 1, 3 and 5 years after
cystectomy was predicted with greater than 70% sensitivity
and specificity [40]. Such predictive models may help dic-
tate patients” follow-up schedules, adjuvant treatments, and
also provide opportunities for improving care by optimally
utilizing operative data collection. ML algorithms used to
identify genes at initial presentation that are most predictive
of recurrence can be applied as molecular signatures to pre-
dict the risk of recurrence within 5 years after TURB [41].
Whole genome profiling from frozen non-muscle-invasive
BCa specimens was integrated into a genetic programming
algorithm to generate classifier mathematical models for
outcome prediction. The model identified 21 key genes that
are associated with recurrence from which an optimal three-
gene rule [TMEM205 X (NFKBIA x KRT17)] was developed
to predict recurrence with 70.6% sensitivity and 66.7% spec-
ificity on the test set.

An unmet need in BCa treatment is the early assessment
of chemotherapeutic efficacy and prediction of treatment
failure at an early phase to reduce unnecessary morbidity,
improve patients” quality of life, and reduce costs. There-
fore, the development of accurate predictive models to
determine the effectiveness of neoadjuvant chemotherapy
is of critical importance in BCa management. Computerized
decision support systems (CDSS) have been developed to
provide noninvasive, objective, and reproducible decision
support for identifying non-responders, so that treatment
may be suspended early to preserve their physical condi-
tion or to distinguish full responders for organ preservation.
Wu et al. compared the performance of different DCNN
models and showed that they effectively predicted a bladder
lesion’s response to chemotherapy and compared favorably
to radiologists” performance [42]. Cha et al. developed a
CT-based CDSS to improve the identification of patients
who responded completely to neoadjuvant chemotherapy
and found that physicians” diagnostic accuracy significantly

@ Springer

increased with the aid of CDSS [43]. Thus, computer-aided
treatment prediction using DL algorithms may prove to be
invaluable to medical professionals as a decision support
tool for improving the selection of patients considering blad-
der-sparing therapy for MIBC and avoiding adverse effects
in non-responders.

Despite several ML and DL research efforts in predict-
ing BCa patients’ outcomes, there is scarce adoption of
such models in clinical practice. The main challenges ahead
before such models can be deployed successfully in a clini-
cal setting are the inclusion of standardized parameters,
adjusting for the equipment variance, and the collection
of multi-institutional data to ensure the generalizability of
the models. Once these issues are addressed, ML and DL
models can be trained using BCa datasets to accurately pre-
dict an individual patient’s outcome using pre-, peri-, and
postoperative data. Table 3 summarizes the most significant
findings of MDL applications in the field of BCa.

Prostate cancer

There is an unmet need for definitive diagnosis besides tran-
srectal imaging and biopsy for men with prostate cancer
(PCa). Although a biopsy is necessary for a conclusive diag-
nosis, patients with low cancer risk could avoid this proce-
dure due to the potential complications that may arise. To
achieve this goal, prediction models have been developed
to determine patients’ cancer risk on the basis of clinical
characteristics. Multilayer ANNs have predicted patients’
prostate biopsy results more accurately while assessing
large numbers of variables than traditional statistical meth-
ods ranging from non-linear relationships to logistic regres-
sion [44, 45]. Despite MRI having improved PCa detection
and thereby reducing the number of unnecessary biopsies,
excessive variation in its performance and interpretation is
a major barrier for global standardization. Computer-aided
diagnostic (CAD) systems with DL architecture have been
applied to diminish variation in the interpretation of prostatic
MRI. Among the advantages of this approach are consist-
ent diagnoses, cost-effectiveness, and improved efficiency.
Ishioka et al. developed DCNN algorithms that estimate the
area in which a targeted biopsy may detect the presence of
cancer and in its execution decrease the number of patients
mistakenly diagnosed as having cancer [46]. However, other
studies have shown no added benefit of radiomic ML when
compared with mean apparent diffusion coefficient in differ-
entiating benign versus malignant prostate lesions [47]. Pro-
vided that the diagnostic precision of CAD systems exceeds
that attained by humans, and the pathological diagnosis
can be predicted with high accuracy, it may be reasonable
to confirm clinically significant PCa solely based on MRI
images rather than with biopsy.
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Automated computational methods applied to digital
pathology images have shown the ability to overcome
Gleason score ambiguity, convey reproducible results, and
generate large amounts of data. Arvanati et al. trained a
DCNN as Gleason score annotator and used the model’s
predictions to assign patients into low-, intermediate-,
and high-risk groups, achieving pathology expert-level
stratification results [48]. Accurate post-surgical risk
stratification is essential to identify patients at high risk
of PCa-specific mortality who would benefit from early
intervention. Donovan et al. introduced an innovative
platform which accurately discriminates between low-,
intermediate-, and high-risk PCa, and predicts the likeli-
hood of significant clinical failure within 8 years [49].
By combining ML-guided image analysis with biological
attributes, the authors provided a risk assignment that is
unbiased, broadly applicable, and independent of interpre-
tive histology.

While information from clinical registry data assists
physicians to make data-driven decisions, there is limited
opportunity for patients to access these registries to help
them make informed decisions. Auffenberg et al. utilized
data from a prospective cancer registry comprising 7543
men diagnosed with PCa to train an ML model to help
newly diagnosed men to view predicted treatment deci-
sions based on patients with similar characteristics [50].
Their personalized model was highly accurate with age,
followed by number of positive cores and Gleason score
resulting as the most important variables that influenced
patient treatment decisions.

Treatment response prediction using MRI images has
been shown as an efficient clinical decision-making tool.
Abdollahi et al. developed various radiomics models based
on pre- and post-intensity-modulated radiotherapy (IMRT)
MRI data for individualized treatment response predic-
tion in PCa patients [51]. Their results showed that the
features extracted from pre-treatment MRI images pre-
dicted early IMRT response with reliable performance.
Moreover, Hung et al. presented a novel ML method of
processing automated performance metrics to evaluate
surgical performance and predict clinical outcomes after
robot-assisted radical prostatectomy (RARP) [52]. Their
model predicted length of hospital stay, operative time,
Foley catheter duration, and urinary continence with over
85% accuracy [53]. In a recent study, Wong et al. used
three ML algorithms for the prediction of early biochemi-
cal recurrence and showed with an AUC > 0.95 to outper-
form traditional statistical regression models [54]. Such
methodology can be employed as potentially more accu-
rate for identifying patients at risk and equip patients and
physicians alike with prognostic information to provide
individualized health care (Table 4).

physicians” performance was statis-

alone, 0.74 for physicians not using
tically significant (p <0.05)

TO disease were 0.80 for CDSS
CDSS, and 0.77 for physicians

The mean AUCs for assessment of
using CDSS. The increase in the

CDSS for predicting BCa treatment
response

Predicted outcome accuracy

Radiomics feature-based analysis

Parameters

CT scans of 123 subjects with 157

MIBC foci

Patients

Al method
DL-CNN

tional neural network, SVM support vector machine, VOI volume of interest, RO! region of interest, DWI diffuse-weighted images, ADC apparent diffusion coefficient, AUC area under the curve,

BCa bladder cancer, RC radical cystectomy, MIBC muscle-invasive bladder cancer, NMIBC non-muscle-invasive bladder cancer, ML machine learning, DL deep learning, CNN deep convolu-
CDSS computer decision support system

Table 3 (continued)
Cha et al. Acad Radiol 2018 [42]

Author

@ Springer
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ML and DL limitations

Al technologies have been attracting substantial attention in
urology; however, their real-life implementation still faces
obstacles. Several limitations exist in most studies applying
ML and DL methods to urological diseases. First, the varia-
bility in study design, algorithms employed, training features
used, and observed end points make it difficult to perform
quantitative analysis. Second, most algorithms in these stud-
ies were validated with their dataset; therefore, they lack
external validation and the generalizability of their results
across other datasets is not applicable. Third, further algo-
rithm development and research are particularly required in
the field of urolithiasis to outperform conventional statisti-
cal methods as observed in urooncological investigations
to reduce procedural costs and maximize patient outcomes.
Lastly, some studies did not compare Al with conventional
statistical analysis, since these methods only allow a limited
number of training features, whereas Al can process big data
and can thus be trained with a greater number of training
features. For this reason, a comparison between any two
techniques is challenging [55].

Future directions

Future research should focus on the construction of larger
medical databases and further development of AI tech-
niques. Once developed, the use of improved algorithms
should not require large computer centers, but be per-
formed on mobile devices or by access to cloud services.
Specialized Al-based software for image-guided, real-time,
intraoperative decisions will require appropriate regulatory
approvals to function with robotic platforms and expand to
operating rooms worldwide [56]. Issues remain regarding
the trustworthiness of a computer’s diagnosis and that pro-
gramming biases do not interfere with diagnoses. Human
intuition, experience, and common sense will remain to play
a crucial role in future Al developments to ensure that these
systems are operating as intended and to deal with undesired
consequences in a timely fashion.

Conclusion

The predictive precision of ML and DL will continue to
provide and enhance personalized medicine with the further
inclusion of data and model retraining. Larger patient data-
sets and electronic medical records can be semi-automated
to provide instant predictive analytics that can be used to
obtain insights into a variety of disease processes. Predic-
tive accuracy, however, is highly dependent on efficient data
integration obtained from different sources to enable it to be
generalized. Although the shared decision-making will not

be replaced by these models, it may complement the infor-
mation patients obtain from traditional methods. While this
is the beginning and further validation is required, there are
limitless future applications for artificial intelligence in the
field of urology.
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