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ABSTRACT 

In this paper we outline the design of a mixed-reality system 

to support object-focused remote collaboration. Here, being 

able to adjust collaborators’ perspectives on the object as well 

as understand one another’s perspective is essential to support 

effective collaboration over distance. We propose a low-cost 

mixed-reality system that allows users to: (1) quickly align 

and understand each other’s perspective; (2) explore objects 

independently from one another, and (3) render gestures in the 

remote’s workspace. In this work, we focus on the expert’s 

role and we introduce an interaction technique allowing users 

to quickly manipulation 3D virtual objects in space. 
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1. INTRODUCTION 

Recent work has focused on supporting and addressing the 

challenges of remote support scenarios (e.g., [7,10,11,14]). In 

remote support scenarios, a worker (referred to as the local 

novice) seeks the assistance of an expert located in a different 

location (the remote expert) [10,11,14,17]. In these scenarios 

there is often a shared object or workspace that is the focus of 

the collaboration. A canonical example of this would be a 

local novice who needs assistance repairing an engine, and 

who would like to receive guidance from a remote expert. 

Systems designed to support remote support scenarios often 

provide video streams of collaborators views and/or shared 

virtual objects, and has identified three common requirements 

that arise for remote support systems regardless of the 

technology that is employed. These three specific 

requirements have not been well-supported in previous remote 

support systems:  

(1) Perspective understanding: the need for collaborators 

to understand what their collaborators are looking at and 

the ability to see what their collaborator is seeing [14,18]; 

(2) View independence: the ability to explore objects 

independently from the collaborator [1,18], and 

(3) Deixis support: the ability to support some form of 

deictic reference that allow collaborators to quickly 

reference particular parts of a shared object or workspace 

[12].  

In this work we propose a low-cost mixed-reality system that 

meets the three requirements above.  Particularly, we focus on 

the long-studied remote expert scenarios, where a remote 

expert assists a local novice in performing a physical task 

focused on a shared object. Below, we summarize how our 

system better supports the three requirements  when 

compared to video mediated technology and our preliminary 

work in evaluating our system. 

2. Requirements for Remote Support Systems 

Even though the three requirements listed above have been 

investigated in the past, the majority of current systems are 

video-mediated systems similar to Skype or Google 

Hangouts. Video mediated systems are insufficient, because 

they can present the following challenges. 

Perspective Understanding: Video-mediated systems only 

present the object from one perspective in a flattened image 

[8]. Thus, the depth information is missing, and it is challen- 

 

Figure 1: The expert (left) wears a Google Cardboard with a Leap Motion Controller attached, allowing her to interact with a 

virtual proxy object (b) and to see a shared video-feed (a) from the novice. The novice (right) wears an Aryzon Augmented Reality 

device. He sees the expert’s virtual proxy object and her captured gestures (b). 
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Figure 2: Proprioceptive interaction technique for manipulating virtual proxies (left to right): The user’s hand enters the bunny’s 

mesh. By creating a fist, the bunny is selected. Rotations of the fist immediately rotate the bunny. 

ging to tell the object’s orientation because adjusting the 

perspective on the object is impossible, which can make the 

requirement for perspective understanding more challenging. 

In collaborative mixed reality, we can overcome this by 

navigating to a collaborator’s view in the virtual space. In 

object-focused remote collaboration this means the user needs 

to adjust their own view of the object.  

View Independence: In video-mediated systems, the expert 

relies on what the novice shows in the video feed. Generally, 

there are many issues regarding the camera quality as well as 

how a person presents the object to the camera (e.g., too close 

to the camera to see, or out of frame) [8,16,18]. When using a 

2D video, the expert can neither explore the object for 

him/herself nor can they use the object’s orientation to clarify 

and demonstrate instructions. However, these are essential 

cues in collocated collaboration [15].  

Deixis Support: In video-mediated systems, deixis is typically 

represented in two dimensions through a hand embodiment or 

telepointer. While 2D gestures have been shown to be helpful 

for collaboration [13,19], they lack the expressiveness of 

gestures that are correctly placed with depth [12]. Gestures 

correctly positioned in 3D space assist in understanding a 

collaborator’s perspective and focus. 

3. SYSTEM DESIGN 

In Figure 1 we demonstrate our proposed system design. 

Essentially, it includes two different sites; the Expert Site 

(ExS) and the Novice Site (NoS).  

At the ExS, the expert wears a low-cost Google Cardboard [6] 

with a Leap Motion Controller [17] attached to it being able 

to orient the virtual proxy and to track gestures (e.g., pointing); 

see Fig. 1, left. Experts see a split screen composed of an 

actual video feed of the novice’s workspace, and a virtual 

environment showing a virtual proxy object (a scanned 

version of the novice’s physical object). The novice can easily 

create the virtual proxy model by using an application to 

capture a 3D scan of the physical object (e.g., Qlone [2]). 

At the NoS, the novice has the physical object and wears a 

low-cost Aryzon augmented reality cardboard [5] powered by 

a smartphone. The smartphone camera also streams 2D video 

to the ExS providing a shared video feed of the NoS’s 

workspace as proposed in previous work [8,9]. 

In the end, our system addresses all 3 requirements: 

(1) Perspective understanding: both expert and novice can 

see live feeds of the others view of the object; 

(2) View independence: because a virtual proxy of the 

physical object is shared, the expert can independently 

control the virtual object; and 

(3) Deixis support: the live video allows the novice to 

gesture at the physical object, the leap motion allows 

gestures to be made at the virtual object.  

In the first iteration, we focus on the ExS. To interact with the 

virtual proxy objects; i.e., to quickly align perspectives and 

explore objects, we designed the following free-hand 

interaction technique. 

4. INTERACTION WITH THE PROXY 

Our interaction technique is inspired by previous work in the 

field  [3,4,20], and the scene from the science fiction movie 

Iron Man 2, where Tony Stark’s arm represents the orientation 

of his augmented robot arm. We believe that leveraging 

proprioception is key to improving interactions with virtual 

objects.  

Proprioceptive: To select the object, experts simply enter the 

mesh of the object, similar to an interaction shell [20], and 

create a fist (Figure 2). Thus, the user’s hand becomes the 

virtual object, and changes in hand orientation get 

immediately displayed on the virtual object (Figure 2). While 

the fist remains closed, the object stays selected. Hence, the 

user can manipulate the object around its three axes by 

bending and/or rotating his/her fist (Figure 2). Rapid clutching 

(deselecting, readjusting the hand and reselection) allow 

objects to be naturally rotated around all 3 axes. When an 

object is selected the virtual hand becomes invisible enabling 

the user to perform deictic and/or metaphoric gestures.  

5. FUTURE WORK 

In the future, we want to understand how people would make 

use of our system and its interaction techniques in simple 3D 

object docking tasks and collaborations. For example, we 

believe that our approach of sharing live models of hand 

gestures will facilitate communications as compared to 

current systems, which most often share telepointers or 

annotations (e.g., [7,13]). We are also interested in what the 

trade-offs are between the currently used interaction 

techniques for 3D object manipulations (e.g., CAD) and our 

proprioceptive technique. We believe proprioceptive 

interactions will be faster to learn and faster when 



manipulating virtual objects than the interactions used by 

other 3D object manipulation systems. 

However, there are many more questions we need to study in 

the future. How can people dis/engage with the system? Does 

the continuous link between the two sites provide enough 

fidelity? How do we present the VR/AR – views; side-by-side 

split or a picture-in-picture approach? Eventually, we aim to 

provide a system that allows richer object-focused remote 

collaboration which is accessible and affordable for everyone.  
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