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Fundamentals of Real-Time Data Processing Architectures
Lambda and Kappa

Martin Feick, Niko Kleer, Marek Kohn1

Abstract: The amount of data and the importance of simple, scalable and fault tolerant architectures
for processing the data keeps increasing. Big Data being a highly influential topic in numerous
businesses has evolved a comprehensive interest in this data. The Lambda as well as the Kappa
Architecture represent state-of-the-art real-time data processing architectures for coping with massive
data streams. This paper investigates and compares both architectures with respect to their capabilities
and implementation. Moreover, a case study is conducted in order to gain more detailed insights
concerning their strengths and weaknesses.
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1 Introduction

The internet is a global network that is becoming accessible to an increasing number
of people. Therefore, the amount of data available via the internet has been growing
significantly. Using social networks for building communities, distributing information or
posting images represent common activities in many people’s daily life. Moreover, all kinds
of businesses use technologies for collecting data about their companies. This allows them
to gain more detailed insights regarding their finances, employees or even competitiveness.
As a result, the interest in this data has been growing as well. The term Big Data is used for
referring to this data and its dimensions.
As Big Data has progressively been gaining importance, the need for technologies that are
capable of handling massive amounts of data has emerged. In this paper, one technology
of interest is the so-called Lambda architecture that was introduced by Nathan Marz in
2011 [Ma11]. Its introduction was motivated by the purpose of beating the popular CAP
theorem [Br00]. The CAP theorem states that a shared distributed data system is incapable
of guaranteeing Consistency, Availability and Partition tolerance at the same time. Instead,
only two constraints can at most be enforced. Marz emphasizes that the architecture does
not rebut the CAP theorem but simplifies its complexity to allow for more human-fault
tolerance when developing shared data systems.
The Lambda architecture has enjoyed broad attention which has led to numerous people
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sharing their thoughts about the technology. A considerably influential article by Jay Kreps
(2014) acknowledges Marz’s contribution for raising awareness about commonly known chal-
lenges of building shared data systems. At the same time, he discusses some disadvantages
of the Lambda architecture [Kr14]. Consequentially, he proposes an alternative real-time
data processing architecture, termed Kappa architecture, as an alternative. In contrast to the
Lambda architecture, Kreps’s approach is supposed to simplify any development related
matters.
In this paper, we investigate the Lambda as well as the Kappa architecture, take a more
detailed look at their functionalities and compare their capabilities. Therefore, the paper
is divided into the following sections. Subsequently, we elaborate on the related work
regarding Big Data and real-time data processing. After that, we take a more detailed look
at both architectures including their workflow and implementation. Moving to section 5,
we conduct a case study in which we compare both architectures2. This way, we are be
able to analyze each architecture’s strengths and weaknesses more effectively. A subsequent
discussion proceeds by emphasizing significant details regarding our results. Finally, we
conclude this paper’s results and consider potential future work in the last section.

2 Related Work

In the related work section, we first introduce the term Big Data, and we briefly discuss the
issues related to it. Afterwards, we look at data processing solutions as well as the term
data analytics in order to support real-time Big Data streams.

2.1 Big Data

Over the last decade, the term Big Data became more and more relevant. Big Data has its
place in almost every business area such as information technology, healthcare, education
etc. However, the term Big Data does not only cover the pure size of data [Ma15, Ma11].
Instead, Big Data is composed of three standard dimensions known as the three V’s, which
mean Volume, Variety, Velocity [Ga15]. Additionally, certain companies contributed other
dimensions to Big Data. For example, IBM added Veracity as a forth V, SAS introduced
Variability and Complexity, and finally Oracle brought up Value [Ga15].
Often, the scale of data needed to support the various application scenarios is too big for a
traditional database approach. Handling such an amount of data cannot be done by simply
increasing the resources, because it does not consider the higher complexity and coherence
of the data [Ma15, Ga15]. The next section introduces real-time data processing solutions
considering all previously introduced dimensions of Big Data.

2 The project is available on GitHub: https://github.com/makohn/lambda-architecture-poc
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2.2 Real-Time Data Processing Solutions

Hasani et al. [Ha14b] outline that particularly the Velocity aspect of Big Data is difficult to
handle effectively. Technologies must be able to handle real-time stream processing at a rate
of millions per second. Furthermore, data streams can be collected from various sources
using parallel processing. However, the goal of Big Data is to gain knowledge about the
data and this is only attainable with the help of data integration and data analytics methods
[Li14]. Data analytics is essentially the process of examining a data set and conclusively
getting the insight/value of the data [Li14]. However, for traditional tools, it is challenging
as soon as the data size extensively grows [Ha14a]. In addition, besides the most recent data,
for some requests all the data is needed as it leads to more accurate outcomes [Ki15, Ha14a].
As a result, accessing information within a time limit is often not possible due to the size of
the data [Li14].
A common strategy to face this challenge is to use hybrid techniques [Ki15, Ma15, Ha14a].
Abouzied et al. [Ab10] discussed HadoopDB which combines MapReduce and DBMS
technologies. It is used to analyze massive data sets on very large clusters of machines [Ho12].
They present different real world applications e.g. a semantic web data application for protein
sequence analysis [Ab10]. Their results show that HadoopDB is an effective platform for
retaining a large data set and performing computation on it. However, HadoopDB has its
limitations when using real-time data streams [Li14].
We previously introduced two general requirements of Big Data systems. First, receiving a
massive real-time data stream from different sources and second, performing an analysis of
this data in order to output results almost immediately [Ma15, Li14, Ha14b, Ki15]. From
this point, we move on to two concrete software architectures/patterns called Lambda and
Kappa that are nowadays commonly used for Big Data systems.

3 Lambda Architecture

The Lambda architecture has been given its name by Nathan Marz [Ma11], and describes
a generic, scalable and fault-tolerant real-time data processing architecture. It provides a
general-purpose approach to apply an arbitrary function on an arbitrary data set [Ma11].
Marz defines the most general-purpose function, as a function that takes all the existing
data as input (query = function(all data)), and returns its results with low latency. However,
calculating results to ad-hoc queries using the entire data set is computationally expensive.
Therefore, the Lambda architecture uses pre-computed results (views) being able to respond
with low latency [Ma15].
Figure 1 shows an overview of the Lambda architecture comprising three layers. The batch
layer has essentially two functions: (1) It stores an immutable master data set and (2) is
responsible for pre-computing the batch views based on this data set. The speed layer is
responsible for indexing real-time views, compensating the high latency of the batch layer.
In particular, due to the massive data sets in the batch layer, it takes time for the latest batch
layer views to be calculated, causing a lack of availability. The speed layer is used to close



4 Martin Feick, Niko Kleer, Marek Kohn

Batch layer

Speed layer

Serving layer

Data input stream Apache
Kafka

Apache Hadoop MapReduce
(re-computing)

Apache Spark

Apache
Cassandra

Apache
Impala

Queries

Reponses

M
er

ge

Powered By Visual Paradigm Community Edition

Fig. 1: The Lambda architecture and its workflow through Batch, Speed and Serving layer

this gap by providing an efficient way for querying most recent data [Ma15]. As soon as
the batch layer has re-computed its views, the speed layer discards the redundant data, and
hence they are provided by the batch layer views. Moreover, there are queries where most
recent data and data from the batch layer are required. Therefore, the serving layer merges
results from batch and speed layer views. Further, the serving layer takes care of indexing
and providing the merged views, enabling easy access for the user.

3.1 Workflow & Technologies

As illustrated in Figure 1, all incoming data is dispatched to batch and speed layer for further
processing. Since we talk about a real-time stream processing with a massive amount of
data, a common technology to realize this is Apache Kafka [Du16].
Moving on to the batch layer, a standard technology to store the master data set and to
perform the recomputations of the batch views is Apache Hadoop [Ha14a]. Hadoop is an
open-source framework that ”allows the distributed processing of large data sets across
clusters of computers using simple programming models” [Ho12]. Following the general
application domains and purpose of the Lambda architecture, the master data set grows
extensively over time [Ma11]. MapReduce allows the system to compute the batch views
even on a large data set [Ho12]. It is composed of three steps (Map, Shuffle, Reduce) using
clusters for distributed parallel computations [De08]. MapReduce aims to parallelize the
mapping, shuffling and reducing steps in order to significantly improve the time complexity
of computations on large data sets [De08]. Notice, that by the time the batch layer views are
generated, they are already outdated as a result of the sustained real-time stream processing
[Ma11]. This leads us to the speed layer that compensates the high latency of the batch layer
and provides the recent data only. For instance, Apache Spark is used to implement this
layer in order to reach the required performance [Ha14b]. Spark is an engine particularly
developed for large-scale Big Data processing. Spark maintains Apache MapReduce’s linear
scalability, and fault tolerance while improving its performance considerably.
Finally, the serving layer stores batch and speed layer views, and subsequently responds
to ad-hoc queries by returning the pre-computed views. We distinguish between requests
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addressed to views from batch and speed layer, and others that require the use of views
from both layers simultaneously. To respond to such requests the serving layer must merge
different views (see Figure 1). Generally, the amount of data in the serving layer is relatively
small as it only hosts the computed views from batch and speed layer. A common technology
for storing batch views is Apache Cassandra views [Ha14a]. Cassandra is a NoSQL database
featuring a distributed deployment providing a high level of reliability [Ne13].

3.2 Trade-offs

Using the Lambda architecture has various advantages such as fault-tolerance against
hardware failures and human mistakes. It also addresses the problem of computing arbitrary
functions on arbitrary data in real-time [Ma15]. However, the software architecture pattern
is highly complex and redundant. In oder to apply the Lambda architecture for a specific
use case, it has to be tailored correspondingly. Moreover, the different technologies that
are needed to run batch, speed and serving layer make it challenging to implement (see
Figure 1). Furthermore, keeping both, batch and speed layer synchronized, increases the
computational time and effort. In addition, maintaining and supporting both layers is difficult
because they are distinct and fully distributed [MJ17].
In summary, the Lambda architecture achieves its goals but comes with high complexity
and redundancy. The question arises whether the majority of the use cases require a batch
and a speed layer or not. Before we move on to this specific question in our case study, we
introduce the Kappa architecture.

4 Kappa Architecture

The Lambda architecture enjoyed comprehensive attention after it was introduced by Marz
[Ma11]. Only a few years later, Jay Kreps, a principal staff engineer at LinkedIn, shared
his thoughts about the Lambda architecture pointing to its naturally existing disadvantages
[Kr14]. Kreps presented another approach for real-time data processing that, in contrast to
the Lambda architecture, favors simplicity with respect to development related matters − the
Kappa architecture. In this section, we take a closer look at the architecture’s components,
their functionality and point to several similarities as well as differences compared to the
Lambda architecture.
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4.1 Overview

The Kappa architecture represents another way of designing a stream processing system.
Similarly to section 3, we start off by introducing the architecture’s components and
elaborate on their functionality. Figure 2 provides the basic outline of the Kappa architecture.
Once again, the architecture requires a data stream. First, the incoming data is fed into a
stream processing system, sometimes referred to as the real-time layer [Zh17]. This layer is
responsible for running the stream processing jobs and providing real-time data processing.
Afterwards, the data is directed into the serving layer that queries any required results. Notice
that this architecture’s components do not particularly differ from the Lambda architecture.
Moreover, there is no need to elaborate on any further technologies that are used for
implementing this architecture. That is because the Kappa architecture can be implemented
by using the same open source technologies previously presented for realizing the Lambda
architecture, as illustrated in Figure 2. Next, we take a closer look at the architectures
differences.

4.2 Distinguishing Lambda and Kappa

Even though there are numerous similarities, considerable differences arise from the fact
that the Kappa architecture passes on a batch processing system. This way, the architecture
only requires one code base instead of implementing two heterogeneous systems [OA16].
As a result, development related processes like implementation, debugging and code
maintenance are simplified. On the other hand, passing on a batch layer also results in the
architecture to be incapable of managing computation intensive applications. This is the case
with respect to large scale machine learning scenarios where a model needs to be trained
[Zh17]. Furthermore, the performance of batch processing tasks in general suffers from
the unavailability of a batch layer [Li17]. However, the Kappa architecture’s disadvantages
are not particularly problematic as Kreps suggested this approach as an alternative to the
Lambda architecture valuing simplicity over efficiency [Kr14]. This means that a direct
comparison of both architectures is difficult since the performance of the architecture largely
depends on the use case. Therefore, the most appropriate architecture always has to be
chosen based on the given application scenario.
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5 Case study

In order to provide a comprehensive overview on how both, the Lambda architecture
and the Kappa architecture, are implemented, we conduct a case study in the following
section. Comparing both architectures, we investigate a stereotypical use case, pointing
out advantages and challenges. Based on the technologies presented in subsection 3.1,
we develop a proof-of-concept implementation. In doing so, we explain the individual
technologies in more detail and explain why they are used in the particular case. Ultimately,
we try to give an extensive overview of the Lambda architecture, while constantly keeping
in mind the approach of the Kappa architecture, investigating structural differences.
As data source, we use Twitter’s streaming API, which provides us with comprehensive
data about tweets and users. These contain both unstructured data (a tweet’s text) as well as
structured metadata about the tweet (the tweet’s ID, timestamps or included hashtags). Using
this data as an input, we are aiming to analyze the hashtags according to their popularity.
For the development of our software we use the multi-paradigm programming language
Scala since it allows smooth integration of the above mentioned tools. Furthermore, thanks
to its functional approach, Scala comprises a number of integrated functions allowing it to
seamlessly implement technologies such as MapReduce [Up17].

5.1 Providing the data

To access the data of the Twitter streaming API, we use the Twitter4J library. This requires
a corresponding registration of the app on Twitter and allows us to access a filtered stream
using OAuth authorization. We use a location-based filter that uses minimum and maximum
values of longitude and latitude as its range allowing us to access a broad spectrum of all
tweets. Thus, we receive a large amount of tweets in very short periods of time, impeding
the immediate processing of tweets as they come in. As mentioned earlier, it is reasonable
to delegate the buffering of messages to a message broker, as for instance Kafka. This is
mainly due to its asynchronous and message-based communication which also implies
a complete decoupling of senders and receivers [Du16]. In our example, we utilize the
Producer API to write tweets into a queue when they arrive and the Consumer API to read
from the queue to populate batch and speed layers. Note that Kafka is usually implemented
as a cluster and therefore multiple bootstrap servers can be specified to host this cluster. A
cluster node, also referred to as a broker, is responsible to store messages within a specified
topic. This topic is unique and can be subscribed by various consumers. In order to allow
for parallelism, especially when using Kafka as a distributed cluster, topics are further
divided into partitions. In order to take the sequence of incoming messages into account,
each message is annotated with a timestamp. This way, messages from different partitions
can later be merged together easily [Du16]. For each tweet we consider the set of hashtags.
In order to enable a clear identification later on, each message sent to Kafka contains not
only the hashtag’s text but also the tweet’s ID as well as its user’s screen name and its
timestamp. Since we prefer a serialized yet object-oriented format for message exchange,
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we convert every Hashtag object into the JSON format. This allows for high compatibility
with Cassandra.

5.2 Implementing the batch layer

Now that we have provided a stream of messages, we can start processing them. First,
we need to implement a consumer in order to read messages from the Kafka queue. This
consumer is primarily responsible for filling the master data set. The idea here is that data is
not accidentally changed or deleted, which results in a high degree of consistency [Ma15].
Based on this data, specific views are later calculated to display concrete information (such
as the number of hashtag occurrences). In order to achieve a realistic processing speed, we
implement the consumer in such a way that it reads multiple messages at a time from the
Kafka message queue, writing them to the Cassandra database. This process is scheduled to
be executed at a regular interval. The scheduling is done by implementing the consumer
as an Actor. Actors are a basic concurrency construct in Scala, somewhat comparable to
tasks in other programming languages, with the difference that actors can communicate
with each other [Up17].
As previously mentioned, we want to use Cassandra as the database of our choice. This
enables SQL-like queries that can be created using CQL (Cassandra Query Language)
[Gu16]. CQL supports all common CRUD operations. As it is possible to assign tables to
certain namespaces, called keyspaces, we define three different key spaces, for the master
data set, the batch view and the realtime view. This allows us to create tables of the same
name to enable uniform access to batch and speed views.
As the master data set now gets populated with new hashtags at a regular interval, we can
start calculating batch views. Again utilizing a scheduler, we execute a batch job, which
iterates through the whole data set, regularly counting occurrences of same hashtags. As
the database grows over time, it is inadequate to sequentially count the occurrences as it is
done in the speed layer. Instead, it might be reasonable to apply concurrent methods, ideally
within a distributed system. One such method, MapReduce, has already been presented in
subsection 3.1. After retrieving a list of hashtags from the master data set, we can distribute
equally sized chunks of them to several map processes [Gu15]. Each map process then
emits a key-value pair, mapping the hashtag as a key to an initial value of 1. Next, while
implicitly shuffling same-titled hashtags to dedicated chunks, the reduce function sums up
the values of same-titled hashtags. This way we now receive a new list of key-value pairs
with a hashtag as the key and the number of that hashtag’s occurrences in the data set as the
value [Gu15].

5.3 Implementing the speed layer

While the batch layer works on the basis of the immutable master data set, the speed layer
receives the stream of new data as an input. Therefore, the results of the speed layer represent
only a sample of the total amount of data. Considering the Kappa architecture, the results of
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the batch layer can be approximated by interpreting a batch as a limited stream. Here, one
does not define a batch as a function on the entire data set, but rather as a function on an
arbitrarily large recording of the stream.
In contrast to the batch layer, the retrieved data is not written to a database, but is forwarded
directly to a calculation unit. This can be achieved by using Apache Spark, especially by
leveraging a data structure called the Resilient Distributed Dataset (RDD) [KW17]. This is
basically an immutable collection of data records that might reside on multiple nodes in a
cluster. Each operation on a RDD requires the construction of a new RDD, memorizing the
resulting hierarchy in the RDD lineage graph. This allows for fast computation, as data is
kept in memory. Further, the concept of a DStream represents a continuous flow of RDDs,
each representing a fixed windows of data received from the stream. A ViewHandler is given
a DStream, allowing it to continuously executing fast calculations on small data chunks.
Figure 3 illustrates the operating principle.
In the ViewHandler we now convert the RDD into a so-called DataFrame. This is a kind of
wrapper that allows us to execute SQL-style queries on the RDD. The necessary methods
and concepts are included in the module SparkSQL. This allows us to apply aggregate
functions to the data. In particular, by grouping the hashtags, we can assign them with the
number of their occurrences. Note that this is in general executed sequentially. Therefore
–and in contrast to the batch layer– it is inapplicable for larger data volumes. As in the batch
layer, the resulting hashtag-count pairs must be timestamped, allowing both views to be
combined later on.

5.4 Implementing the serving layer

Now that we are able to perform calculations on both, batch and speed layer, we need to
consider how to provide the results to the user. While being responsible for providing an
easy-to-use interface for queries, the serving layer is also in charge of merging the results
from the individual layers. Hence, if you want to have an exact assertion about the number of
hashtags at a certain point in time, it is inevitable to compensate the batch layer’s calculation
latency by merging the results from the speed layer. Considering Table 1, one can see that
there are overlaps of hashtags in batch view and real-time view. However, since the results
of the speed layer were retrieved shortly after a football match, the hashtags correspond
to the football match. For creating an interface, we use Akka to create a http server with
a RESTful API, providing ordered JSON lists of hashtags as a result for queries. The

DStream

SparkStream-
Consumer RDD RDD RDD ViewHandler

t t

Fig. 3: Principle of the DStream in conjunction with a ViewHandler
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Batch layer results (24 hours) Speed layer results (1 hour)
hashtag count hashtag count
job 25970 FRAARG 2268
CareerArc 23256 job 1851
Hiring 19835 ARG 1643
YksBirincisiEmreP. 15614 FRA 1602
FRAARG 9813 CareerArc 1550

Tab. 1: Top 5 Hashtags in the batch view and in the realtime view after reading the twitter stream for
24 hours and 1 hour, respectively

merging is performed in Cassandra using tailored CQL queries. In particular, we consider
the timestamp of our data when querying the data set. We select the batch view with the
latest timestamp, storing the results into a list of hashtag objects. Further, we select all
real-time views having a more recent timestamp than the batch view, also storing them into
a list. We can then merge both lists in order to retrieve a new list comprising the updated
hashtag objects.

6 Discussion & Limitations

While the Lambda architecture allows both high accuracy and fast processing of requests,
one does this at the cost of maintaining two separate code bases and hence two complex,
distributed systems. This results in some difficulties. On the one hand, both layers must be
kept synchronous. If you change a particular view in one layer, the corresponding view must
be adapted in the other layer as well. Further, merging in the service layer involves a certain
complexity. The data must be structured in a way that efficient merging is possible. Thus,
designing the database schemes to be compatible with each other is essential. Moreover,
there must be a feature that allows the comparison of the data sets, such as timestamps.
In addition, as the master data set grows, more hardware resources are needed in order to
compensate the increase of latency while performing batch calculations.
The Kappa architecture, on the other hand, does not integrate a dedicated batch layer at the
expense of accuracy. This is based on the assumption that numerous applications do not
require the entire data volume, but a sufficiently large segment of the current streaming data.
Nevertheless, the number of resources scales with the size of this segment. The more data you
want to observe per iteration, the more memory is necessary to process the data at the same
time. Figure 4 provides an overview of the architecture we implemented in the case study
described in section 5. Although we have followed the approach of the Lambda architecture,
the implementation can easily be transfered into a Kappa architecture by removing the
corresponding components. In addition, the service layer has to be adjusted as well, since
the merging of the two views is omitted. Ultimately, the choice of architecture strongly
depends on the respective application and the type of data, necessitating a compromise
between consistency, availability and partition tolerance.
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7 Conclusion & Future Work

In this paper, we have investigated the state-of-the-art real-time data processing architectures
Lambda and Kappa. We started off by taking a closer look at each architecture’s components,
workflow and theoretical capabilities. While the Lambda architecture was capable of
raising awareness about how challenging the development of a shared data system can
be, its high complexity remains a considerable disadvantage. Even though the Kappa
architecture improves this aspect, the architecture can only be applied for specific use case
and might suffer from performance issues. We gave a brief introduction on most commonly
known technologies for implementing each architecture’s layers as well as the concept of
MapReduce. Furthermore, we have discussed the architectures most significant differences
that need to be considered when developing a shared data system. After our theoretical
investigation, we used Twitter’s streaming API for conducting a case study that allows us to
gain more detailed insights regarding each architecture’s strengths and weaknesses.
We discussed that measuring an architecture’s performance with respect to a given use
case might not provide particularly sensible information as the result depends on numerous
factors. Consequently, future work should focus on prodiving an analysis regarding these
factors for allowing an easier decision-making regarding the choice of an architecture.
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