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Abstract—With the Internet of Things (IoT) devices becoming
an integral part of human life, the need for robust anomaly
detection in streaming data has also been elevated. Dozens of
distance-based, density-based, kernel-based, and cluster-based
algorithms have been proposed in the area of anomaly detection.
Recently, because of the robustness of the deep neural networks
(DNN), different deep learning-based anomaly detection methods
have also been proposed. With all these rapid developments,
there exists a small number of comparative studies for anomaly
detection methods. Even in those studies, the comparison is
done only in typical anomaly detection settings without taking
the streaming data into consideration. The presence of intrinsic
time-series characteristics like trend, seasonality, and change-
point makes it important to study the behavior of commonly
used anomaly detection methods on streaming data. Moreover,
the comparison of traditional methods with deep learning-based
methods also brings exciting insights about the data which are
generally overlooked by traditional methods. In this study, we
compare 13 anomaly detection methods on two commonly used
streaming data sets. We used four different evaluation metrics to
evaluate the methods from different perspectives. Our analysis
reveals that the deep learning-based anomaly detection methods
are superior to traditional anomaly detection methods.

Index Terms—anomaly detection, streaming data, deep learn-
ing

I. INTRODUCTION

Anomaly detection has always been of great human interest.
It is a common observation that an abnormal activity attracts a
lot of human attention. For example, a driving car is considered
an anomaly inside a park and a person with blue hairs will
stand out in a shopping mall. Anomaly is an outlier which
Hawkins [1] defined as an observation that deviates so signif-
icantly from other observations as to arouse suspicion that it
was generated by a different mechanism. Detecting and miti-
gating anomalies is vital in the manufacturing and industrial
sector and also crucial in the healthcare and surveillance sector.
A timely detected anomaly can improve machine performance,
avoid a machinery downtime, reduce a disease outbreak, and
even save a human life [2], [3]. Due to its applicability in
almost every field of life, the meaning of anomaly varies
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from domain to domain and depends on the context in which
it is used. Detecting unauthorized interference in a network
is anomaly detection in the networking domain, whereas,
detecting a malfunctioned component inside a machine is
referred to as fault detection.

Anomaly detection is an old research topic and a lot of
advancements have been made in this area. There are two main
modalities in which this wide research area can be divided:
image-based and non-image-based. The notable modality is
the image-based, in which it is easy to highlight a detected
anomaly and most of the research studies are available for
this modality. But, in the current era of the Internet of Things
(IoT), where each device is connected to the internet and
generating a bulk of data, non-image-based modality is also
getting prominent for quite some time. Recent amplification
in the usage of IoT devices has created a high demand for
robust anomaly detection methods for streaming sensor data.
The presence of the intrinsic characteristics of a sensor-based
streaming data (periodicity, trend, seasonality, and irregularity)
makes the process of robustly detect and represent anomalies
hard.

Vital developments in the area of deep neural networks
(DNN) have proved them to be a very good option for most
of the classification and regression problems [4]. There exist
different deep learning-based and traditional approaches for
anomaly detection, but their direct comparison of non-image
streaming data is missing in the literature. The focus of this
study is to draw a comparative analysis for the most commonly
used traditional and deep learning-based anomaly detection
methods for non-image streaming data. Given the superiority
of DNNs in many recent studies, we hypothesize that DNN-
based anomaly detection algorithms may outperform com-
monly used traditional methods on streaming data.

II. LITERATURE REVIEW

Recently, Deep Learning (DL) based approaches have en-
joyed significant attention, owing to their amazing perfor-
mance in various domains. Hence, it is no surprise that
there has been an increase in DL-based methods for anomaly
detection as well. Chalapathy et al. [5] provides a review



of DL-based methods for anomaly detection employed in
different application scenarios. Techniques reviewed in their
study include both image as well as time-series domain with
applications ranging from fraud detection, intrusion detection
to medical anomaly detection and video surveillance. Although
this survey provides a comprehensive review of DL techniques,
there is no comparative analysis of DL-based techniques with
traditional anomaly detection techniques. Similarly, Chandola
et al. [6] provides a comprehensive survey of anomaly de-
tection techniques comprising not only of methods based on
simple machine learning, like clustering and nearest neigh-
bours, but also based on statistical approaches and information
theory with a diverse range of applications. Again, there is
no comparative study among the techniques discussed in the
article.

Goldstein and Uchida [7] provides a comparative study
of different anomaly detection techniques for a range of
different data sets. Although this study does compare different
techniques on the same data sets to give a better comparison,
it primarily focuses on multivariate tabular data and does not
incorporate recent DL-based approaches. Similarly, Gupta et
al. [8] have performed an extensive survey on outlier detection
techniques for temporal data. Their study provides an exten-
sive overview of different techniques employed in multiple
temporal data sets, but it lacks DL-based techniques and
their comparative analysis. Similarly, Kiran et al. [9] provides
a review of DL-based approaches for anomaly detection in
videos. Adewumi et al. [10] provides a comprehensive survey
of DL-based approaches in the domain of fraud detection.
Similarly, Hodge et al. [11] provides an extensive survey
on statistical and some of the earlier machine learning-based
outlier detection methodologies.

Most of the surveys in the literature are general in nature
that span over techniques that are built for different problems
and may even belong to different domain. Moreover, most
of the review articles lack quantitative comparison that can
determine the efficacy of each of the techniques for a given
domain. In our study, we provide a quantitative comparison
of the most commonly used anomaly detection methods on
streaming non-image data sets. Also, we provide a comparison
between traditional anomaly detection methods and DL-based
methods.

III. ANOMALY DETECTION METHODS

In this section we explain the anomaly detection methods
selected for the comparative analysis. We have selected the
methods which are commonly used for anomaly detection in
the streaming non-image modality.

A. kNN Anomaly Detection [12]

The k-nearest-neighbor (kNN) anomaly detection is one of
the most commonly used distance-based anomaly detection
methods. It is a simple technique which works out-of-the-box
in most of the cases and detects global anomalies precisely.
For each data point in a streaming data set, the k-nearest-
neighbors have to be found. Based on these neighbors, the

anomaly score is calculated. The anomaly score depends on
the average distance to all the k neighbors.

B. Local Outlier Factor (LOF) [13]

The LOF is also a distance-based anomaly detection
method. It is used for detecting local anomalies based on the
local densities. In this method, the k-nearest-neighbors have
to be found for each data point in a given streaming data set.
By using k-nearest-neighbors, the local density of each data
point is estimated by computing the local reachability density
(LRD). Finally, the anomaly score is computed by comparing
the LRD of a data point with all the LRDs of its k neighbors.

C. Connectivity-based Outlier Factor (COF) [14]

The connectivity-based outlier factor is an improved version
of LOF. In LOF, it is assumed that a given data is distributed
in a spherical way around a given instance. For the cases in
which this indirect condition is not fulfilled, the density esti-
mation is incorrect and leads to poor anomaly detection. This
LOF limitation is addressed in COF by estimating the local
density of the neighborhood using chaining distance. Chaining
distance is a shortest-path approach which is the minimum of
the sum of all distances connecting all k neighbors and the
instance.

D. Local Correlation Integral (LOCI) [15]

In all of the distance based anomaly detection approaches,
the selection of parameter k plays a vital role in the overall
performance. There is no fix rule on the basis of which the
value of k can be estimated. This limitation is addressed in
LOCI with the help of a maximization approach. It defines the
r-neighborhood by using a radius r. The radius is expanded
over time which makes this method very computational ex-
pensive.

E. Isolation Forest (iForest) [16]

This anomaly detection method is based on the concept of
‘isolation’ – in contrast to the widely-used distance and density
measures. In this approach, the anomalies are ‘isolated’ from
normal instances. The data instances which are few in numbers
and their attribute-values are very different from the rest of the
data instances are the instances that are more susceptible to
be put in isolation. This method uses a binary tree structure
called isolation tree (iT ree) to isolate such instances.

F. One-class SVM (OCSVM) [17]

There exist different semi-supervised and unsupervised vari-
ants of One-class support vector machine (OCSVM) based
anomaly detection in literature. The basic idea of this machine
learning-based approach is to learn a decision boundary that
achieves the maximum separation between the points and the
origin. Generally, OCSVM is sensitive to the outliers when
no labels are given. To tackle this shortcoming, Amer et al.
(2013) [18] enhanced OCSVM for unsupervised anomaly by
proposing two modifications that make the outliers contribute
less to the decision boundary as compared to the normal
instances. Hu et al. (2018) [19] proposed an anomaly detection



method for detecting abnormal sub-sequences in a given time-
series.

G. Principle Component Analysis (PCA) [20]

PCA is a linear dimensionality reduction method that
projects data to a lower dimensional space by using singular
value decomposition. The possible correlated variables are
converted into a set of linearly uncorrelated variables called
major and minor principal components. Shyu et al. (2003) [20]
proposed an anomaly detection method based on the PCA. The
predictive model is generated based on the major and minor
principal components of the normal data. Kwitt and Hofmann
(2006) [21] also proposed a PCA based anomaly detection
method. In this method, minimum covariance determinant
(MCD) is employed for the computation of covariance and
correlation matrix.

H. Histogram-based Outlier Score (HBOS) [22]

It is a statistical unsupervised anomaly detection method.
As the name of the method indicates, this method is based on
histograms for detecting anomalies in a given streaming data.
First, a histogram for each feature of the data is generated.
Then the inverse height of the bins it resides of all features is
multiplied for each instance of the data set. HBOS provides
two histogram creation modes: i) static bin sizes with a fixed
bin size and ii) dynamic bin width with a fixed amount of items
in each bin. This method is far less computational expensive
as compared to commonly used distance-based and clustering-
based anomaly detection methods.

I. Extreme Gradient Boosting Outlier Detection (XGBOD)
[23]

It is a relatively new semi-supervised method for detecting
anomalies. XGBOD is an ensembling method based on ex-
treme Gradient Boosting (XGBoost) [24]. XGBoost provides
a parallel tree boosting to solve many data science problems
in a fast and accurate way. XGBod combines the strengths of
both supervised and unsupervised machine learning methods
which exploit each of their individual performance capabilities
in anomaly detection. It ensembles multiple unsupervised
outlier mining methods to extract useful representations of the
provided data. The predictive capabilities of this method are
improved as compared to the other ensembling methods by
using stacking-based outlier ensembling.

J. Autoencoder (AE) [25]

AE tries to learn an approximation to the identity function,
so that the output is similar to the input. It consists of
two parts, encoder and decoder. The network learns how to
efficiently compress the data (encoder) and how to reconstruct
the data back to a representation close to the input data
(decoder). In AE-based anomaly detection, AEs are used to
detect anomalous instances by calculating the reconstruction
error. Schreyer et al. (2017) [26] used deep autoencoders
to detect anomalies in large-scale accounting data in the
area of fraud detection. Amarbayasgalan et al. (2018) [27]

also proposed a novelty detection technique based on deep
autoencoders. Their approach computes the error threshold
from deep AE model and passes to a density-based cluster.
Then, density-based clustering is applied to the compressed
data to get novelty groups with low density.

K. DeepAnT [28]

DeepAnT is a deep learning-based unsupervised anomaly
detection technique for streaming data. This method consists
of two modules. The first module, time-series predictor is
responsible for predicting the next timestamp. The predicted
value is further passed to the anomaly detector module. This
module is responsible for tagging a data instance as a normal
or anomalous instance. The predictor module is based on a
convolutional neural network (CNN). In DeepAnT, CNN is
trained on raw data without removing anomalies from the
training data. They have used two convolutional layers, each
followed by a max-pooling layer.

L. FuseAD [29]

In some use-cases, statistical anomaly detection tech-
niques robustly detect anomalies, whereas, deep learning-
based anomaly detection techniques show better performance
for other use-cases. To overcome the issue of choosing a better
technique for a given data set, anomaly detection based on
statistical models and deep learning-based models are fused
in this technique. FuseAD also consists of two modules: a
forecasting pipeline and an anomaly detector. In the forecast-
ing pipeline, the forecasts of ARIMA (a statistical model) are
fed to a CNN along with the actual time-series. The output of
the CNN is augmented by a summation layer at the end.

IV. DATA SETS

In this section, we provide details of the data sets which are
used for the quantitative evaluation. We have shortlisted two
time-series data sets that are already labeled by the publishers.
It is important to mention that only the data sets which have
time-series characteristics and contains (point and contextual)
anomalies are used in this study. There exist a lot of other data
sets [30] which are converted to time-series from image and
signal domains (e.g. Breast Cancer Wisconsin [30]). Such data
sets are generally used for time-series classification, which is
not the scope of this study.

A. Yahoo Webscope [31]

Yahoo Webscope is a publicly available streaming data set,
consists of both synthetic and real data. The anonymized real
data contain the Yahoo membership login data. This data set
is further divided into four sets, named A1, A2, A3, and A4.
Examples of time-series from this data set are shown in Fig. 1a
and Fig. 1b. In these figures, red vertical lines represent the
labels of anomalies. A1, A2, and A3 contain only outliers,
while A4 also contains change-point anomalies. There are a
total of 367 time-series in this data set and each sequence is
comprised of 1420− 1680 instances.
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(d) NAB - Real Traffic

Fig. 1. Sample time-series from Yahoo Webscope (a-b) and NAB (c-d) data sets are shown in this figure. Actual streaming data are shown in blue, whereas
red vertical lines and area highlight anomalous data points based on the provided labels.

B. Numenta Anomaly Benchmark (NAB) [32]

Numenta1 open-sourced a streaming anomaly detection
benchmark – NAB, in 2015. This data set consists of 58
time-series in total where each sequence is comprised of
1000 − 22000 instances. Both, real and synthetic time-series
from internet traffic, cloud services, automotive traffic, and on-
line advertisement domains are included in this benchmark.
This benchmark is labeled based on the known root cause of
an anomaly and by following the labeling procedure defined
by the publisher in [32]. Although this data set covers a wide
range of domains, the anomaly labeling mechanism is not
relevant in all the cases [33]. A window of defined size (10%
of sequence size) is labeled as anomalous when an anomalous
point lies within that window. In such anomalous windows,
there might be only 2− 3 actual anomalous instances, but the
whole window is labeled as anomalous. The plots shown in
Fig. 1c and Fig. 1d highlight this issue of inconsistent labeling.

V. EVALUATION METRICS

To analyse the anomaly detection methods from different
perspectives, we have used the following evaluation metrics:

1) Precision @ Rank n (P@n): This simple evaluation met-
ric evaluates an anomaly detection method by computing
the True Positive Rate (TPR) for the top n results in a
data set.

2) Area Under ROC Curve: A more advanced method,
Receiver Operating Characteristic (ROC) curve is a
graphical representation of a classification model which
shows the diagnostic ability of a model. The ROC curve
is created by plotting True Positive Rate (TPR) against
False Positive Rate (FPR). The area under the ROC
curve is reported in this study, where a value near to
1 represents a good measure of separability.

3) Area Under Precision-Recall (PR) Curve: An unbal-
anced class distribution (as in anomaly detection prob-
lems) makes the usage of the area under the ROC curve
a questionable metric. To have a better performance
overview of a system with an unbalanced class distribu-
tion, Precision-Recall (PR) curve is preferred. PR curve
is a plot of the precision against the recall for different
thresholds. In the experiments section, the area under

1https://numenta.org

the PR curve is reported which ranges from 0 to 1. A
value close to 1 represents an accurate classifier.

4) Inference Time: The time required to ‘infer’ the results
on a given test set is referred here as an inference
time. The machine used to compute inference time is
equipped with Intel Xeon(R) processor with 8 cores and
one NVIDIA GeForce GTX 1070 GPU.

VI. EXPERIMENTAL SETTING

The initial 40% of a time-series is used to build a DL model
and the rest of 60% for testing. For the distance-based and
density-based anomaly detection methods that do not require
a training process, we have only used the 60% of the data
for consistency and fair comparison with deep learning-based
methods. Since both data sets consist of multiple time-series
for a particular domain, the presented results are averaged per
domain/set. For all the anomaly detection methods mentioned
in Section III, the default settings mentioned in [25] are used
except for DeepAnT and FuseAD. For these two methods, the
settings mentioned in the actual study are used.

VII. ANALYSIS

The comparative results of distance-based, density-based,
kernel-based, and deep learning-based anomaly detection
methods on two streaming data sets are shown in Table I
and Table II. Important evaluation metrics, the area under
the ROC and PR curves are provided in Table I, while the
supporting metrics, P@n and inference time are provided in
Table II. For the Yahoo Webscope data set, deep learning-
based anomaly detection methods are in lead by a clear margin
in the terms of ROC and PR curves. For A1 and A2 data sets,
kNN and LOF also show high ROC and perform on par
in terms of the PR curve as compared to deep learning-based
methods. It is mainly because of the relatively less complicated
time-series in these data sets, also the spikes are very big
in these time-series which are easily detected by distance-
based methods. For A3 and A4 data sets, deep learning-based
methods are way ahead of the traditional methods in terms of
both ROC and PR curves. The presence of trends, seasonality,
and change-points make these data sets hard for traditional
anomaly detection methods. These time-series characteristics
also cause low PR curve value in traditional anomaly detec-
tion settings. Deep learning-based anomaly detection methods



TABLE I
COMPARATIVE EVALUATION OF DIFFERENT ANOMALY DETECTION METHODS ON YAHOO WEBSCOPE AND NAB DATA SETS. THE AREA UNDER THE ROC

AND PRECISION-RECALL (PR) CURVES ARE PROVIDED IN THIS TABLE. THE HIGHEST SCORE PER DATA SET IS SHOWN IN BOLD.

kNN [12] LOF [13] COF [14] LOCI [15]
iForest

[16]

OC-

SVM [18]
PCA [20]

HBOS

[22]

XG-

Boost [24]

XG-

BOD [23]
AE [25] DeepAnT [28] FuseAD [29]

Y
ah

oo
W

eb
sc

op
e

A1 ROC 0.911 0.904 0.826 0.879 0.898 0.895 0.836 0.869 0.522 0.535 0.903 0.912 ± 0.010 0.917 ± 0.018

PR 0.755 0.665 0.466 0.260 0.710 0.705 0.672 0.571 0.516 0.517 0.740 0.648 ± 0.018 0.602 ± 0.011

A2 ROC 0.920 0.901 0.858 0.851 0.662 0.913 0.923 0.652 0.500 0.500 0.878 0.962 ± 0.006 0.982 ± 0.010

PR 0.742 0.742 0.671 0.150 0.435 0.733 0.698 0.434 0.503 0.503 0.719 0.881 ± 0.006 0.833 ± 0.008

A3 ROC 0.654 0.641 0.698 - 0.628 0.657 0.628 0.630 0.511 0.551 0.653 0.922 ± 0.007 0.976 ± 0.014

PR 0.264 0.251 0.309 - 0.380 0.265 0.165 0.382 0.486 0.472 0.227 0.829 ± 0.017 0.799 ± 0.009

A4 ROC 0.648 0.640 0.682 - 0.629 0.651 0.610 0.636 0.504 0.532 0.661 0.870 ± 0.007 0.935 ± 0.018

PR 0.203 0.201 0.260 - 0.235 0.200 0.175 0.270 0.485 0.419 0.196 0.642 ± 0.010 0.632 ± 0.008

N
um

en
ta

A
no

m
al

y
B

en
ch

m
ar

k
(N

A
B

)

Artificial

With Ano.

ROC 0.560 0.605 0.527 0.540 0.565 0.582 0.589 0.550 0.500 0.500 0.515 0.548 ± 0.010 0.545 ± 0.006

PR 0.449 0.419 0.356 0.340 0.353 0.415 0.350 0.405 0.609 0.609 0.290 0.209 ± 0.005 0.196 ± 0.003

Real Ad

Exchange

ROC 0.530 0.504 0.503 0.499 0.520 0.519 0.415 0.510 0.511 0.532 0.477 0.562 ± 0.004 0.590 ± 0.006

PR 0.146 0.003 0.171 0.143 0.139 0.143 0.120 0.149 0.396 0.215 0.134 0.156 ± 0.004 0.154 ± 0.001

Real AWS

Cloud

Watch

ROC 0.539 0.525 0.512 - 0.539 0.561 0.520 0.554 0.507 0.486 0.540 0.583 ± 0.006 0.572 ± 0.002

PR 0.211 0.189 0.209 - 0.240 0.241 0.193 0.267 0.466 0.345 0.333 0.197 ± 0.003 0.190 ± 0.007

Real

Know. Cause

ROC 0.632 0.578 0.493 - 0.647 0.637 0.596 0.641 0.519 0.544 0.613 0.608 ± 0.009 0.595 ± 0.012

PR 0.376 0.291 0.206 - 0.340 0.325 0.291 0.373 0.515 0.453 0.411 0.259 ± 0.011 0.236 ± 0.013

Real

Traffic

ROC 0.578 0.561 0.522 - 0.572 0.577 0.517 0.585 0.503 0.529 0.569 0.630 ± 0.009 0.620 ± 0.004

PR 0.363 0.296 0.291 - 0.324 0.333 0.290 0.338 0.570 0.544 0.377 0.269 ± 0.004 0.262 ± 0.004

Real

Tweets

ROC 0.524 0.521 0.526 - 0.553 0.550 0.478 0.520 0.511 0.524 0.539 0.551 ± 0.002 0.547 ± 0.001

PR 0.207 0.169 0.197 - 0.138 0.140 0.114 0.183 0.342 0.179 0.193 0.123 ± 0.123 0.119 ± 0.119

showed around 29% improvement in the ROC as compared
to the best traditional anomaly detection method (COF ) for
A3 data set and 25% improvement for A4 data set. There are
also noticeable improvements in terms of the PR curve for A3
and A4 data sets which actually shows the robustness of deep
learning-based methods in the streaming data. The PR curve
increased 34% in deep learning-based methods as compared
to XGBoost for A3 data set and 16% for A4 data set. In
terms of P@n metric, the same improvement trend is observed
for deep learning-based methods. For A4 data set, even an
improvement of 50% in P@n is observed in deep learning-
based methods. One downside of using deep learning-based
anomaly detection methods for this data set is a relatively high
inference time. Although the inference time of deep learning-
based methods is on par or even better than some statistical and
distance-based methods, it is not the minimum inference time.
For the Yahoo Webscope data set, PCA detects anomalies in
minimum time. In comparison with other traditional anomaly
detection methods, PCA performance is quite good. It’s ROC,
PR curve, and P@n is on par with other traditional methods,
but it is far more superior than others in terms of producing
results. LOCI turns out to be a bad choice for anomaly
detection because of its moderate results and very high time
complexity. Due to its high time complexity, we are unable to
report the results for all of the data sets.

The overall performance of all anomaly detection methods
is not very convincing on the NAB data set. It is not due to the
incompetence of these methods, but the labeling mechanism
used in this data set. For this data set, a mix performance
of anomaly detection methods is observed. There is no clear
winner for this data set as all methods perform on par. For

some domains of this data set, deep learning-based methods
perform better in terms of ROC, whereas the traditional meth-
ods perform better in terms of other evaluation metrics. For
this data set, HBOS provides anomaly results in minimum
time and kNN has maximum P@n in most of the cases.

VIII. CONCLUSION

The recent advancements in DL have also initiated the
development of deep learning-based anomaly detection meth-
ods. In this study, we have compared 13 anomaly detection
methods on two streaming data sets. Our contribution in this
study is the comparison and analysis of different anomaly
detection methods on streaming data sets. In other comparative
studies available in literature [7], the analysis of anomaly
detection methods is performed on the data sets which are
converted from image and signal domains. Furthermore, we
have included deep learning-based anomaly detection in the
comparison in addition to the commonly used distance-based
and density-based anomaly detection methods. The results
show that deep learning-based anomaly detection methods are
superior to other methods in most of the evaluation metrics for
the Yahoo Webscope data set. These methods perform way
better than other methods for time-series which have trends
and seasonality in them. In terms of time complexity, PCA
performed better than deep learning-based methods. For the
NAB data set, there is no clear winner because of the labeling
issue in this data set. For both data sets, LOCI is not a
good choice because of its high time complexity. In the future,
we aim to extend the comparison to other anomaly detection
methods on streaming data sets, especially the methods which
are performing good in the image modality.



TABLE II
COMPARATIVE EVALUATION OF DIFFERENT ANOMALY DETECTION METHODS ON THE BASIS OF PRECISION @ RANK n (P) AND THE INFERENCE TIME

(T). THE TIME IS REPORTED IN SECONDS. FOR EACH DATA SET, THE MAXIMUM P@n AND THE MINIMUM INFERENCE TIME ARE SHOWN IN BOLD.

kNN [12] LOF [13] COF [14] LOCI [15]
iForest

[16]

OC-

SVM [18]
PCA [20]

HBOS

[22]

XG-

Boost [24]

XG-

BOD [23]
AE [25] DeepAnT [28] FuseAD [29]

Y
ah

oo
W

eb
sc

op
e

A1
P 0.7275 0.6517 0.4645 0.2491 0.5278 0.6166 0.6678 0.2327 0.0000 0.0345 0.7387 0.5656 ± 0.0087 0.5340 ± 0.0015

T 0.0782 0.0025 1.8057 2155.1 0.0604 0.0074 0.0002 0.0245 0.0012 3.4775 0.0362 0.0457 0.0486

A2
P 0.7200 0.7200 0.6472 0.0835 0.0100 0.6700 0.6817 0.0000 0.0000 0.0000 0.7000 0.8738 ± 0.0045 0.8147 ± 0.0074

T 0.0757 0.0022 1.7474 2196.7 0.0560 0.0078 0.0003 0.0011 0.0011 3.4474 0.1563 0.0466 0.0491

A3
P 0.2570 0.2498 0.3136 - 0.1753 0.2579 0.1628 0.2030 0.0084 0.1052 0.2210 0.8136 ± 0.0190 0.7723 ± 0.0069

T 0.0907 0.0025 2.6382 - 0.0604 0.0108 0.0002 0.0012 0.0017 3.8734 0.3721 0.0608 0.0639

A4
P 0.2022 0.2012 0.2670 - 0.1207 0.2011 0.1731 0.0889 0.0306 0.0486 0.2029 0.6178 ± 0.0102 0.6122 ± 0.0003

T 0.0911 0.0026 2.5313 - 0.0624 0.0108 0.0003 0.0011 0.0017 3.8460 0.5825 0.0584 0.0607

N
um

en
ta

A
no

m
al

y
B

en
ch

m
ar

k
(N

A
B

)

Artificial

With Ano.

P 0.3302 0.3722 0.2637 0.3076 0.3654 0.3518 0.3469 0.3926 0.0000 0.0000 0.2544 0.1972 ± 0.0142 0.1882 ± 0.0033

T 0.2107 0.0105 9.4820 44322.9 0.0906 0.0341 0.0003 0.0002 0.0017 6.7487 0.3467 0.1336 0.1420

Real Ad

Exchange

P 0.1231 0.1213 0.0719 0.0877 0.1177 0.1228 0.0842 0.1274 0.0725 0.0724 0.0567 0.1641 ± 0.0044 0.1603 ± 0.0044

T 0.0913 0.0057 1.6342 1533.4 0.0671 0.0063 0.0003 0.0001 0.0022 2.7408 0.1607 0.0603 0.0664

Real AWS

Cloud Watch

P 0.2171 0.1718 0.1296 - 0.1792 0.1745 0.1998 0.1880 0.0574 0.0279 0.1391 0.1974 ± 0.0031 0.1901 ± 0.0080

T 0.2176 0.0088 10.549 - 0.0883 0.0417 0.0003 0.0002 0.0033 7.1031 0.4798 0.1407 0.1537

Real

Know. Cause

P 0.3375 0.2674 0.1131 - 0.2881 0.3056 0.2848 0.3368 0.0716 0.0876 0.1115 0.2705 ± 0.0144 0.2544 ± 0.0118

T 0.4998 0.0168 101.82 - 0.1612 0.3609 0.0004 0.0003 0.0060 20.2553 1.3271 0.2830 0.2997

Real

Traffic

P 0.3746 0.3159 0.2740 - 0.3126 0.3217 0.2643 0.3843 0.0255 0.0700 0.1646 0.2493 ± 0.0041 0.2495 ± 0.0019

T 0.1253 0.0038 3.3476 - 0.0718 0.0124 0.0003 0.0002 0.0014 3.7763 0.3248 0.0888 0.0946

Real

Tweets

P 0.3004 0.2331 0.2204 - 0.1633 0.1644 0.1480 0.2322 0.1937 0.1616 0.0960 0.1485 ± 0.0024 0.1416 ± 0.0015

T 0.9121 0.0734 155.90 - 0.2242 0.6048 0.0004 0.0003 0.0160 34.7278 2.4480 0.4569 0.5019
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