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Abstract— Flexible adaptation of learning strategy depending
on online changes of the user’s current intents have a high
relevance in human-robot collaboration. In our previous study,
we proposed an intrinsic interactive reinforcement learning
approach for human-robot interaction, in which a robot learns
his/her action strategy based on intrinsic human feedback
that is generated in the human’s brain as neural signature
of the human’s implicit evaluation of the robot’s actions. Our
approach has an inherent property that allows robots to adapt
their behavior depending on online changes of the human’s
current intents. Such flexible adaptation is possible, since robot
learning is updated in real time by human’s online feedback.
In this paper, the adaptivity of robot learning is tested on eight
subjects who change their current control strategy by adding a
new gesture to the previous used gestures. This paper evaluates
the learning progress by analyzing learning phases (before and
after adding a new gesture for control). The results show that
the robot can adapt the previously learned policy depending
on online changes of the user’s intents. Especially, learning
progress is interrelated with the classification performance of
electroencephalograms (EEGs), which are used to measure the
human’s implicit evaluation of the robot’s actions.

I. INTRODUCTION

Intuitive interaction and collaboration between human and
robot has a high relevance in real-world robotic applications.
Especially the use of human feedback is an interesting
approach in robot learning. In most cases, explicit human
feedback has been used for additional communication with
a robot [1]-[3] or for online improvements of a reward
function, in which the predefined reward function was opti-
mized online based on the human’s explicit feedback (e.g.,
ratings) on the robot’s behavior [4], [5]. However, the pre-
configuration of evaluation criteria on robots’ behaviors
before online application (reward shaping) is challenging
for complex and dynamic task situations. Further, even for
less complex task situations, humans’ explicit evaluations on
robots’ behavior are straightforward only for clear situations,
in which human can give a best or worst rating (e.g., 1 point
or 10 points) on the robots’ task performance. In cases of
more or less average task performance (e.g., between 4 and
6 points), a human needs deeper consideration and more
decision time (e.g., more time to give 6 points compared to 1
point or 10 points) on the robot’s task performance. Hence,
the use of explicit human feedback is limited in complex
task situations and is not always the best option for specific
applications. In contrast, the use of implicit human feedback
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is a promising approach in complex robotic tasks, since
intrinsic human evaluation can be used without predefining a
reward function beforehand. In recent studies, implicit human
feedback, e.g., signals from the electroencephalogram (EEG)
have been used for brain-computer interfaces and human-
robot interaction [6], [7].

In our previous studies [7], we tested the feasibility to
use EEG-based reinforcement signals in real robot applica-
tions. Our approach called “intrinsic interactive reinforce-
ment learning” enables a robot to learn human gestures by
interacting with a human (Fig. 1-c). A subject performs
a certain gesture and the robot perceives gesture features,
which are provided by the recording device called Leap
Motion [8]. In the first run (trial), the robot randomly
chooses an action based on the observed current context
(human gesture) and executes the selected action. The human
observes the robot’s action and gives feedback in form of
EEG, which is intrinsically generated in the human’s brain
as neural signature of the human’s implicit evaluation on the
robot’s action. The robot receives human feedback as reward
and computes an action strategy (policy) for the second run
based on the reward that is given to the chosen action in the
first run. In this way, the robot updates the current policy for
each run and tries to build an optimal policy by collecting
experiences. In the end, the robot learns correct mappings
between human gestures and robot’s actions (i.e. correct
gesture-action pairs).

In our human-robot interaction scenario, an implicit eval-
vation of each observed action of the robot is intrinsically
generated in the human brain which is measured on the
surface of the subject’s head using EEG technique. The rel-
evant EEG component in our application is the error-related
potential (ErrP), which is evoked when the subject observes
unusual or wrong actions of a robot [9]-[13]. However, ErrP
detection is challenging for continuous actions, since the
onset of human perception on wrong actions of the robot is
unknown and can also vary between different actions within
the same subject or between subjects within the same robot’s
action. Hence, the use of multiple sliding windows on a
continuous action of the robot has shown to be a good option
for ErrP detection as investigated in our previous study [7].
Here, we could show that the use of two time windows (Tab.
I) improved the performance of ErrP detection compared
to the use of a single time window. Although the use of
multiple sliding windows is a good option, we assumed that
the ErrP detection performance is crucial in the beginning
of the learning phase. Hence, in our previous study, we pre-
trained the learning algorithm by randomly using one, two, or



three gesture-actions pairs before online applications to avoid
consecutive occurrence of errors in the initial learning phase
[7]. In this paper, we tested our approach without pre-training
the learning algorithm. For evaluation, we recorded both
learning conditions (pre-training/no pre-training) from the
same subjects and compared the pattern of learning progress
between both learning conditions. Further, this work analyzes
the correlation between ErrP-classification performance and
learning performance, which can be differently expressed
depending on the learning condition.

In the proposed human-robot interaction scenario, the
subjects determine gesture meaning (human intent) and the
robot learns to choose actions that are best assigned to the
current human intents based on humans intrinsic feedback.
Hence, when the subjects change previous gesture mapping
or add a new gesture, the robot can relearn new assignments
of gestures or integrate a newly added gesture meaning in
the previous accumulated knowledge (policy). In this way,
the robot can adapt its learning strategy according to online
changes of the current human intent. In this study, this
adaptivity of robot learning was tested on eight subjects
who added a new gesture meaning (a new human intent)
while online learning/application. For evaluation, we ana-
lyzed learning progress by comparing learning phases (before
and after adding a new gesture) to determine how learning
performance is affected by adding a new gesture. Learning
progress was also analyzed depending on learning condition
(pre-training/no pre-training) to find how differently warm-
start learning (pre-training) and cold-start learning (no pre-
training) affect learning progress.

II. METHODS

A. Experiment setup

1) Observation scenario: Figure 1-a shows the obser-
vation scenario, which is used to record training data to
build an ErrP decoder. In this scenario, the subjects do not
interact with robot, since human gestures and robot’s action
selections are already preprogrammed. A hand gesture is
displayed to the subjects as a word (left, right, forward, or
upward) on the monitor, which is located on the left side of
the robot. A feature vector of the displayed gesture is sent
to the pseudo-learning algorithm, where action selections
are preprogrammed (1). The selected action is sent to the
robot (2) that executes the selected action (3). The subjects
observe the robot’s action (4) and evaluate the correctness
of the robot’s action in form of EEG (5). Two different
kinds of markers were written in EEG data for offline
post-hoc analysis: gesture markers and action markers. The
comparison between gesture markers (e.g., gesture: left) and
robot’s action markers (e.g., action: left) enables to evaluate
the correctness of robot’s actions (e.g., correct action), which
is served as actual label (Tab. I-a) for evaluation on predicted
label of an ErrP decoder (e.g., ErrP is detected — wrong ac-
tion, Tab. I-c, i.e., false positive, Tab. I-e). Note that positive
class refers to wrong action. The reason for preprogramming
is to reduce the recording time of EEG data.

2) ErrP decoder: A classifier is trained on data that is
recorded in the observation scenario (Fig. 1-a). The trained
classifier (Fig. 1-b) is used to detect ErrPs for each single
action of the robot in the interaction scenario (Fig. 1-c).

3) Human-robot interaction scenario: As shown in Figure
Ic, a subject performs one of four gesture types (left, right,
forward, and upward), which is further sent to the learning
algorithm as human intent (1). The learning algorithm selects
an action based on the current context (human gesture),
which is further sent to the robot (2). The robot executes the
selected action (3). The human observes the robot’s action
(4) and gives his/her evaluation on the correctness of robot’s
action in form of EEG (i.e., ErrP is detected or not) to the
robot (5). The robot updates an action strategy (policy) based
on human feedback, which is used as reward in reinforcement
learning (6). ErrPs are detected online for each single action
of the robot. For a single action of the robot, two decisions
are made from each sliding window (Tab. I-b1, b2), but one
decision is used as reward for learning algorithm (Tab. I-c,
e), which receives 1 for correct actions (NoErrP) and —0.25
for wrong actions (ErrP).

In contrast to the previous application [7], the subjects
are instructed to add a new gesture after performing three
gestures (left, right, forward) for a while. An acoustic signal
is given to the subjects after the first 30 trials to avoid
counting the number of trials while interacting with the robot.
However, the subjects can freely determine the time when
to add a new gesture after the acoustic signal. Hence, the
onset of new gestures is varied between subjects. Further,
two learning conditions are tested in the presented study:
(a) In the warm-start learning condition, one or two gesture-
action pairs is/are pretrained before online learning; (b) In
the cold-start learning condition, gesture-action pairs are not
pretrained before online learning. All subjects are instructed
to start with the warm-start learning condition.

B. Dataset

Eight subjects (2 females, 6 males, age: 27.5 £ 6.61
years, right-handed, normal or corrected-to normal vision)
participated in this study. The experiments were carried out
in accordance with the approved guidelines. Experimental
protocols were approved by the ethics committee of the
University of Bremen. Written informed consent was ob-
tained from all participants that volunteered to perform the
experiments.

For each subject, we recorded six datasets to train an ErrP
decoder and three datasets for online learning. Six datasets
that were recorded from the observation scenario (Fig. 1a)
were used for training a classifier to detect two distinct
classes (ErrP/no ErrP), which are correlated with each correct
and wrong action of the robot. Each dataset contained 80
correct and 10 wrong actions. The trained classifier (Fig 1b)
was used to detect ErrPs for each single action of the robot
during the online learning session (Fig lc). In the online
learning session, each dataset contained 90 trials for all
subjects except for two subjects who performed 120 trials
and 60 trials respectively. The subject-specific differences



TABLE I
USE OF ERRP DETECTION AS REWARDS IN LEARNING ALGORITHM.

(a) Actual label (comparison between gestures and actions) correct correct wrong wrong
(bl) Prediction from the first time window (ErrP decoder) NoErrP NOErrP | ErrP | ErrP NoErrP NoErrP | ErrP | ErrP
(b2) Prediction from the second time window (ErrP decoder) NoErrP ErrP | NoErtP | ErrP NoErrP ErrP | NoErrP | ErrP
(c) Predicted label (one decision from two predictions (b)) NoErrP (correct) ErrP (wrong) NoErrP (correct) ErrP (wrong)
(d) Rewards used for learning algorithm (online learning) 1 -0.25 1 -0.25
(e) Evaluation on ErrP detection (offline post-hoc analysis) TN FP FN TP
(a) observation scenario (b) (c) human-robot interaction scenario
(recording of training data for ErrP decoder) (online learning)
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Fig. 1.

between the total numbers of trials were taken into account
for evaluation and the results are reported in percentage. In
online learning, the ratio between correct and wrong actions
varied between subjects, since learning performance depends
on the quality of reward, i.e., ErrP-detection performance
between subjects.

C. EEG recording, preprocessing and classification

EEGs were continuously recorded using the actiCap sys-
tem (Brain Products GmbH, Munich, Germany), in which 64
active electrodes were arranged in accordance to an extended
10-20 system with reference at electrode FCz. Impedance
was kept below 5kQ. EEG signals were sampled at 5kHz,
amplified by two 32 channel Brain Amp DC amplifiers
(Brain Products GmbH, Munich, Germany), and filtered with
a low cut-off of 0.1Hz and high cut-off of 1kHz. The
EEG data was analyzed using a Python-based framework
for preprocessing and classification [14]. The continuous
EEG signal was segmented into epochs from —0.1s to 1s
after the start of the robot’s action for each action type
(correct/wrong trial). Two sliding windows were used for
the same robot’s action. All epochs were normalized to
zero mean for each channel, decimated to 50 Hz, and band
pass filtered (0.5 to 10 Hz). The xXDAWN spatial filter [15]
was used to enhance the signal-to-noise ratio and 8 pseudo
channels were obtained after spatial filtering. Features were
extracted from two windows (8 pseudo channels): [—0.1s
to 0.6s, Os to 0.7 s]] and normalized over all trials. A total
of 280 features (8 pseudo channels x 35 data points = 280
for each window) were used to train a classifier. A linear
support vector machine (SVM) [16] was used to classify
correct and erroneous trials. The cost parameter of the SVM
(i.e., regularization constant [17]) was optimized using a
gird-search with predetermined values [10% 1071, ..., 10797,
which was evaluated by a stratified five-fold cross validation.

Experiment setup: (a) observation scenario, (b) ErrP decoder, and (c) human-robot interaction scenario. Details, see text.

D. Gesture recording and robot arm (COMPI)

The Leap Motion [8] system was used to record hand ges-
tures. A stereo image is generated by using two monochro-
matic infrared cameras. The positions of hand and finger
bones can be detected in X, y, and z coordinates relative
to the sensor. We used the x, y, z components of the palm
normal vector and a value from O to 1, which describes how
far the hand is opened or closed. Ten samples (length of
100ms) were recorded per gesture and averaged. Gesture
feature vectors were used as inputs (human intent) for the
learning algorithm. The learning algorithm selects actions,
which are sent to a six degree of freedom (6-DOF) robotic
arm called COMPI [18], which was developed at our institute
(RIC, DFKI). Six predefined actions (left, right, forward,
upward, and back to start) were implemented in joint space,
which were triggered from the learning algorithm.

E. Learning algorithm

We used a contextual bandit approach as a variant of
reinforcement learning, in which only one action is selected
per episode. The contextual bandit approach is well suited for
our human-robot interaction scenario, in which a robot learns
to choose the action which is best assigned to a gesture.

In LinUCB [19], which is given in algorithm 1, one
context x; is given for each discrete time point ¢. The agent
observes the current context, chooses the action that is best
assigned to the given context, and finally observes the reward
that is given to the chosen action. In the first run, the
robot randomly chooses an action after observing the current
context and the payoff is calculated for the second run based
on the reward that is given to the chosen action in the first
run. From the second run on, the agent chooses the context-
action pair (x;,) with the highest payoff (F; ,) and observes
the reward r; that is given to the chosen context-action pair



(line 11 in algorithm 1). Accordingly, action space (A,;) and
context space (b,;) are updated (line 12, 13 in algorithm 1).

Algorithm 1. LinUCB [19]

0: Inputs: o € R

1: fort =1,2,3,...,T do

2:  Observe features of all arms a € <7: x;, € RY

3: forall a € o do

4 if a is new then

5: A, < I; (d-dimensional identity matrix)
6 by < 0441 (d-dimensional zero vector)
7 end if

8: 0 — A7 b,

9: Pa éTx,,,a + o \/x,TAglx,,a

10:  end for

11:  Choose arm a; = arg max,c p, With ties broken
arbitrarily and observe a real valued payoff r;

120 Agp < Agy + Xt x,Tﬂr

13: baJ — bu’[ + 1 xht’l,

14: end for

For computation of payoffs, the agent counts how often
each context-action pair (x;,) was chosen in the past and
calculates its mean value and the corresponding upper confi-
dence interval (UCI). Finally, the so called upper confidence
bound (UCB), i.e., payoff is computed as the sum of the
mean value and its UCIL Payoffs are computed for each
context-action pair (line 9 in algorithm 1) and the reward
is given only to the chosen context-action pair (line 11 in
algorithm 1). The UCI values of all context-action pairs are
high in the beginning of learning phase and becomes lower
when they are chosen more often. Hence, the mean value is
more crucial for achieving a high payoff than UCI. For this
reason the context-action pair that was chosen more often in
the past will further on be chosen in the future (exploitation).
However, the context-action pair that was seldom chosen
in the past is also chosen due to a high value of UCI
(exploration). Such a context-action pair has a low mean
value, but a high UCI value, which leads to a high payoff.
The degree of exploration is determined by the parameter o
(line O in algorithm 1). When choosing a high value of «,
the UCI value increases, since o is multiplied with the UCI
value (line 9 in algorithm 1), and the agent explores more
frequently.

In our application, a human performs a certain gesture
(context) and the robot tries to learn the action that is best
assigned to the given gesture. Hence, the action selection of
the robot depends on the value of payoff of gesture-action
pairs. When the right-right pair was often selected in the
past, the right-right pair has a high payoff. That is true
when we use a predefined reward function. However, we used
the outputs of ErrP decoder. Hence, the reward should be
correctly given to the robot (i.e., ErrP classification should be
correct) to learn correct gesture-action pairs. Otherwise, the
robot learns wrong gesture-action pairs due to high payoffs.
In this study, the exploration parameter &« was empirically
determined based on the previous data [7]. However, the
determined o value is not perfect for individual applications
of the presented study, since the pattern of gesture choices is
biased between subjects. For example, some subjects mostly

performed two types of gestures (e.g., left, right), since they
were instructed to freely choose any gesture. In this case,
the mean values of two gesture-action pairs (left-left pair and
right-right pair) can be increased and their UCI values can
be reduced with increased trials. Hence, the agent can learn
the less often chosen gesture-action pairs (forward-forward
pair, upward-upward pair) by exploration.

F. Data analysis

1) Robot’s learning performance: As performance metric,
we used the number of wrong actions of the robot (i.e., wrong
mappings between human gestures and robot’s actions):
mapping errors. First, we calculated the number of mapping
errors in the whole learning process and compared them
between both learning conditions to find out the effect of
the learning condition on the whole learning performance
(Fig. 2-al). Second, we analyzed how the learning process
is affected by adding a new gesture. To this end, we grouped
the whole learning process in three learning phases and
compared them for each learning condition (Fig. 2-a2).

o First learning phase (before adding a new gesture) [start-1/3]

o Second learning phase (after adding a new gesture) [1/3-2/3]

« Final Learning phase [2/3-end]

We also compared the number of mapping errors between
both learning conditions for each learning phase to analyze
the effect of the learning condition on the learning perfor-
mance for each learning phase (Fig. 2-a2). Finally, the learn-
ing progress was analyzed for individual datasets to visualize
different patterns in the learning progress depending on the
learning condition (Fig. 3).

2) ErrP-detection performance: The outputs of ErrP de-
coder were analyzed both in the whole learning process
(e.g., Fig. 2-bl) and in each learning phase (e.g., Fig. 2-
b2). As performance metric, we used the number of false
positive (FP), false negative (FN), true negative (TP), and
true positive (TP), and ErrP misclassifications (FP U FN).

o ErrP is detected although the robot’s action is correct (FP)

o ErrP is not detected although the robot’s action is wrong (FN)

o ErrP is detected when the robot’s action is wrong (TP)

e ErrP is not detected when the robot’s action is correct (TN)

3) Statistical analysis: A one-way ANOVA was per-
formed with learning condition (pre-training/no pre-training)
as an independent variable to compare the learning perfor-
mance between both learning conditions in the whole learn-
ing process (Fig. 2-al). For the analysis of learning progress,
a two-way repeated measures ANOVA was performed with
learning phase (three levels of learning phase) as a within-
subjects factor and learning condition (pre-training/no pre-
trianing) as a between-subjects factor (Fig. 2-a2). Dependent
variable of both analyses was the robot’s performance (map-
ping errors). Two post-hoc analyses were performed for two
independent variables (learning condition/learning phase):
(1) comparison of learning performance between three learn-
ing phases for each learning condition and (2) comparison of
learning performance between both learning conditions for
each learning phase. For multiple comparisons, Bonferroni
correction was performed. Note that the sample size was



O no pre-training (cold-start learning)

pre-training (warm-start learning)

100 100 | 100 100 100 | 100 1 100 100 | 100 100 100 100
90 90 90 90 90 90 90 920 90 920 90 1 90
80 80 X80 X80 80 80 | 80 80 80 80 80 80
R0 =70/ g7 £70 70 70 701 70 70 70 70 | 70
S 60 S 60 | 60 T 60 —60 .60 601 .60 — 60 — 60 _eo+ — 60 T
5 5 < = & & 2 & 2 8 g &
950 8’50 §50 §50' E50 E50 &50 &50 &50 &50 250' Z50
g 40 g 40 g 40 Tzh) 40 40 1 40 401 40 40 40 F 40 1 =40
g a0 + 230 4) + E30{, E30 4} + 30 30 30 30 30 30 30 30
L, lb e 9
20 20 1 5 20 1 5 20 % 20 + 20 + 4} + 20 1 20 o 20 ¢ 20 ,l, (l) 20 20
10 10 10 10 10 4 10 10 (-] 104, © © 10 10 P 10 10
T
0 0 - 0 - 0 0 0 0- 0- 0- "
all 2oy all 2P all o] all 20 all 20 all 207
trials ol trials ol trials to? trials to? trials Lol trials OIS
m:{) (ﬂ,\_Q = s = s = g =
% A % A % T A % T A % T A % T o
LP LP LP LP LP LP
(1) () (1) () (1) (2 (1) () (1) (2 (1) ()
(a) mapping error (b) ErrP misclassification (c) FN (d) FP (e) TP (f) TN
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process (all trials) and in each learning phase (start-1/3, 1/3-2/3, 2/3-end) for both learning conditions (no pre-training, pre-training). LP: learning phase.
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Fig. 3. Learning process in individual datasets in both learning conditions.
Mapping errors that are accumulated with increased robot’s actions (trials)
are depicted in the y-axis and the number of trials is depicted in the x-axis.

unequal for learning condition, since one subject ended the
experiment before recording data in the cold-start learning
condition. For this reason, the independent variable learning
condition was considered as between-subjects factor in the
two-way repeated measures ANOVA. The same statistical
designs were used for evaluation of ErrP misclassifications
(FN U FP), EN, FP, TN, and TP.

ITI. RESULTS AND DISCUSSION
A. Robot’s learning performance (mapping errors)

Figure 2-al shows the comparison between both learn-
ing conditions in the whole learning process. As expected,
the learning performance was significantly improved in the
warm-start learning condition [Fj35 = 11.28, warm-start
learning vs. cold-start learning: p < 0.003]. Figure 2-a2
shows (1) the comparison between three learning phases for
each learning condition and (2) the comparison between two
learning conditions for each learning phase.

1) Comparison between three learning phases: In the
warm-start learning condition (pretraining), the number of
mapping errors was already small in the end of the first
learning phase. However, the number of mapping errors was
slightly (but not significantly) increased immediately after
adding a new gesture [start-1/3 vs. 1/3-2/3: p =n.s.] and was
again slightly (but not significantly) decreased in the final
learning phase [2/3-end vs. start-1/3: p = n.s.]. That means,
the robot achieved a high performance already in the end of
the first learning phase and the learning performance was not
significantly varied between three learning phases, although
the learning performance was slightly decreased immediately
after adding a new gesture and was later slightly increased
with more trials after adding a new gesture.

In contrast, we observed a different pattern of the learning
progress in the cold-start learning condition. The number of
mapping errors was very high in the first learning phase.
However, the number of mapping errors was significantly
decreased even after adding a new gesture [start-1/3 vs. 1/3-
2/3: p < 0.001, start-1/3 vs. 2/3-end: p < 0.01] and was later
slightly (but not statistically significant) increased in the final
learning phase [1/3-2/3 vs. 2/3-end: p = n.s.]. That means,
the learning progress was very slow during the first learning
phase. However, the learning performance was significantly
improved with increased trials even after adding a new
gesture, since the learning algorithm collected more trials for
the previous learned three gesture-action pairs in the second
learning phase compared to the first learning phase. This
indicates that the amount of experience (trials) has a higher
impact on learning progress in the cold-start compared to the
warm-start learning condition. The slight (but not statistically
significant) reduction of learning performance in the final
learning phase indicates that more experiences are needed to
achieve a high learning performance when a new gesture is
added. Especially, the substantial improvement of learning
performance between the first and final learning phase was
observed only in the cold-start learning condition.



2) Comparison between both learning conditions: In the
first learning phase, we found a significant reduction of
mapping errors for the warm-start compared to cold-start
learning condition [start-1/3: no pre-training vs. pre-training:
p < 0.001]. In the second learning phase, the number of
mapping errors in the cold-start learning condition was
radically reduced so that there was no significant difference
between both learning conditions [1/3-2/3: no pre-training vs.
pre-training: p = n.s.]. In the final learning phase, we again
observed a significant difference between both learning con-
ditions: the number of mapping errors was slightly reduced
for the warm-start learning condition, whereas the number
of mapping errors was slightly increased for the cold-start
learning condition [2/3-end: no pre-training vs. pre-training:
p < 0.021]. In summary, the difference between learning
conditions was reduced, when the learning algorithm of
the cold-start learning condition collected more experiences
for three gesture-action pairs (no difference between both
learning conditions in the second learning phase). However,
this difference occurred in the final learning phase, since the
collected experiences on a new gesture-action pair were not
yet sufficient for the cold-start learning condition.

3) Individual datasets as examples: Figure 3 shows the
learning process in individual datasets as examples. In the
cold-start learning condition (no pre-training), the number
of mapping errors was very high in the beginning of the first
learning phase, but reduced after the first learning phase. The
learning performance was stable although a new gesture was
added, which indicates that the collection of more experience
reinforces the whole learning process. Further, the number of
mapping errors was not rapidly increased after adding a new
gesture. In the warm-start learning condition (pre-training),
the number of mapping errors varied in a small range. The
number of mapping errors was already small in the beginning
of the first learning phase and increased immediately after
adding a new gesture and again reduced with increased trials.

B. ErrP-detection performance

Figure 4 shows the correlation between mapping errors
and ErrP misclassifications. In both learning conditions, ErrP
misclassifications highly correlated with mapping errors.
Especially, such correlation was higher for the cold-start
compared to the warm-start learning condition [no pre-
training: r = 0.89, pre-training: r = 0.68]. The results indicate
that learning performance was influenced by ErrP-detection
performance, in which the cold-start learning condition is
more dependent on ErrP-classification performance com-
pared to the warm-start learning condition.

Figure 2-bl shows ErrP-detection performance in the
whole learning process. The number of ErrP misclassifi-
cations was reduced in the warm-start compared to the
cold-start learning condition [F] 35 = 5.13,p < 0.031]. This
supports our assumption that pre-training can reduce ErrP
misclassification. The same pattern was shown for FN, but
not for FP [Fi35 = 6.73,p < 0.015, Fig. 2-cl; Fi35 =
0.22, p =n.s., Fig. 2-d1], which indicates that FN has a more
crucial impact on learning performance than FP.
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Fig. 4. Correlation between robot’s learning performance (mapping errors)
and ErrP classification for each learning condition

Figure 2-b2 shows ErrP-classification performance for
each learning phase. In the warm-start learning condition, the
pattern of ErrP-detection performance between three learning
phases was coherent with the pattern of the learning progress
(pre-training: Fig. 2-a2 vs. Fig. 2-b2). A similar pattern was
also shown for FN, FP, and TP. The pattern of TN was
reversed compared to the learning progress. This is expected,
since TN deals with correct detections of NoErrP (TN),
but not correct or wrong detections of ErrP (TP or FP)
including missing of ErrP detection (FN). In the cold-start
learning condition, the pattern of FN and TP is coherent with
learning progress (no pre-training: Fig. 2-a2 vs. Fig. 2-c2 and
Fig. 2-e2). Again, the pattern of TN was reversed compared
to learning performance, but the reversed pattern of TN is
consistent with the pattern of learning progress. The pattern
of FP did not differ from the warm-start learning condition.

In summary, the ErrP-classification performance had an ef-
fect on learning performance under both learning conditions
and this effect was stronger for the cold-start compared to the
warm-start learning condition. Further, the pattern of ErrP-
detection performance was coherent with learning progress.

IV. CONCLUSION

Our results show that the robot can learn his/her action
strategy based on human’s intrinsic feedback and also adapt
the previous learned knowledge (policy) according to online
changes of the subject’s intents. In this paper, we focus
on the effect of ErrP-classification performance on learning
performance, since ErrP-classification outputs are used as
rewards for the learning algorithm. However, the learning
algorithm also receives gesture features as inputs in our
human-robot interaction scenario. Sometimes, gestures are
not correctly recorded (e.g., subjects’s hands are out of
range of sensors) and thus features of the recorded gestures
(gestures that robot perceives) are not coherent with gestures
that the subjects intent to perform. Such gesture incoherence
between human and robot can affect ErrP classifications. In
the future, effects of interactions between different erroneous
inputs that were used for learning algorithm, i.e., interac-
tions between misinterpretation of human intent (gesture)
and human feedback (ErrP) should be investigated. Further,
our results suggest that approaches that allow for robust
learning without pre-training should be developed for online
applications.
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