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ABSTRACT
In this paper we present a software-based approach for collision avoidance that
can be applied in human-robot collaboration scenarios. One of the contributions
is a method for converting clustered 3D sensor data into computationally efficient
convex hull representations used for robot-obstacle distance computation. Based
on the computed distance vectors, we generate collision avoidance motions using
a potential field approach and integrate them with other simultaneously running
robot tasks in a constraint-based control framework. In order to improve control
performance, we apply evolutionary techniques for parameter optimization within
this framework based on selected quality criteria. Experiments are performed on a
dual-arm robotic system equipped with several depth cameras. The approach is able
to generate task-compliant avoidance motions in dynamic environments with high
performance.

KEYWORDS
Collision Avoidance; Human-Robot Collaboration; Real-Time Robot Control;
Parameter Optimization

1. Introduction

Human-robot collaboration is currently of booming interest not only in research but
also in the industrial domain. The appearance of the first lightweight collaborative
robots ([1–3]) allowed to some extent the removal of the usual fences behind which
industrial robots were confined so far. The appearance of safety-rated sensors (e.g. [4])
enabled external monitoring of shared spaces and the assurance of safety by keeping a
minimum distance between robot and human. These approaches usually stop the robot
motion as soon as the sensors detect a violation of the minimum distance separation.
Despite being perfectly suited solutions for some applications, other scenarios require
a tighter human-robot cooperation (e.g. in shared assembly) and stopping the robot
would not be an efficient and practical solution. Thus, more elaborated algorithms
are required that enable robots to avoid unintended collisions by either finding escape
trajectories whenever possible or by briefly pausing the motion if a collision cannot be
prevented.

The focus of this paper is collision distance computation and avoidance control. Re-
garding the former,this work is based on the Kinematic Continuous Collision Detection
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Library (KCCD) for robotic self-collision avoidance [5]. We extend the library to also
allow distance computations between robots and unknown external objects. Further-
more, we provide a method for converting 3D point cloud data into computationally
efficient rigid body representations used by KCCD. Given the robot-obstacle distance
vectors computed by KCCD, we generate suitable escape trajectories for the robot
using repulsive potential fields. A particularly appealing way of integrating avoidance
behaviors with the actual robot task into a coherent control signal is constraint-based
robot control [6]. The principle here is that the robot is supposed to avoid collisions
with external objects (e.g. a human entering its workspace), while at the same time
executing its main task (e.g. following a trajectory) and other secondary tasks. While
constraint-based robot control offers a flexible and modular way of describing complex
robot tasks, the control solution is usually governed by a large number of parameters.
Since manual tuning of those parameter is time-consuming and error-prone, we in-
vestigate automatized methods to identify them. In particular, we apply evolutionary
techniques for parameter optimization based on a suitable set of performance indica-
tors. Experiments showing the feasibility of our approach are performed on a dual-arm
robot system.

In summary, this work presents the integration of the following original research
contributions:

• An extension of an existing collision distance computation method (KCCD) by
introducing (a) the possibility of taking into account external objects and (b) a
method to efficiently convert raw sensor data in form of point clouds into the
required format for the collision distance computation so that it can be used in
real-time applications.
• An approach for generation of optimal control parameters within a constraint-

based control framework based on an evolutionary algorithm, which provides
improved control performance compared to manual tuning

This paper is organized as follows. In Section 2.3, an overview of related research on
the topic is given. Section 3 illustrates the main contributions including the algorithm
for converting 3D point cloud data into convex hulls for collision distance computation
(section 3.2), the framework for constraint-based collision avoidance control (3.3) and
the parameter optimization methods based on evolutionary computation (3.4). The
experimental setup and results are described and discussed in Section 4, while Section 5
contains a short conclusion and outlook.

2. Related Work

2.1. Robot-Obstacle Distance Computation

Due to its fundamental importance in robotics, collision detection and avoidance has
been a long studied topic. One of the most interesting recent works is [7]. In the
presented approach, distances between obstacles and control points on the robot are
computed in depth image space, which is much faster than other distance evaluation
methods. Compared to this, we evaluate robot-obstacle distances in 3D space, which
is usually slower. However, it allows integration of multiple, heterogeneous sensors
that provide point cloud data. Furthermore, our approach is able to integrate multiple
additional constraints apart from collision avoidance and position control. Another
approach that uses convex hull presentations has been recently presented in [8]. How-
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ever, the approach rather focuses on motion planning than on reactive, task oriented
control as our work does.

The collision distance computation method in our work is based on the KCCD
library [5,9]. KCCD uses a compact and computationally efficient convex hull repre-
sentation of rigid bodies (see section 3.2 for details). In this work we adapt KCCD
in order to allow the inclusion of arbitrary external objects observed by sensor data,
which is not possible with the original approach.

2.2. Multi-Objective and Collision Avoidance Control

Regarding the creation of avoidance motions, a lot of methods are based on the concept
of artificial potential fields [10]. The work in [11], for example, combines a method for
real-time path modification and task-consistent dynamic control based on repulsive
potential fields. While the approach may generate task consistent avoidance motions,
it is based on 2D laser scanner information. Our approach on the other hand uses
3D point cloud data, which allows more complex collision avoidance scenarios, e.g.
between a human and robot.

Managing multiple tasks in redundant robots has been widely studied and first ap-
proaches came up in the early nineties [12]. When first humanoid robots were physically
available, the topic recurred under the name whole-body control and lots of approaches
have emerged within the last decade. The work in [13] generates torque-level motions
for complex robotic systems based on the concept of operational space control [14].
Another important approach, which forms the basis of our work for task consistent
collision avoidance, is the iTaSC-framework presented in [6]. This framework is imple-
mented on velocity level and can be used for sensor-based, reactive control of complex
robot motions. We adopted this approach in our work, because it is extremely flexible
and easier to implement than torque-based approaches as in [13], which require quite
precise knowledge of the robot dynamics. Apart from the aforementioned methods,
many approaches based on quadratic programming (QP) came up recently. In these
methods, task objectives are formulated as quadratic programs and a common solu-
tion is computed using numerical QP-solvers. In [15] such a multi-objective controller
is presented. The tasks are implemented in a strict hierarchy of quadratic programs
allowing equality and inequality constraints. The approach in [16] on the other hand
allows the implementation of both, strict and soft task priorities. Many more works
on this topic exists, a review can be found in [17]. Also, integrating collision avoid-
ance motions by using constraint-based robot control has been dealt with before, e.g.
by applying the stack of tasks method on a humanoid robot [18], using a sequence
of quadratic programs [19] or by adopting a torque-based approach for self-collision
avoidance [20].

The novelty of our work with respect to these approaches is that we extend the
concept of constraint-based robot control with machine learning techniques in order
to find optimal controller parameters, which are often difficult to obtain by hand.

2.3. Automatic Parametrization of Multi-Objective Controllers

Automatic parametrization of multi-objective controllers by using machine learning
has been considered before. In [21] a learning method for humanoid whole-body control
is presented. In particular, the approach tries to overcome task discrepancies using
reinforcement learning on the simulated iCub robot. In [22] on the other hand a method
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for learning soft task priority functions using evolutionary techniques is presented.
The approach is evaluated using a collision avoidance task on a single-arm industrial
manipulator. In [23] the authors present a method to learn strict task priorities based
on user demonstrations for bi-manual robot tasks like dual-arm reaching. Finally,
in [24] a framework for automatic derivation of mixture coefficients of a multi-objective
controller is described. The approach is applied for tasks like single-arm reaching in a
simulation of a humanoid robot.

All approaches mentioned above are either applied in a very restricted context,
only in simulation or for very simple robot tasks. Compared to that we are striving
for methods that can be applied to more general robot control problems, are able to
deal with large number of parameters and contexts and can be applied on real robots.

3. Real-Time Collision Avoidance based on Constraints

In this section we illustrate our approach for real-time human-robot collision avoidance
using constraints. Ideally, in a dynamic environment, a robotic system is supposed to
avoid obstacles without pausing its main task, but continue executing it if possible. By
using a constraint-based control approach a smooth integration of avoidance behaviors
and task goals can be achieved, as will be shown in the following sections.

3.1. 3D Sensor Processing

Our approach for obstacle detection is based on raw point cloud data. Since we use
RGB-D cameras as input, additional pre-processing is required to convert the raw
depth images into point clouds. In summary, the following sensor processing steps are
performed in advance to collision distance computation: (1) Background subtraction,
(2) Robot self-filtering, (3) Depth image to point cloud conversion and (4) Spatial
clustering. While we only show an overview in Fig. 1, a detailed description can be
found in [25]. The result of these processing steps are a number of 3D point clusters,
which describe the external objects in the vicinity of the robot. Each cluster typically
comprises a couple of hundred up to a couple of thousand 3D points, depending on
the size of the object. In the following section we describe a method for converting
these 3D point clusters into a convex hull representation understood by KCCD.

3.2. Real-Time Robot-Obstacle Distance Computation

For robot-obstacle distance computation, we use an extension of the KCCD library [5].
KCCD is able to evaluate distances between rigid bodies in real-time. Each body
is thereby represented by a convex hull enclosing a finite set of supporting points,
extended by a buffer radius r in all directions, see Fig. 2 for examples. For the sake
of simplicity the examples are in 2D, even though KCCD can generally deal with
3D volumes. Using this volume representation, arbitrary shapes can be approximated
as long as the number of support points is large enough. For example, a sphere can
be approximated with one support point and a buffer radius. More complex objects
require more points, which increases the computational complexity.

KCCD requires a formal model of all robots and collision bodies in the scene. For
this reason, it is unable to deal with unknown external objects that enter the workspace
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Figure 1.: Overview of the most important sensor processing steps: Top Left : Original
scene, Top Right : 3D point cloud, Bottom Left : Point cluster representing the external
object, Bottom Right : Convex hulls for collision distance computation.

of the robot. Here, we extend the KCCD software to allow inserting arbitrary KCCD
volumes at runtime and provide a method to efficiently convert 3D sensor data into
these data structures. As a starting point, we assume that sensor data is given as
a set of 3D points, which have been grouped using spatial clustering as described
in section 3.1. The goal is to find an optimal KCCD volume (supporting points and
buffer radius) for each external object. Optimal means here, that the volume covers
all initial 3D points from the given cluster, while comprising the minimal number of
KCCD supporting points.

At first we compute a convex hull to remove the inner points using the Qhull algo-
rithm [26]. Figure 3b shows the convex hull of a sample object. To reduce the number
of the remaining points, we developed Algorithm 1. First, the buffer radius r is set to
an initial value rinit, selected by the user. In our work we used rinit = 1e − 3. Now
we iterate through each point of the volume and create a simpler volume without this
point and the buffer radius. Afterwards we calculate the distance between this point
and the simpler volume, using the KCCD library. If the distance is zero or smaller,
the point is still covered by the simpler Volume. If, after one iteration loop, too many
points are left (N > Nmax), we increase the buffer radius and repeat the process.
Figure 3c shows the intermediate result after one iteration and Fig. 3d shows the final
result.

We track the collision objects over multiple sensor frames and use the collision
volume from the previous frame as starting point in order to deal with sensor noise.
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(a) Sphere with one point and buffer radius (b) Volume with three points and buffer radius

Figure 2.: 2D examples for KCCD volumes

(a) (b)

(c) (d)

Figure 3.: Illustration of the algorithm for point cloud to convex hull conversion: (a)
Clustered point cloud from a depth sensor (b) Convex hull (c) Intermediate result
after one iteration of Algorithm 1 (d) Final result.

Fur this purpose, we check which points are not covered by the collision volume of the
previous sensor sample and extend the volume respectively. Furthermore, we check
which points of the previous volume are too far away from the current volume and
remove them. The resulting collision volume is then used as a basis for Algorithm 1.
However, the algorithm considers only the currently visible 3D sensor data and does
not ”interpolate” missing visual information since this would require knowledge about
the original object shape. If parts of an object, which were invisible before, become
suddenly visible in the camera image, the algorithm will re-optimize the KCCD volume
to fit the new object’s shape.
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In general KCCD can represent any shape accurately given that the number of
support points is large enough. Nevertheless, there is a trade-off between accuracy
and computational effort. Since the conversion algorithm stops when (a) all points of
the point cloud are covered by the volume and (b) the number of support points is
less than the allowed maximum number of points, it sometimes tends to overestimate
the volume of objects, while saving computation time compared to a high-accuracy
approximation (see for example Fig. 9). Other methods like for example [27] can
compute distances between triangle meshes, which are a more accurate representation
of the original object shape. However, this accuracy comes with the expense of a much
higher computation time.

A possible improvement of the conversion algorithm could be to add another opti-
mization step which adapts the shape of the hull if the volume is strongly non-convex.
However, we found it in our case computationally too demanding when considering
the real-time requirements of the system. Also we consider the over-estimation of the
object volumes as non-critical in the case of human-robot collision avoidance since the
robot should maintain a considerable safety distance to any human in the workspace.
Especially with regard to the acceptance of collaborative robots in industrial environ-
ments a rather large safety margin will be beneficial.

The robot obstacle distance vectors evaluated by KCCD can be used to compute
suitable avoidance motions, which is described in the following section.

3.3. Task-Compliant Collision Avoidance Control

Robot control based on constrained optimization is a method that allows to control
complex robotic tasks based on constraints. The idea is to break down the overall
control problem into (prioritized) tasks and describe them as constraints to an online
optimization problem, whose solution represents the control signal for the robot. With
this approach avoidance behaviors for different parts of the robot, as well as multiple
other robot tasks can be controlled simultaneously and merged into a coherent control
signal.

In our constraint-based control framework we use a similar approach as in [6]. We
assign a motion generator, a controller and a constraint to each task. A motion gen-
erator defines the desired behavior of a task by providing for example a trajectory,
distance information or a set of waypoints. The controllers attempt to regulate this
behavior in task space, while the constraints describe the tasks as part of an opti-
mization problem. The solution of the optimization problem is a velocity-based robot

Algorithm 1 Point cloud to KCCD volume conversion
r ← rinit
while N > Nmax do

for all points ∈ volume do
simplerV olume← volume− point
d← computeDistance(point, simplerV olume)
if d ≤ 0 then
volume← simplerV olume

end if
end for
r ← r + rstep

end while
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d0 = 0.1 d0 = 0.3 d0 = 0.5

Figure 4.: Control output yx(d) of the collision avoidance controller (only x-axis) with
respect to the collision distance d for kp,x = 3 and different values of the maximum
influence distance d0

control signal, which is updated in every control cycle. Figure 5 shows an example con-
figuration of our framework, which can be easily extended by additional constraints
like e.g. joint position limits.

For controlling the pose of the robot in Cartesian space, we use a proportional
controller with the control law

y =

(
yt

yφ

)
= Kp

(
xr − xa

Ra · θω̂ar

)
, y ≤ ȳ (1)

where y ∈ R6×1 is a Cartesian twist (linear and angular velocity yt and yφ) repre-
senting the Cartesian control output, Kp ∈ R6×6 is a diagonal matrix containing the
6 feedback gain constants and ȳ ∈ R6×1 is a vector containing the maximum control
output for each dimension of the controller. The vectors xr ∈ R3×1 and xa ∈ R3×1

denote the reference and actual position of the controlled robot frame, the matrix
Ra ∈ R3×3 its actual orientation. The term θω̂ar ∈ R3×1 is the angle-axis representa-
tion of the rotation between actual and reference orientation of the controlled robot
frame1. This vector is transformed to the robot base frame by multiplying with the
actual orientation of the controlled robot frame Ra. Thus, the angular part of y ro-
tates the controlled robot frame from its current orientation to the given reference
orientation around an axis defined by ω̂ar .

For avoidance motions we use repulsive potential fields with the control law

y =

(
yt

03×1

)
y ≤ ȳ (2)

with

yt =

{
Kp

xa−x0

d S(d), d < d0

0, else
(3)

1The angle-axis notation represents a rotation between two coordinate frames by a single angle θ ∈ R and a

unit vector ω̂ ∈ R3×1 [28].
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Figure 5.: Overview of the constrained-based approach for collision avoidance.

where xa ∈ R3×1 and x0 ∈ R3×1 are the actual robot position and the position of
the potential field center, d0 ∈ R the maximum influence distance of the potential field
and Kp ∈ R3×3 is a diagonal matrix containing the 3 feedback gain constants. The
term S(d) is a sigmoid function of the distance d = ‖xa − x0‖ between the robot and
the potential field center:

S(d) =
(

1 + e
α(1−2

d0−d

d0
)
)−1

(4)

with α = 6 having been chosen empirically. If the collision distance d becomes small
(d ≈ 0), the sigmoid term will be S(d) ≈ 1, since the exponential term in the sigmoid
function becomes small (e−6). Thus, for a small collision distance the entries in y ap-
proach the proportional gains in Kp multiplied by a direction vector: y ≈ Kp

xa−x0

d ,

where ‖xa−x0

d ‖ = 1. On the other hand, if the collision distance d is close to the
maximum influence distance d0 of the potential field (d ≈ d0), the exponential term
becomes large (e6) and S(d) ≈ 0. Thus, for d ≈ d0, the control output y ≈ 0. Fig-
ure 4 illustrates the development of the control output with respect to the computed
collision distance. We chose a Sigmoid function to generate the avoidance motions,
because it implements a smooth transition if the robot enters the influence sphere of a
potential field (in contrast to e.g. piecewise linear functions). Also, the value range of
Sigmoids is finite, which ensures a finite repulsive velocity and thus a more stable robot
behavior compared to having a reciprocal (or even squared reciprocal) dependency of
the repulsive velocity with respect to the robot-obstacle distance. Finally, the shape
of a Sigmoid function can be nicely adapted by adjusting the function parameters, in
this case d0 and α.

The output of each controller y1 . . .yN is represented in an equality constraint of
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the optimization problem

minimize
u

‖u‖

subject to

A1,w
...

AN,w

u =

y1
...

yN

 (5)

where u ∈ Rn×1 is the robot control signal2, n the number of robot joints, N is the
number of tasks and Ai,w = WAi ∈ R6×n is the weighted task Jacobian related to
the i-th task. The task Jacobian describes the relation between joint velocities and
task space velocities for the controlled robot frame (e.g. the robot’s end effector). The
term W ∈ R6×6 is a diagonal matrix containing the task weights w = (w1 . . . w6).
The weights can be used to balance the importance of the constraint variables. For
example, when controlling the pose of the robot in Cartesian space and the orientation
is not relevant, the corresponding task weights can be set to zero.

There are different ways to compute the solution of Eq. 5. In general, if the number
of linear independent constraint equations is less than the robot’s degrees of freedom,
the robot is said to be redundant with respect to the given task(s) and the redundancy
can be utilized to fulfill additional tasks or optimization criteria [28]. The work in [13]
for example resolves the robot redundancy by implementing a strict control hierarchy
using iterative Nullspace projections of physical, task and postural constraints. How-
ever, if the number of constraints is higher than the degrees of freedom of the robot,
such a method potentially fails, because some constraints cannot be considered in the
solution. A widely used method to overcome this problem is to use a weighting scheme
(task weights) to balance the importance of constraints. We prefer task weights here,
since they are more suitable for numerical optimization (see section 4.4) than strict
task priorities. Regarding the solution of Eq. 5 we first stack the weighted task Jaco-
bians A1,w, . . . ,AN,w into a single matrix A ∈ R6N×n and the control output vectors
y1, . . .yN into a single vector y ∈ R6N×1 as follows:

A =

A1,w
...

AN,w

 y =

y1
...

yN

 (6)

The solution of Eq. 5 can now be computed as u = A+y, where A+ denotes the
Pseudo Inverse of the matrix A. In the under-constrained case (n > 6N) the Pseudo
Inverse provides the solution that minimizes ‖u‖, while in the over-constrained case
(n < 6N) it provides an approximate solution that minimizes the error ‖Au− y‖. A
general method for computing the Pseudo inverse can be obtained by using singular
value decomposition in the following way. Let A = UΣVT be the singular value
decomposition of the real-valued matrix A, where U and V are the matrices with left-
and right-singular vectors, respectively. The matrix Σ is the singular value matrix,
whose main diagonal entries σi are the singular values of A. The Pseudo inverse of A
can now be computed as A+ = VΣ+UT . The inverse of the singular value matrix Σ
can be computed by taking its transpose and inverting the singular values. However,
if A is not of full rank, some singular values may approach zero and the resulting joint

2In our implementation, the control signal is a joint velocity
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d1
d2

x0,1
x0,2

xa ,1xa ,2

d0

Figure 6.: Computation of avoidance vectors according to Eq. 3. The potential field
center x0 and the corresponding control point x on the robot are assigned to the two
closest points on the collision volumes of obstacle and robot link, respectively. The
control vector y of the potential field controller points from the potential field center
to control point on the robot, pushing the corresponding link away from the obstacle.
The avoidance controllers are integrated as equality constraints of the form Au = y,
where u is the robot control signal in joint space and A is the Jacobian from the robot
base to the robot link containing the control point x.

velocities u approach infinity. To avoid such numerical instabilities we compute the
entries of the inverted singular value matrix as follows:

(Σ)+
ij =

{
σi

σ2
i +δ2 if i = j

0 else
(7)

The damping factor δ is determined automatically. It is set to zero when the smallest
singular value of A is higher than an empirically determined threshold. If one or more
singular values approach zero, the damping factor is set to a value λ > 0 as described
in [29].

The task weights introduce ”soft” task priorities, which means that the tasks are
not hierarchically organized as in [13], but the solution is computed as a weighted
combination of the tasks governed by the value of the corresponding task weights.
In the over-constrained case, this means that constraints with lower weight will be
represented less in the solution. As a simple example one might consider the case
where a single 6-DoF arm is commanded to two different poses Xa and Xb at the
same time. The problem is obviously over-constrained, an accurate solution does not
exist. Depending on the choice of the task weights the above method would provide
an approximate solution, where none of the two poses is reached, but a ”weighted
average” solution in between is assumed.

Now, we integrate robotic collision avoidance and task control into a continuous
control signal using artificial potential fields. We assign a constraint and an avoidance
controller to each relevant link of the robot. The potential field center x0 and the
corresponding control point x on the robot are assigned to the two closest points on the
collision volumes of obstacle and robot link, respectively. This choice is illustrated in
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Fig. 6. Using Eq. 3 we convert the safety distances, which actually represent inequality
constraints, into equality constraints of the form Au = y. The task Jacobians A are
computed from the robot base to the robot link, which is located within the influence
distance of an obstacle. The weights for the avoidance tasks are computed as follows

wi =

{
(d0 − d)/d0, d < d0

0, else
∀i (8)

The weights are zero if the robot is located far from any obstacle, so that the avoid-
ance behaviors do not interfere with the main task. When a robot link comes into
the influence distance of an obstacle, the weights gradually increase, implementing a
smooth transition between unconstrained and constrained robot motion. This way we
can smoothly integrate avoidance motions with other simultaneously running tasks.

However, the solution is governed by a rather large set of parameters, control gains
kp, saturation terms ȳ, maximum influence distance d0 of the potential field controllers,
as well as the task’s weights w. Manual selection and fine-tuning of these parameters
can be time-consuming, error prone and may lead to a sub-optimal solutions in the
end. To overcome these issues we developed a parameter optimization approach, which
is described in the following section.

3.4. Optimization of Control Parameters

We propose to apply evolutionary techniques to generate an optimal parameter set
for our constraint-based control framework. The advantage of using evolutionary tech-
niques for parameter optimization is that they nicely explore fitness functions with
local maxima, which is commonly the case when dealing with conflicting subtasks.
The disadvantage is that they usually require many evaluations of the fitness function.
Thus, we rely on simulation for generating training data.

Since constraint-based control tasks usually have multiple, possibly conflicting ob-
jectives, defining a global fitness function for optimization is not a straightforward
task3. In our case, avoidance behaviors might prevent reaching the reference position
of the manipulator. Typically, trading off the performance of the individual constraints
according to the overall task goal is required. In order to find a suitable fitness measure,
we evaluate combinations of simple criteria:

Steady State Error fss = S {‖e(tss)‖}

Percentage Overshoot fpo = S {‖Xmax −Xmin)‖}

Settling Time fst = S {tss − t0}

RMS Control Error frms = S
{∑tss

t=0 ‖e(t)‖
}

Min. Col. Distance fcd = S {dmin}

(9)

where e = ‖Xr−X‖ is the position control error, tss and t0 the settling and starting
time of the control action, and dmin the minimum distance to a collision object during
the control action. The term S is a Sigmoid function, which is used to confine the
possible values of the performance criteria to the interval [0..1].

3Note that we refer to offline optimization of the control parameters here, not to be mistaken for the online

optimization problem for generating a robot control signal as in Eq. 5
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KUKA LBR iiwa 14 R820
ASUS RGB-D cameras

Sensor PC Control PC

Left Arm

Right Arm

Figure 7.: Dual arm industrial robot system used as experimental platform

We assign a fitness function to each subtask. The global fitness function is defined
as the weighted sum of the individual fitness functions:

f = ξ

N∑
i=1

αif i (10)

where αi is the weighting factor for the i-th fitness measure and ξ = exp
(
−1−min(f i)

min(f i)

)
is a regularization term that punishes results with low values of individual fitness
functions. By using this term, solutions that represent a trade-off between different
subtasks will be favored compared to solutions where one subtask is fully achieved
while another subtask is completely ignored. As a result, the performance of the indi-
vidual objectives may degrade, which is however a desired effect since we are looking
for a trade-off between the different objectives.

4. Results

4.1. System Description

For evaluation of robotic skills required in human-robot collaboration scenarios, we
developed the system shown in Fig. 7, which is equipped with two KUKA LBR iiwa 14
R820 lightweight robots [1]. We attached 3 ASUS Xtion Pro Live RGB-D cameras [30],
which are used for detection of external objects in the proximity of the robot. The
control of the arms is performed on an industrial PC with Intel Core i7 4790K 4 x 4.00
GHz, while sensor processing runs on a standard desktop PC with Intel Core i7-2600
CPU 4 x 3.40 GHz. The overall system including the complete software framework is

13



(a) Coffee Mug
(b) Box

(c) Hand

Figure 8.: Enclosing KCCD volumes for different objects.

(a) Clustered point cloud (b) KCCD collision volume

Figure 9.: Human in the workspace scenario used for performance evaluation

described in [25] in more detail.

4.2. Real-Time Robot-Obstacle Distance Computation

4.2.1. Point Cloud to KCCD Conversion

Figure 8 shows point clouds of different objects and the enclosing KCCD collision
volumes computed by Algorithm 1. The algorithm is tuned for efficiency and not
supposed to perfectly match the exact shape of the underlying object, as particularly
well shown in Fig. 8c. However, for collision avoidance it is usually acceptable to
provide only a rough approximation of the true external object shape.

4.2.2. Computational Performance

We further evaluate the performance of our method for computing robot-obstacle
distance vectors in a ”human-in-the-workspace” scenario as shown in Fig. 9. In order
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Processing Step Single Camera 3 Cameras

(640 x 480 px) (320 x 240 px)

Background Subtraction 0.8870± 0.2032 0.3062± 0.0885

Self Filtering 7.5755± 0.9532 2.6589± 0.8263

Point Cloud Conversion 2.4813± 0.2823 1.4424± 0.6162

Clustering 9.6727± 1.5174 25.2576± 1.8769

Total (Preprocessing) 20.6165± 2.9561 29.6651± 3.4079

PC to KCCD Conversion 0.8846± 0.1773 1.7431± 0.3647

Distance Computation 0.2868± 0.3310 0.2742± 0.3315

Total (Distance Computation) 1.1714± 0.5083 2.0173± 0.6962

Table 1.: Mean computation time in ms ± single standard deviation for the respective
processing steps.

to compare with the work in [7] we select a single-camera setup with the same camera
resolution. Table 1 shows the mean computation time for the respective processing
steps. It can be seen that considering the computation of collision distance vectors,
we nearly achieve 1ms cycle time, which is comparable to the performance of the
depth space approach in [7]. On the negative side our method usually requires some
preprocessing in order to cluster the raw point cloud. This may take considerable
amount of time, although it has to be mentioned that the pre-processing steps used
here are not optimized for performance and can be considered optional to some extent.
For example self filtering is only required if the robot is actually visible in the camera
image. Furthermore, the performance loss is outweighed by the fact that our method
allows to easily integrate multiple, heterogeneous sensors that provide point cloud
data, whereas the approach in [7] operates on a single camera. The second column
of Table 1 shows the performance of the setup as illustrated in section 4.1. We use 3
RGB-D cameras in order to cover the complete workspace of the robot, while reducing
each camera’s resolution to limit processing time. Even with the three-camera setup,
the approach can be applied for real-time control.

Finally, we evaluate the relationship between the computation time for the robot-
obstacle distance calculations and the object size (indicated by the number of points
in the cluster), as well as the number of objects in the workspace. In our three-camera
setup external objects typically consist of a couple of hundred up to a couple of thou-
sand 3D points, while usually no more than 4 or 5 objects are located within the visible
workspace. Figure 10 shows that the computation time is approximately linear with
respect to the number of object points and also linear with respect to the number of
visible objects. It also shows that the algorithm can perform distance computations
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(a) Computation time vs. number of points
in point cloud cluster (single object)

(b) Computation time vs. number of objects
(equally-sized, box-shaped objects)

Figure 10.: Illustration of computation time (in ms) of point cloud to KCCD conver-
sion + collision distance computation. The error bars illustrate the double standard
deviation

with respect to multiple external objects with high performance.

4.3. Task-Compliant Collision Avoidance Control

In this section, we evaluate the principal functionality of the constraint-based frame-
work to generate task-compliant collision avoidance behaviors. We select a scenario,
where a single arm tries to follow a circular trajectory, while an obstacle is randomly
placed into the path of the end effector. For the trajectory following subtask, we use
the controller described by Eq. 1 and select the parameters for all degrees of freedom
as follows: Control gain kp = 1.5, maximum control output ȳ = 0.5, subtask weights
w = 1. For collision avoidance we use the potential field controller from Eq. 3. We
select a control gain of kp = 0.05, a maximum control output of ȳ = 0.5 and a max-
imum influence distance d0 = 0.5m. The weights of the collision avoidance subtask
are computed automatically according to Eq. 8. Results are illustrated in Fig. 11. It
can be seen that the end effector trajectory is followed until the robot approaches the
obstacle. In this case the weight of the collision avoidance subtask (red dotted line)
is increased, which makes the robot deviate from the target trajectory. However, the
transient behavior when entering the influence distance of the obstacle is not smooth,
because too aggressive control parameters have been chosen. This leads to repeated
activation and deactivation of the collision avoidance subtask in the transient zone,
a process that we refer to as ”recurrence behavior”. As discussed in section 3.4, pa-
rameter selection for constraint-based control systems is commonly a manual process,
which can be time-consuming and, as in this case, may lead to suboptimal results. We
therefore propose to apply automatized methods based on evolutionary optimization
to select proper control parameters.
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Figure 11.: Results on collision avoidance control. Left: Trajectory following behav-
ior. –: Desired end effector x-position, −−: Actual position, · · ·: Weight value of the
collision avoidance constraint (Eq. 8). Right: Snapshots taken from a video of the
experiment.

Xr

(a) Step Response subtask

Xr

(b) Keep Parallel subtask

d

(c) Avoid Collisions subtask

Figure 12.: Illustration of subtasks used in the experimental setup. The dotted white
lines indicate which parts of the robot are used for a subtask.

4.4. Optimization of Control Parameters

For parameter optimization within our constraint-based control framework we use a
genetic algorithm (GA) from the DEAP evolutionary computation framework [31].
The choice was motivated by the fact that the fitness function comprises multiple
extrema. Finding the global maximum in such a fitness landscape can be achieved by
using evolutionary optimization techniques like GA.

Given that GA’s typically require many computations of the fitness value, we use
the GAZEBO 7.0 simulator [32] for fitness evaluation. As experimental setup, we select
the scenario illustrated in Fig. 12. We apply a step input to the end effector of the right
arm (Step Response subtask). The end effector of the left arm shall move parallel to
the right arm (Keep Parallel subtask) and additionally avoid collisions with obstacles
(Avoid Collisions subtask)4. An obstacle is given by the vertical pole, which is in the
path of the left gripper. Its position is fixed and known in this case, since we do not
want perception errors to influence optimization. This experimental setup includes
many of the commonly encountered problems in constraint-based robot control, like
conflicting constraints, dual arm coordination and n > 6 degrees of freedom. Each

4We only consider collisions of the left gripper in the optimization. However, the solution can be extended to

include all links of the robot.
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individual encoded in the GA comprises the following parameters:
ksp ws ȳs

kkp wk ȳk

kap da0 ȳa

 (11)

The superscripts denote the three subtasks (step response, keep parallel and avoid
collisions), respectively. The parameters include the proportional control gains kp, the
subtask weights w, the maximum control outputs ȳ, as well as the maximum influence
distance d0 of the potential field controller (see Eq. 1 to 5 for explanation of the pa-
rameters). The task weights of the avoidance controller are computed automatically
according to Eq. (8), which is why they will not be optimized. Since Cartesian posi-
tioning and avoidance tasks have 6 and 3 degrees of freedom (DoF), respectively, we
actually have 6 · 3 + 6 · 3 + 3 · 3 = 45 free parameters. For simplification, we set the
parameters of all DoF of a subtask to the same value, which reduces this number to 9.
We use 100 individuals per generation and initialize them with random values within
sane bounds. The global fitness function for each experiment is computed according
to Eq. 10 as follows:

f = ξ · (αs · fs + αk · fk + αa · fa) (12)

where ξ is the regularization term and f i, i ∈ {s, k, a} the fitness measures for the
individual subtasks, which are chosen as follows

fs = (fss + fpo + fst)/3 αs = 0.2

fk = fRMS αk = 0.3

fa = fcd αa = 0.5

(13)

We compute the fitness of the Step Response subtask using the mean of three different
performance indicators, namely the steady state error fss, percentage overshoot fpo
and settling time fst of the position controller (see section 3.4). For the Keep parallel
subtask, we choose the root mean square control error, since the left arm should
follow the right arm during the complete motion as precisely as possible. For the
Avoid Collisions subtask, we select the minimum collision distance as fitness measure.
As it can be seen, we emphasize the Avoid Collisions (highest weight αa = 0.5) and
the Keep Parallel (medium weight αk = 0.3) subtasks. The latter makes sense when
e.g. carrying an object with both arms, which shall obviously not fall down.

Figure 13c shows the development of the individual fitness functions and the global
fitness during genetic optimization. The algorithm converges after approximately 10
generations. Given the fact that the constraints in our experimental setup are conflict-
ing (positioning vs. collision avoidance), an optimal achievement of all subtasks is not
possible. As a result, the optimizer may sometimes favor results where one subtask is
fully achieved, while the performance of another subtask goes to zero. This problem
is illustrated in Fig. 13a. Here, the optimization algorithm converges to a solution,
where the task weights of the Keep Parallel subtask tend towards zero (see Fig. 13b).
As a consequence, the right arm does not move at all, which leads to high fitness for
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(d) Task weights with regularization term

Figure 13.: Optimization results after 50 generations of the genetic algorithm. Devel-
opment of individual fitness measures and the global fitness. Development of subtask
weights of the Keep Parallel and the Step Response subtask

the Avoid Collisions subtask, zero fitness of Keep Parallel subtask and an average
overall fitness. The introduction of the regularization term in Eq. 10 avoids such kind
of situations by punishing results with low fitness values of the individual subtasks.
Figure 13c shows that a trade off between the values of the individual fitness values
is achieved and none of the performance functions converges to zero. The resulting
parameter set after genetic optimization is shown in Table 2. We compare this param-
eter set with our previously used parameters that have been found by manually tuning
the individual subtasks one at a time. The most prominent difference between the pa-
rameter sets is the proportional gain value of the Avoid Collisions subtask, which
ends up with a very low value after optimization. This results in different behavior,
especially when entering the influence distance of an obstacle. Figure 14a shows the
step response of the left end effector in the proximity of the obstacle. Obviously the
control gains for the manually selected parameter set have been chosen too high for
this specific scenario, which results in a suboptimal transient behavior. In our case,
the parameter optimization strategy automatically avoids this problem by minimizing
the overshoot and settling time and thus proposing a lower proportional gain for the
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Subtask Optimized Parameter Set

Step ksp = 2.651 ws = 1.000 ȳs = 0.361

Keep kkp = 1.578 wk = 0.919 ȳk = 0.371

Avoid ka
p = 0.001 da0 = 0.654 ȳa = 0.768

Subtask Manually Tuned Parameter Set

Step ksp = 1.500 ws = 1.000 ȳs = 0.200

Keep kkp = 2.500 wk = 1.000 ȳk = 0.200

Avoid ka
p = 0.100 da0 = 0.500 ȳa = 0.500

Fitness fs fk fa f

Optimized 0.956 0.600 0.611 0.347

Manual 0.618 0.600 0.615 0.314

Table 2.: Optimization results: Optimized and manually tuned parameter set. Indi-
vidual fitness measures fs, fk, fa and global fitness f for the respective parameter
sets

potential field controller. The fitness values for the individual subtasks and the global
fitness for both parameter sets are also shown in Table 2. As it can be seen, the Keep
Parallel and Avoid Collisions subtasks perform similarly for both parameter sets. The
Step Response subtask on the other hand performs much worse for the manually tuned
parameter set, which is due to the long settling time of the controller, as can also be
seen in Fig. 14a. Having found an optimal control parameter set in an automatized
manner like this, we will evaluate its quality in a human-robot coexistence scenario in
the following section.

4.5. Human-Robot Coexistence Scenario

We transfer the optimal parameter set found in simulation to the real robotic system
and evaluate it in a human-robot coexistence scenario. The left robot arm is supposed
to follow a trajectory, while a human enters the workspace, blocking the path of the
robot. Again, the right arm should imitate the motion of the left arm. Figure 15 shows
snapshots from a video of the human-robot collision avoidance. Figure 14b compares
the reference and actual trajectory of the left end effector using the optimized and the
manually tuned parameter set. Again, it can be seen that the optimized parameter set
provides a smoother transient behavior when the collision avoidance is activated. Far
away from any collision, the end effector trajectory is followed accurately. This shows
that the approach is generally able to create a suitable parameter set for such kind of
complex robotic task in an automatized manner. In this case, the parameter set we
found provides safe and jerk-free reactions in a human-robot coexistence scenario.
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Figure 14.: Comparing the robot behavior for the optimized and manually tuned pa-
rameter sets. –: Reference trajectory, −−: Trajectory with manually tuned parameters,
· · · : Trajectory with optimized parameters

4.6. Discussion

The combination of constraint-based control and automatized parameter learning tech-
niques seems promising for two reasons. On the one hand, constraints represent low-
dimensional descriptors of particular aspects of the control problem that might be
easier to learn than the overall task at once. On the other hand, constraint-based
robot control provides the flexibility to learn particular subtasks, while manually tun-
ing others.

Naturally, the choice of the fitness function has a large influence on the result of
optimization and thus especially the weighting factors α and normalization functions
S have to be chosen carefully, a process that may be time-consuming. The five criteria
in Eq. 9 have been chosen based on experience and literature review, thus they might
not be optimal and finding a single, generic quality criterion for a wide range of tasks
is rather difficult. Here, the idea is that each subtask is assigned a certain optimality
criterion. Now, when combining subtasks to a new overall task, the corresponding
combination of criteria, again, provides an optimality criterion for the new task. Thus,
the optimality criterion must not be found from scratch every time, but only the
weights of the respective criteria have to be tuned again. Also, once a suitable set of
weights is found, transferring them to other robot tasks might be feasible.

5. Conclusions

In this work we presented the integration of different original contributions. At first
we described an extension of the KCCD algorithm for collision distance computation.
This included (a) Adding the possibility to integrate external objects and (b) An al-
gorithm for rapid conversion of raw point cloud data into convex hull representations
understood by KCCD. We showed that the approach can be used for robot-obstacle
distance computation in real-time control applications, even with multiple sensors.
Secondly, we presented a constraint-based control framework, which is able to gener-
ate task-compliant avoidance motions based on potential fields. We showed that it can
be used to smoothly integrate collision avoidance with other simultaneously running
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Figure 15.: Screenshots from a video showing trajectory tracking and collision avoid-
ance with a human entering the workspace of the robot.

robot tasks, like trajectory tracking. Finally, we described a method for retrieval of
optimal control parameters within this framework based on evolutionary techniques.
We discussed different issues of parameter optimization for control tasks with conflict-
ing goals and presented a fitness measure with regularization term to overcome these
issues. The presented approach is applicable in human-robot coexistence scenarios in
industrial settings.

As future work, we intend to use the collision avoidance approach as a baseline in
safe human-robot collaboration scenarios, e.g. for handing over objects or for actual
human-robot co-manipulation.

A possible extension of the KCCD convex hull conversion algorithm is a real-time
capable solution that more accurately fits non-convex objects as explained in sec-
tion 3.2. Also the implementation and comparison of other avoidance methods (here
we only implemented potential fields) would be of interest.

Considering the automated selection of parameters for constraint-based robot con-
trollers, we simplified the optimization problem in this work (only a few parallel tasks,
same control parameters for each degree of freedom) since we wanted to show the prin-
cipal feasibility of the approach. In future, we would like to apply our framework to
more complex problems like humanoid walking or dual-arm, force-based manipulation.
In this context a comparison of different learning methods would be useful.
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