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Abstract

Auto-Calibration is an important task in computer vi-
sion and is necessary for many visual applications. Meth-
ods like photogrammetry, depth map estimation, metrology,
augmented/mixed reality or odometry are strongly depen-
dent on well calibrated devices. While classical calibration
relies on tools like checkerboards or additional scene infor-
mation, auto-calibration only takes epipolar relations into
account. Classical calibration is often impractical, tends to
de-adjust over time and distributes the error over the en-
tire, limited working volume. Auto-calibration, on the other
hand, does not require any information other than the image
content itself, has a virtually unlimited working range and
usually achieves highest accuracy at the objects’ surfaces.
Unfortunately, auto-calibration methods are sensitive to er-
rors in the fundamental matrix and need good initialization
to converge to the global solution. In practice this leads to
difficulties if optical parameters like principal point or focal
length are unconstrained. In such situations, even state-of-
the-art auto-calibration methods tend to diverge and do not
yield a valid calibration.

This work assesses reasons for this behavior, in par-
ticular for the initialization method of Bougnoux [3] and
Lourakis’ state-of-the-art auto-calibration method [21].
Based on the analysis, a more stable method is proposed.
A continuous and smooth energy functional is introduced,
providing superior convergence properties. I.e. it can not
diverge, converges faster, and has a significantly enlarged
convergence region with respect to the global minimum.

Finally, a thorough evaluation has been conducted and
a detailed comparison with the state of the art is presented.

1. Introduction

Modern auto-calibration techniques aim to calibrate
multiple devices without any form of user interaction. Each
such calibration procedure is based on the computation of

epipolar relations between the devices, which are repre-
sented as fundamental matrices. The procedures described
in [32] and [15] solve these tasks sufficiently well for many
situations. Methods of higher accuracy such as [11] can
increase the chance of convergence of further calibration
steps, even more. The correction of distortions caused by
the optical system of the devices is another essential as-
pect. In [11] distortions are corrected while the fundamental
matrices are estimated. With this approach, further auto-
calibration steps no longer have to take distortions into ac-
count and also apply to cameras with a large field of view.
In order to extract the extrinsic parameters of the devices
(rotation and translation) from the fundamental matrices, as
described in [15], the intrinsic calibration parameters are a
necessary prerequisite. The most important intrinsics of an
optical device are the focal length and the principal point.
In order to compute Euclidean reconstructions, precise es-
timates are essential. In contrast, intrinsics like skew and
aspect ratio are of less importance nowadays, since modern
devices are equipped with square pixels. Since the entire
reconstruction process, except the estimation of the funda-
mental matrix, depends on the intrinsic parameters, their ac-
curate estimation is crucial and the most difficult and error-
prone part.

Most state-of-the-art methods rely on either calibration
tools such as checkerboards or additional scene information
like planar structures or parallel lines. Although the con-
sideration of this additional information works well, its use
in practice is cumbersome and time-consuming. An auto-
calibration procedure without these requirements is there-
fore preferable. Consequently, extensive research has been
carried out in this respect in recent decades and methods
have been discovered that enable intrinsic calibration di-
rectly on the basis on the fundamental matrix. Although
state-of-the-art methods are theoretically sound and valu-
able, their practical application is often not stable and fails
in many cases. Especially setups consisting of different
camera models and projectors, as in the case of active scan-
ning, can cause problems.



Famous bundle-adjustment [29] or methods like [13]
have not been investigated because they are post-processing
methods that require already appropriate calibration.

In this work we continue research on auto-calibration
techniques. Our contributions are:
• Analysis of Bougnoux’s method regarding uncertain

focal length estimates (4.1)
• Proposal of a new energy functional (4.2)
• Qualitative comparison of Lourakis’ and the new func-

tional (4.4) regarding
– Focal length estimation (4.4.1)
– Principal point estimation (4.4.2)

• Quantitative comparison of the functionals (5)
In particular, the proposed method supports any number of
devices, the method has a significantly larger region of con-
vergence and is not biased towards larger focal lengths. In
addition, the minimized energy term is smooth and nearly
convex, which allows a stable estimation of the principal
points, even if they are far off the image center.

2. Related work
Research on intrinsic calibration from epipolar geom-

etry achieved a quantum leap by the theory of the abso-
lute conic used by Faugeras et al. to introduce Kruppa’s
Equations into computer vision in [10]. These equations
represent the basis of modern auto-calibration as they de-
scribe a direct connection between fundamental matrices
and the respective intrinsic calibration matrices. Bougnoux
[3] and Hartley [14] gave formulations for computing the
focal lengths of two uncorrelated views given their funda-
mental matrix. Both approaches depend on known princi-
pal points and epipoles. Since the epipoles are usually esti-
mated as the null-space of the fundamental matrix, they are
sensitive to small inaccuracies in the fundamental matrix.
This can lead to instabilities of the methods, even if correct
principal points are given.

To avoid these problems, Hartley reformulated Kruppa’s
equations in terms of the singular value decomposition
of the fundamental matrix to introduce epipole-invariant
Kruppa Equations in [16]. Based on Hartleys work, Sturm
[26] presented a more robust method for two views with
constant focal lengths and fixed principal points. White-
head and Roth [30] gave a more general approach for mul-
tiple devices with varying focal lengths, but still restricted
to given principle points.

Although high quality cameras can be assumed to have
the principal point close to the image center, this is not gen-
erally not the case. For optical components with interfaces
that are not orthogonal to the principal ray, e.g. in the case
of projectors, the principal point can even be outside the im-
age. Therefore, in many practical applications, said meth-
ods are not suitable for auto-calibration.

In order to estimate both focal lengths and principal
points, Pollefeys [23] presented a least-squares method
based on the absolute dual quadric supporting an arbitrary
number of devices. Gherardi and Fusiello [13] built on this
approach and introduced a more specific energy functional
with several regularizations. This method is based on a
given calibration and is essentially a post-processing. In
order to converge to the global minimum, both approaches
require good initialization and suitable regularizers. Finally,
Lourakis and Deriche [21] presented a method that mini-
mizes pairwise differences of the epipole-invariant Kruppa
equations from [16]. These differences are weighted by co-
variance matrices from the numerical optimization of the
fundamental matrix. This method represents the current
state of the art and can handle much coarser initializa-
tion than the two previous approaches. Nevertheless, this
method has some weaknesses, which will be addressed in
Section 3.1.2.

All three energy-based methods are likely to fail if the
principal points are far off the image center or in presence of
significantly differing focal lengths. The method proposed
here is based on an energy derived from epipole-invariant
Kruppa equations. It will converge to the global minimum
under almost all reasonable initial conditions and thus sig-
nificantly extends the practical applicability.

3. Background
The basis for auto-calibration was the development of

the theory of the absolute conic. The main idea is that any
quadric, captured by an optical device, is projected as a
conic onto the image plane and the respective epipolar lines
are tangential to this conic [15]. Furthermore, the dual of
the image of the absolute conic is independent of the cam-
era pose. Its computation is equivalent to the calculation
of the intrinsic calibration of the device. Given the epipo-
lar geometry between image planes Ii and Ij , represented
by a fundamental matrix Fij , Kruppa’s equations use this
knowledge to describe a direct connection between Fij and
the intrinsic calibration matrices Ki and Kj of the respec-
tive cameras Ci and Cj .

3.1. Kruppa equations

Let ei and ej be the left and right epipoles computed
from the left and right null-space of Fij and w∗i = KiK

T
i

and w∗j = KjK
T
j the duals of the absolute conic. Then

Kruppa’s equations read:

[ej ]×w
∗
j [ej ]× = Fijw

∗
i F

T
ij (1)

⇔ [ei]×w
∗
i [ei]× = FT

ijw
∗
jFij (2)

[·]× denotes the cross-product matrix. However, solving
these equations is not practicable due to the strong depen-
dence on in generally error-prone epipole estimates.



3.1.1 Epipole-invariant Kruppa equations

Hartley [16] expressed the equations by avoiding dependen-
cies on the epipoles:
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with

Fij = USV T = (u1, u2, u3)

σ1 0 0
0 σ2 0
0 0 0

v1v2
v3

 (4)

Numerators and denominators of the terms in equations (3)
describe the tangent lines of the image of the absolute conic
in the different views. These must be identical up to scale
and are therefore considered relatively. These equations are
the basis of Lourakis’ method [21], which is known to be
the state of the art. Since the method derived in this paper
addresses weaknesses of the method, we will shortly intro-
duce its main idea.

3.1.2 State of the art: Method of Lourakis

Lourakis et al. [21] proposed a nonlinear approach for ap-
proximating equations (3). The least-squares energy to be
minimized is defined by

argmin
Kl, l ∈ {1, ..., C}

∑
(i, j) ∈ DF
(u, v) ∈ DK

(ρiju − ρijv )2

σijuv
2 , (5)

where Kl denotes the intrinsic calibration matrices, DF the
set of device pairings and DK the set of combinations of
Kruppa terms. σuv are confidence measures calculated by
estimating the fundamental matrices.

This method extends the two-view case from Section
3.1.1 to any number of C devices by considering C(C−1)

2
pairwise fundamental matrices. Each of them provides two
independent constraints, which limits the number of com-
putable camera parameters to C(C − 1). The number of
determinable parameters per device is sufficient for most
applications and increases with the number of devices used,
as explained in more detail in Section 5.

The method is known to work well for three or more
devices, assuming high quality epipolar relations and good
initialization of the principal points and focal lengths. Nev-
ertheless, the method may fail in many practical situations
for the following reasons:

• Weak initialization of focal lengths or principal points.

• Significantly differing focal lengths.

• Bias towards larger focal lengths.

• Significantly off-center principal points.

• Singularities of the energy.

3.2. Assumptions

For all modern devices, zero skew and square pixels can
be assumed. Thus the dual of the absolute conic can be
written as

w∗l = KlK
T
l =

f2l + x2pl xplypl xpl
xplypl f2l + y2pl ypl
xpl ypl 1

 , (6)

where fl denotes the focal length and cpl = (xpl , ypl , 1)
T

the principal point of any device Cl.

4. Improving the state of the art
A new robust energy functional is proposed. Compared

to Lourakis’ it has the following beneficial properties:

• Focal lengths of different scales are treated homoge-
neously and unbiasedly.

• The multidimensional energy field is smooth and has
no discontinuities or singularities.

• A significantly larger region of convergence to the
global minimum, which is finite and uniquely defined.

• The energy function is quasi-symmetric with respect
to the Kruppa curves (13), and convex with respect to
the principal point.

This greatly increases the stability of the numerical opti-
mization as well as the likelihood of convergence.

4.1. Kruppa curves of focal lengths

Using the notation of Section 3.1.1 and assumptions of
Section 3.2, the terms of (3) can be written as
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f2i σ

2
1(v

2
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1(c
T
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2

f2j (u
2
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2
(7)
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f2i σ1σ2(v11v21 + v12v22) + σ1σ2(c

T
piv1)(c

T
piv2)

−f2j (u11u21 + u12u22)− (cTpju1)(c
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pju2)

(8)
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2
2(v

2
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2(c
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2

f2j (u
2
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2
, (9)

where ukl and vkl denote the l-th entries of vectors uk and
vk. With the explicit formulations of (7), (8) and (9), equa-
tions (3) of any fundamental matrix Fij can be written in
the form

f2i ai1 + bi1
f2j aj1 + bj1

=
f2i ai2 + bi2
f2j aj2 + bj2

=
f2i ai3 + bi3
f2j aj3 + bj3

(10)
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For fixed principal points, the equations define curves,
known as Kruppa curves, which describe direct relations
between the focal lengths. For each fundamental matrix Fij
we define coefficient vectors:

dijuv :=


aiuajv − aivaju
aiubjv − aivbju
biuajv − bivaju
biubjv − bivbju

 for (u, v) ∈ DK (12)

Each equation from (11) defines a two-dimensional para-
metric curve that can be represented by the one-dimensional
functions Kij1,uv and Kij2,uv:

Kij1,uv(fj) := −
f2j d

ij
uv,3 + dijuv,4

f2j d
ij
uv,1 + dijuv,2

(13)

Kij2,uv(fi) := −
f2i d

ij
uv,2 + dijuv,4

f2i d
ij
uv,1 + dijuv,3

(14)

The curves Kij1,uv(fj) and Kij2,uv(fi) and the coefficients
dijuv are obtained by resolving equations (11) with respect

Figure 1. Top view of Lourakis’ (5) (top) and the presented energy
function from (15) (bottom) for several fundamental matrices. The
color coding indicates a rather high energy (yellow) up to a low
energy (blue) in logarithmic scale. For each fundamental matrix,
the three nearly coinciding Kruppa curves are plotted in green.

to fi and fj . Figure 1 shows the Kruppa curves for three
independent fundamental matrices (from left to right), plot-
ted as green lines. State-of-the-art two-view techniques
such as Bougnoux [3] determine the intersections of the
curves to estimate the focal lengths. Having said that, Boug-
noux and similar methods fail in the many cases where the
Kruppa curves nearly coincide. Moreover, the curves are
plotted into visualizations of the top views of the energies
of Lourakis (top) and the proposed method (bottom) to il-
lustrate relationship of the methods. The color coding in-
dicates a rather high energy (yellow) up to a low energy
(blue). This may give an idea of how the methods behave
during minimization.

4.2. Energy as relative distances to Kruppa curves

In order to establish a suitable energy term, relative
Euclidean distances between focal length estimates and
Kruppa curves are used, which provide a scale invariance
with respect to largely different focal lengths. The new en-
ergy term reads

argmin
cpj , fj

j ∈ {1, ..., C}

∑
(i, j) ∈ DF
(u, v) ∈ DK

(
f2
i −K

ij
1,uv(fj)

f2
i

)2
+
(
f2
j−K

ij
2,uv(fi)

f2
j

)2
.

(15)

By setting up the Jacobians J ijuv,1 and J ijuv,2 for each
pair of energies, we can solve (15) by applying truncated
Levenberg-Marquardt, with system matrix

A =
∑

(i, j) ∈ DF
(u, v) ∈ DK

J ij
T

uv,1J
ij
uv,1 + J ij

T

uv,2J
ij
uv,2 (16)

and inhomogenity

b =
∑
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)
.

4.3. Computational effort

Since both Lourakis’ method and the proposed one are
based on the singular value decomposition of C(C−1)

2 fun-
damental matrices, the energy functions can be set up with
the same computational effort. The minimization of the
energies with Levenberg-Marquardt consistently led to a
faster convergence of the proposed method compared to
[21], which can be explained by better condition numbers
of the system matrices of the new method. Appropriate
preconditioning may improve the convergence rate in both



Figure 2. Kruppa curve distance energies computed from the fundamental matrix for several combinations of focal lengths
f1, f2 ∈ [1000, 8000] of devices with fixed principal points. The upper corresponds to Lourakis’ and the lower row to the proposed
method. Note that the new energy is quasi-symmetric with respect to the Kruppa curve, while the state of the art is sloped unfavorably.
Plots are given in logarithmic scale.

cases. Since the running time in both cases is short and
negligible compared to other calibration steps, no further
investigations were performed.

4.4. Discussion

In this section we present the advantages of the proposed
approach by means of visualizations of the minimized en-
ergy functional and compare it to the state of the art.

4.4.1 Case: Individual focal lengths per device

In real scenarios, the focal lengths of the devices often differ
significantly. If these differences become too large, state-
of-the-art methods are likely to fail if initialization is not
close to the true values. Another disadvantage is the uneven
slope of the gradient of Lourakis’ energy in vicinity of the
Kruppa curve: For small focal lengths, the slope is signifi-
cantly smaller than for large ones. Therefore, a Levenberg-
Marquard update will always prefer the gradient direction
of the larger to the smaller focal lengths when optimizing
such a system. Due to the gradient slope, the method gener-
ally tends to overestimate to focal lengths. Figure 2 com-
pares Lourakis’ energy functional (5) (top row) with the
proposed one (15) (bottom row) for several combinations
of focal lengths f1, f2 ∈ [1000, 8000] from different per-
spectives. In particular, in the right subimage, the increase
of the slope can be observed when increasing the values of
the focal lengths. Due to the relative Euclidean distances
used in (15), the new energy functional is much more ho-
mogeneous.

Moreover, it is quasi-symmetric with respect to the
Kruppa curves, which avoids the preference of a particular
direction over others.

Figure 3. Energies of Lourakis (left) and the proposed Kruppa
curve distance energies (right) with respect to the principal point
position. While the top row shows an overview, the second row
is a close-up of the area around the sought solution. Note that the
location of the solution coincides for both energies. In the third
row a top view of the energies of the first row is given. The region
beyond the discontinuity is colored in dark blue. Please observe
that the contour lines indicate significantly improved convergence
properties. Plots are given in logarithmic scale for visualization.



4.4.2 Case: Principal point far off the image center

If the principal point of a device is not close to the im-
age center, all known methods are likely to fail. In case
of Lourakis’ functional, the energy surface corresponding
to the principal point positions has been analyzed and two
main issues have been identified depicted in Figure 3 (left):
The sought minimum of the energy is almost completely
surrounded by a discontinuity, so that initialization beyond
the discontinuity cannot converge (top left); Even initial-
ization on the plateau, convergence cannot be guaranteed
because the entire plateau is inclined. (top left). In con-
trast, the proposed energy functional is globally continuous,
smooth and convex (Figure 3 top right). Comparing the sec-
ond row of Figure 3 demonstrates that the sought minimum
of both methods coincide. Although it can be assumed that
the principal point of modern cameras is close to the im-
age center, optical systems in industrial setups often have
a displaced principal point. Reasons for this include ad-
ditional lens assemblies, obstacles such as glass plates or
liquids, and periscopic systems. Also for projection sys-
tems, e.g. used in active scanning solutions, it is not unusual
for the principal point to be completely outside the image.
Initialization of the principal point with the image center
will often be outside the convergence plateau of Lourakis’
method. The third row of Figure 3 shows slightly enlarged
top views of Lourakis’ and the proposed energy functional
of the first row. The contour plots give a good indication of
the improved convergence properties of the newly proposed
functional.

5. Application and evaluation
Both the state-of-the-art method and the proposed ap-

proach, are based on Kruppa’s equations. These equations
provide two independent constraints for each fundamental
matrix. Therefore, the number of computable parameters is
determined by the number of devices (see Table 1). For two
devices, only two parameters can be estimated based on the
single fundamental matrix. This case is the most basic and
most frequently examined system setup. With four or more
devices, the problem of intrinsic calibration is well defined
and theoretically all parameters can be estimated. Neverthe-

# Devices # Basic Equations Computable Parameters
2 2 f1, f2 or xpl , ypl
3 6 f1, f2, f3, xp1 , yp1
4 12 fl,xpl , ypl , l = 1, ..., 4
...

...
...

C C(C − 1) fl,xpl , ypl , l = 1, ..., C

Table 1. Overview of degrees of freedom in terms of the number
of devices and useful calibration parameters that can be computed.

less, even the calibration of four devices in practice can still
be a challenge. A particularly interesting case is the use of
three devices, such as two cameras and a projector, as found
in most active scanning setups. For all three devices, the fo-
cal length can be estimated. With the remaining constraints,
the principal point of the projector can be estimated, which
is usually far off the image center.

For the evaluation we consider three cases, i.e. two, three
and four devices. In order to investigate the stability of the
methods, we calculate probability maps that visualize the
convergence chances for different initializations and thus
represent the convergence regions of the methods. To calcu-
late these probability maps we used fixed setups with two,
three and four devices and fixed extrinsic and intrinsic pa-
rameters. A total of 16 different scenes were recorded with
these setups. The scenarios were selected in such a way
that they cover a multitude of different practical application
scenarios. From the different scenes, fundamental matrices
have been computed using the technique described in [11].
The matches used for the computations were previously val-
idated to avoid falsification by outliers. Consequently, the
resulting 16 fundamental matrices per setup approximate
exactly the same epipolar relations with uncorrelated nu-
merical errors because they are computed from different
matches from different scenes. Applying the methods under
investigation on a fundamental matrix for all combinations
of initial focal lengths f1, f2 ∈ [1, 10000] leads to a binary
map, which indicate whether the method converged or not.
The binary maps of all the fundamental matrices have been
combined into probability maps depicted in Figures 4, 5 and
7. Therefore, the percentage at which convergence has been
achieved color-codes the maps. Green indicates a very high
probability of convergence, while red indicates either diver-
gence or convergence to an incorrect value. Yellow depicts
regions with approximately 50% chance to converge to the
correct value.

Since the probability maps are not dependent on individ-
ual scenes, correspondences, or fundamental matrices, they
are meaningful indicators for the convergence behavior of
the procedures.

In the following, the focal lengths are given in terms of
sensor pixel size. For typical devices, a plausible range
would be in [500, 15000]. Depending on the sensor size,
this would correspond to approximately [18mm, 50mm].
the principal points are given in terms of image pixel size,
depending on the resolution.

5.1. Two-view focal length estimation

In the case of two cameras, the principal points are usu-
ally assumed to be in the image centers. Therefore, in most
cases only the focal lengths are computed. Bougnoux [3]
gave a famous formula to calculate the focal lengths di-



rectly:

f1 =

√√√√−cTp2 [e2]×ĨF12cp1c
T
p1F

T
23cp2

cTp2 [e2]×ĨF12ĨFT
12cp2

(18)

f2 =

√√√√−cTp1 [e1]×ĨFT
12cp2c

T
p2F23cp1

cTp1 [e1]×ĨF
T
12ĨF12cp1

(19)

where cpl and el denote the principal points and epipoles
of camera l in homogeneous coordinates. [.]× denotes the
cross-product matrix and Ĩ = diag(1, 1, 0) is the embed-
ding of the two-dimensional identity matrix. Unfortunately,
this formula fails in many practical situations, as already
mentioned in Section 4. Although it is not well suited for
auto-calibration, it can still be used as initialization for iter-
ative methods in case it is not degenerated.

For the two camera case, Bougnoux’s, Lourakis’ and the
proposed method should be compared. Bougnoux’s method
is a direct one and therefore does not depend on initializa-
tion. Therefore, no region of convergence can be deter-
mined and visualized in the following. Having said this,
Bougnoux’s method failed in most cases during our tests,
while the iterative methods could still converge when ini-
tialized accordingly.

For the current investigation, the focal lengths of the de-
vices were chosen to be approximately equal in order to re-
semble the practical case of manually adjusting the cameras.
Despite that, exactly the same focal lengths would lead to
a degeneration that would be perfectly captured by Sturm’s
method [26]. However, this special case rarely occurs in
practice.

Inspecting Figure 4 for the two camera case with similar
focal lengths, it can be observed that the proposed method
converges for nearly all initializations, while Lourakis’
method only converges in a region of radius of approxi-
mately 1500 pixels relative to the true solution.

Figure 4. Comparison of the convergence behavior in the two-view
case with similar focal lengths. Colors visualize the probability of
successful convergence to the correct solution for different combi-
nations of initial focal lengths. Left: Lourakis’ method, right: the
proposed method.

5.1.1 Strongly differing focal lengths

In the case of strongly varying focal lengths, even more ben-
efits can be achieved. Figure 5 shows the convergence prob-
ability map of a similar configuration as in Figure 4. While
the method of Lourakis converges in a region with a radius
of only 500 pixels, the proposed method converges in al-
most all cases.

Figure 5. Comparison of the convergence behavior for focus opti-
mization in the two-view case for dissimilar focal lengths. The
axes represent the respective focal lengths. Left: Lourakis’
method, right: the proposed method.

5.2. Three-view intrinsic calibration

The most interesting case for practical application is a
three device setup. According to Table 1 the focal values
plus the position of the principal point of one device can
be estimated. This allows the calibration of setups consist-
ing of two cameras and one projector, which is of practical
importance, as it is common for modern structured light se-
tups. In this case, it is assumed that the principal points of
the cameras are in the image center, while their focus val-
ues can be very different. The projector is assumed to have
a completely independent focal length and an extreme posi-
tion of the principal point, usually near the image border.

We again have a system setup with fixed extrinsics and
intrinsics. Fundamental matrices are computed from 16
scenes similar to the previous test. Now that we have
three devices, the respective probabilistic convergence maps
would be three-dimensional. In order to achieve an expres-
sive visualization in two dimensions, the focal length of the
projector was initialized by f3 ∈ {1, 10, 100, 1000, 10000}
and the resulting maps averaged. Figure 7 depicts the con-
vergence regions for Lourakis’ method on the left and the
proposed method on the right. As can be clearly observed,
Lourakis’ method does not provide a secure convergence re-
gion, i.e. a region of focal length selections that converges
for an arbitrary principal point.

In order to assess the convergence behavior of both meth-
ods, a second test set was carried out. Therefore, three de-
vices (two cameras and a projector) with focal lengths of
4000, 5600, and 5800 were selected. All principal points



Figure 6. Comparison of the convergence behavior in the three-view case (first Louraki’s, second the proposed method) and four-view
case (third Louraki’s, fourth the proposed method) with extreme intializations of the principal points and the focal lengths outside the
convergence regions of the methods. While the state of the art diverges, the proposed method gracefully converges towards a nearby
local minimum in the three-view case, providing at least a reasonable estimate for further calibration steps like bundle-adjustment. In the
four-view case the newly proposed method always converges to the correct solution, while Lourakis’ method may still fail.

were initialized at the image centers. The principal points
of the cameras were fixed, while the principal point of the
projector was subject to optimization. All devices were ini-
tialized with the same focal lengths between 1 and 10000.
For initial values less than 4000, both methods fail. While
the proposed method gracefully converges towards a nearby
local minimum, the state of the art diverges (see Figure 6).

These results have inspired us to devise an algorithm
that allows stable auto-calibration of three-device setups in
nearly any practical case. It is based on Bougnoux’s method
for initialization and exploits the newly proposed method
for stable optimization of the intrinsic camera parameters.
The algorithm is outlined in the appendix.

Figure 7. Comparison of the convergence behavior for focus op-
timization in the three-view case. The axes represent two of the
three focal lengths, the third one is visualized as a mean projection
along the third coordinate axis. Left: Lourakis’ method, right: the
proposed method.

5.3. Multi-view intrinsic calibration

In the multiview case of four or more devices, the prob-
lem is much easier to solve. Theoretically, it is possible to
fully calibrate all devices, including focal lengths and prin-
cipal points. In practice, we find that Lourakis’ method does
not converge if the focal lengths are initialized far too small,
while the proposed method converges in all situations.
However, we find that the focal lengths must be so small that
this case can be neglected (see Figure 6 for visualization).

In the case of five or more devices, the stability of the
convergence of each procedure increases. Due to the inher-
ent difficulty of visualizing multi-dimensional data and the
fact that both methods perform well in practice, we omit
respective visualization.

6. Conclusions
In this paper we presented a method for robust intrinsic

camera calibration from epipolar geometry of setups with
at least two devices. Contrary to the state of the art, the
method converges to the global solution for nearly all rea-
sonable initializations and enables the calibration of pro-
jectors and low quality devices. It therefore has a major
impact on active scanning techniques that can now be cal-
ibrated from scratch, including the active element. It has
been shown that and why the applicability of the state-of-
the-art method is subject to systematic limitations.

Algorithm 1 Stable Intrinsic Calibration of Structured
Light Systems with Two Cameras and a Projector

Input: Fundamental matrices FP,C1, FP,C2 and
FC1,C2 between projector (P) and cameras (C1,C2).

1: Initialize focal lengths f init
P = f init

C1 = f init
C2 := 1000 and

principal points cinit
pP , cpC1

, cpC2
to image centers.

2: Apply (18) and (19) to FC1,C2.
If successful (plausible results in range [1; 100000]) up-
date f init

C1 and f init
C2, otherwise skip.

3: Solve (15) with fixed f init
C1, f init

C2 to update f init
P and cinit

pP .

4: Solve (15) to get refined values fP , fC1, fC2 and cpP .

5: Build intrinsic calibration matricesKl for l ∈ {1, ..., 3}
from computed focal lengths and principal points.

Output: Refined intrinsic calibration matrices Kl.

This work was partially funded by the projects MARMORBILD
(03VP00293) and VIDETE (01W18002) of the German Federal Ministry
of Education and Research (BMBF).
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