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1 Medical and Health Systems
1.1 Introduction

In this chapter, we discuss the trends of mutlimodal-multisensor interfaces for medical and
health systems. We emphasize the theoretical foundations of multimodal interfaces and
systems in the healthcare domain. We aim to provide a basis for motivating and accelerating
future interfaces for medical and health systems. Therefore, we provide many examples
of existing and futuristic systems. For each of these systems, we define a classification
into clinical systems and non-clinical systems, as well as sub-classes of multimodal and
multisensor interfaces, to help structure the recent work in this emerging research field of
medical and health systems.

As discussed throughout this book, multimodal-multisensor interfaces are a major building
block in the movement to establish more expressively powerful computer interfaces. In
the medical domain, a rapid transformation into this direction is underway, most notably
distributed systems that monitor and control multiple aspects of a patient’s physiology, health
and well-being. In the past, searching and browsing, and discovering patterns in electronic
health records (EHR) or electronic medical records (EMR) and providing operations to align,
rank and filter the results, and to visualize data, was the main interest in the human-computer
interaction (HCI) community [Wang et al. 2008]. This was complemented by studies of
patterns of document and information transfers within the hospital for quality control, see
for example Wongsuphasawat et al. [2011]. Today, of particular interest are intelligent user
interfaces to reduce healthcare costs in general. These costs are continually increasing, while
the available budgets and the number of care-takers are shrinking. For example, in developed
countries around the world, an ageing population poses challenges to society, but also unique
opportunities for HCI and artificial intelligence (AI) methods in health and wellbeing. To use
AI methods to a larger extent, we need a systematic collection of patient information in a
digital format. Digital records can be shared across different healthcare settings, store data
accurately, and capture the state of a patient across time.

We start by classifying multimodal and multisensory interfaces into clinical systems and
non-clinical systems. The clinical view includes, most notably: unobtrusive sensing of vital
body signals in clinical environments, data mining of contextual clinical data in different
modalities (e.g., clinical records and medical images) and semantic annotation of medical
texts and images. Applications include text mining in the health and wellbeing domain, big
data analysis and clinical data intelligence, personalized schemes for individualized treatment
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2 Chapter 1 Medical and Health Systems

and medication, formalizing clinical guidelines for health and wellbeing, as well as decision
support. One of the biggest challenges is to reduce the demand for expensive treatments by
detecting small physical and mental health issues early. In addition, avoiding larger health
problems by clinical treatment or suitable lifestyle interventions. For example, four specific
lifestyle factors (not smoking, maintaining a healthy weight, regular exercise, and following
a healthy diet) together are associated with as much as an 80 percent reduction in the risk of
developing the most common and deadly chronic diseases [Ford et al. 2009]. We can act on
this challenge by offering AI-based multimodal-multisensor interfaces for integrating self-
monitoring sensors (quantified-self). This non-clinical view includes, among other things:
smart unobtrusive sensing of vital body signals (of, e.g., care home residents), event and
task extraction from life logging by, e.g., video capture, data mining of contextual data,
smart coaching algorithms for wellbeing, persuasion technologies, and adaptable interfaces
that understand the physical and cognitive abilities of the user.

We focus on clinical and non-clincial systems in sections 1.2 and 1.3, respectively. Three
case studies are presented in section 1.4, followed by future directions of multimodal mul-
tisensor combinations and virtual reality in section 1.5. For a definition of italicized terms
in this chapter, see the Glossary. For other related terms and concepts, also see the textbook
chapter on medical cyber-physical systems [Sonntag 2016], the special issue of the KI Jour-
nal on health and wellbeing [Gelissen and Sonntag 2015], and the overview of the German
flagship project on clinical data intelligence [Sonntag et al. 2015]. Focus questions to aid
comprehension are available in this chapter’s supplementary digital resources.

Glossary
Medical cyber-physical systems (MCPS) are real-time, networked medical device sys-
tems to improve safety and efficiency in healthcare. The specific advantage of the con-
cepts of cyber-physical systems (CPS) involves the use of both real-time sensor devices
(e.g., monitoring devices such as bedside monitors) and real-time actuation devices (such
as infusion pumps). In this way, MCPS collect information from the monitoring sensors
and actuators by, for example, adjusting the setting of actuation devices, firing an alarm,
or providing decision support to caregivers. See MedicalCPS [2018] for intelligent user
interface projects that fall into this category.

Prevention (primary, secondary, and tertiary) covers several prevention methods: Pri-
mary prevention aims to prevent disease or injury before it occurs and includes education
about health risk factors. Secondary prevention aims to reduce the impact of a disease or
injury that has already occurred and addresses an existing disease prior to the appearance
of symptoms. Examples include regular exams and screening tests to detect disease in its
earliest stages (e.g., mammograms to detect breast cancer) or diet programs to prevent
further heart attacks. Tertiary prevention aims to soften the impact of an ongoing illness



1.1 Introduction 3

or injury that has lasting effects. Examples are cardiac or stroke rehabilitation programs
and chronic disease management programs (e.g., diabetes). New approaches to improve
prevention-related user interaction include persuasive technologies.

Persuasive technologies focus on the design, development, and evaluation of interactive
technologies aimed at changing users’ attitudes or behaviors through persuasion, but not
through coercion or deception. In general, persuasive technologies are used to change
people’s behavior. The persuasion approach we support is that choices are not blocked,
fenced off, or significantly burdened. The influence on people’s behavior in order to make
their lives longer, healthier, and better should be subtle. For example, displaying nutrition
information at eye-level is a subtle persuasion technology.

Foundational technologies are intruduced in other chapters in Volume 1 and 2 of this
Handbook, namely machine learning [Baltrusaitis et al. 2018a, Panagakis et al. 2018],
deep learning [Bengio et al. 2018, Keren et al. 2018], and knowledge management
[Alpaydin 2018].

Application domains include serious games, conversational agents, or dialogue systems
for healthy behavior promotion; intelligent interactive monitoring of patient’s environ-
ment and needs; intelligent interfaces supporting access to healthcare services; patient-
tailored decision support, explanation for informed consent, and retrieval and summa-
rization of on-line healthcare information; risk communication and visualization; tailored
access to electronic medical records; tailoring health information for low-literacy, low-
numeracy, or under-served audiences; virtual healthcare counselors; and virtual patients
for training healthcare professionals.In addition, we address decision support systems
especially for the doctor, which model the diagnostic reasoning and decision-making of
medical experts, and systems designed to interact directly with patients as healthcare
consumers.

An electronic medical record (EMR) is a narrower view of a patient’s medical history
including laboratory values for example, while an electronic health record (EHR) is a
more comprehensive report of the patient’s overall health.

Medical decision support systems are guidance services that predict a patient’s health
status to influence health choices by clinicians. Other functions can be administrative, but
we focus on supporting clinical diagnosis and treatment plan processes by for example
proposing medical substances with little adverse effects. Future implementations should
be integrated into the clinical workflow, provide decision support such as treatment
options at the time and location of care as a MCPS rather than prior to or after the patient
encounter, and provide recommendations for care, not just assessments.

Biosignals provide information from a person’s biological or physiological structures
and their dynamics. Signals measured from the human body typically originate from
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neural or muscular activity. Neural activity is captured by methods such as EEG, elec-
troencephalogram, a test that detects electrical activity in your brain using small, flat
metal electrodes attached to your scalp. Muscular activity is captured by methods such
as EMG, electromyogram, electric signals generated by muscles, or ECG, electrocardio-
gram, electric signals emitted from the human heart. They are the basis for human com-
puting, physiological computing and affective computing. Also see Silva et al. [2015].
For applications in human computer interaction (HCI) and intelligent user interfaces
(IUI), only surface electrodes are used. Signal processing includes, first, time series anal-
ysis, and second, the mapping to physical or physiological states [D’Mello et al. 2018,
Martin et al. 2018, Schuller 2018, Wagner and André 2018] towards cognitive states
[Cohn et al. 2018, Oviatt et al. 2018a, Zhou et al. 2018]. Biosignals of future interest
include electric conductance, bioimpedance, and bioacoustic signals.

Telemedicine subsumes physical and psychological diagnosis and treatments at a dis-
tance, including telemonitoring of patient functions.

mHealth includes the use of mobile devices in collecting aggregate and patient level
health data.

Quantified self is a term used to describe data acquisition on aspects of a person’s
daily life, e.g., incorporating self-monitoring and self-sensing, which combines wearable
biosignals sensors and wearable computing.

The Resource Description Framework (RDF) is a family of World Wide Web Consor-
tium (W3C) specifications for metadata. It is used as a general method for conceptual
description or modeling of information that is implemented in web resources, using a
variety of syntax notations and data serialization formats.

1.2 Clinical Systems
In the future, clinical environments will develop into medical cyber-physical systems (MCPS)
of their own. This means that patients will get direct treatment according to a direct data
acquisition and interpretation workflow. The doctor’s decision support will be provided
according to the data the MCPS collects from the individual patients. Future MCPS should
assist in hospitals, in homes, and other settings [Carayon 2011, Chen et al. 2014a, de Man
et al. 2013, Lee et al. 2012].

MCPS involve heavier use of sensors and passive user input in terms of biosignals than
traditional multimodal interfaces; hence they do not necessarily require explicit, active input
from a user (doctor or patient) with an explicit human-computer interface. The development of
multimodal-multisensor interfaces that rely heavily on passive user input processing require
foundational technologies to be effective and reliable without human control via active user
input. Active input modes include speech, hand gestures, eye-tracking, digital pens, smart-
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phones and automatic handwriting recognition. Passive input modes include sensors of the
clinical environment, biosignals, or smartphone data. Passive input may involve recognition-
based technologies (e.g., gesture) or sensor-based information (e.g., acceleration, pressure).
This combination of input sources has not yet been explored in medical environments and is
of specific interest because it combines previously unconnected modalities and information
sources [Sonntag 2016].

A periodic data collection is important for primary, secondary and tertiary prevention or
monitoring chronic symptoms such as asthma or diabetes. So-called cyber-physical system
(CPS) controllers can issue alarms for situations that require attention by a doctor in emer-
gency situations or to let clinicians know about the physiological and emotional state of an
individual patient. Figure 1.1 shows the resulting conceptual architecture, including monitor-
ing and actuation devices, a semantic patient model [Sonntag and Porta 2014, Sonntag et al.
2014b], and controller software around the patient and the caregiver. MCPS have specific
requirements to be met:

1. High confidence medical device software development: This refers to comprehensive
verification, validation and testing as well as robustness and fault-tolerance for clinical
systems.

2. Anomaly treatment: The modeling of failures, i.e., anomalies, in using and interacting
with medical devices, caregivers, and patient behavior must be accounted for.

3. Embedded, real-time, networked system development: This includes architecture, plat-
form, middleware, resource management, QoS (Quality of Service), distributed control
and functional programming for future application domains of health systems.

One of the major application goals is to issue more accurate and targeted alarms, to let
the doctors initiate any necessary treatment immediately. The idea is to bring both patients
and caregivers into the controlled perception-action loop around the patient; the controller can
also start a treatment autonomously. The main concern besides privacy and security [Friedland
and Tschantz 2018] is to avoid false alarms. The long-term direction is to build multimodal-
multisensor medical systems that simultaneously sense health status (the state-of-the-art in
biosignals processing is covered in volume 2 of this Handbook [Oviatt et al. 2018b]), in or-
der to adapt multimodal communication patterns for user-in-the-loop systems and system re-
sponses according to users’ status. Although having humans-in-the-loop has its advantage,
modeling human behaviors is extremely challenging due to the complex physiological, psy-
chological, and behavioral aspect of human beings [Munir et al. 2013, Wood and Stankovic
2008]. We discuss multimodal and multisensor interfaces separately in order to account for
the different needs and challenges in the medical domain.



6 Chapter 1 Medical and Health Systems

Figure 1.1 Conceptual Architecture: Networked Closed-loop Medical Cyber-Physical System with
Human-in-the-Loop Extension. Please note that this extension covers clinical decision support
systems for caregivers and patients.

1.2.1 Multimodal Interfaces
Multimodal output involves medical system output from two or more modalities, such as a
visual display combined with auditory or haptic feedback, which is provided as feedback
to the clinician. More modalities allow for more natural communication, which normally
employs multiple channels of expression. It is also the case that more modalities constrain
the interpretation and, hence, enhance robustness. For the medical image annotation step
for example (see section 1.4.1), predefined speech recognition grammars can be employed.
The requirements of medical application domains often include a direct digitalization of
multimodal active and passive input data and multimodal feedback in real-time. For example,
automatic speech recognition and digital pens allow us to transcribe the clinician’s spoken
and written input. In addition, the requirements often includes knowledge representation and
reasoning about medical concepts. Our design principles can be summarized as follows.

1. Representation and Standards: In a complex medical interaction system, a common
ground of terms and structures is absolutely necessary. A shared representation and a
common knowledge base ease the dataflow within the system, avoiding costly and error-
prone transformation processes [Sonntag et al. 2009]. An ontology-based representation
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combines, for example, formal dialogue and image semantics grammars with an RDF
repository using the SPARQL query standard Sesame [2017]. Linked Open Drug Data
(LODD) presents RDF based connected medical information graphs that can serve as
knowledge repositories for multimodal user queries. The Life Science Interest Group
aims to collect, share, and interlink medical data at very detailed levels by harnessing
semantic web technologies [Samwald et al. 2011].

2. Encapsulation: Multiple user interfaces can be connected to the multimodal dialogue
system. The system also acts as middleware between the multimodal interface and the
RDF repository [Sonntag et al. 2010a].

One implication of recent research findings is that multimodal interfaces are especially
well suited for mHealth solutions: multimodal interfaces can directly support the multi-
functionality of mobile devices and their applications in different application context with
different input and output requirements [Oviatt and Cohen 2000]. In mobile settings, mul-
timodal interfaces will promote the multi-functionality of small devices, in part due to the
portability and expressive power of multiple input modes. These emerging mobile technolo-
gies can be used in extended clinical healthcare (e.g., including blood sugar control, heart
frequency, movement pattern after hip surgery) and the computer-mediated communication
between doctor and patient.

Multimodal interfaces can also be used in semantic search, as the following examples
show: personalized search and summarization over multimedia healthcare information [McK-
eown et al. 2001]; a multimodal dialogue system for medical images [Sonntag and Möller
2010] which integrates a multimodal interface for speech-based annotation of medical images
and dialogue-based image retrieval. In addition, Radspeech [Sonntag et al. 2012] is a speech
dialogue example which features mutual disambiguation [Oviatt 1999] of recognition errors.
Other systems support multimedia queries in medical search in texts and images, see, e.g.,
Mourão and Martins [2013]. Luz and Kane [2009] investigate the automatic classification of
patient case discussions in multidisciplinary medical team meetings recorded in a real-world
setting. More sophisticated passive input methods include accelerating meaningful interface
analysis through unobtrusive eye tracking of EMRs towards a quantitative and qualitative as-
sessment of EMR interfaces [Rick et al. 2015]. In a further multimodal interface application,
an interactive narrative format for clinical guidelines is presented by Cavazza et al. [2015].
In the future, multimodal input and/or output will have another strong application domain:
telemedicine should facilitate communication between patients and healthcare providers and
doctors. But currently, multimodal interface examples are still missing.

1.2.2 Multisensor Interfaces
Multisensor interfaces in clinical settings are enabling technologies for future telemedicine,
integrating biosignal interpretation (covered in volume 2 of this handbook), specialized
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doctors at different locations, and robotic surgery. We will focus on robotic surgery after
describing clinical applications with sensors for gesture recognition.

Jacob and Wachs [2014] uses sensor-based contextual cues, i.e., gaze, hand position, head
orientation, to avoid false positive gesture recognitions for navigating MRI images in the
operating room. Jacob et al. [2012] developed a prototype of a robotic surgical nurse for
handling surgical instruments in the operating room; experimental results show that 95% of
the gestures were recognized correctly. Jacob and Wachs [2014] present a sterile system for
navigating MRI images in the operating room. The system has been shown to significantly
improve task completion performance. Robotic surgery is another multisensor interface ex-
ample in the operating room: Along with Taurus [2017] researchers have been developing a
dexterous manipulation interface for telepresent surgical robots for remote surgery. This robot
is controlled via direct manipulation through two hand controllers which can give visual and
tactile feedback. Verbsurgical [2017] is another robotic surgery platform that integrates sensor
technologies with medical imaging, data analysis, and machine learning, in order to introduce
more autonomy and control of the robotic arms and its end-effectors. In general, robot CPS
systems seek to improve minimally invasive and open surgeries (particularly cardio-thoracic,
that have so far not benefited from minimally-invasive techniques). The goals are to reduce
long hours of operation surgery, increase precision, miniaturize effectors, reduce incision, and
decrease blood loss. Additional applications include sensors for example on the effectors for
touching soft tissue or bone for computer assisted surgery or even supervised autonomous
robotic soft tissue surgery [Shademan et al. 2016]. Current test applications are surgeries in
urology, gynecology, general surgery, and thoracic surgery. Turchetti et al. [2012] report on
cost evaluation studies of robot-assisted operation. Such operations are compared with those
performed by a direct manual laparoscopic approach. Evaluations of the endoscopic proce-
dures using this system suggest that it shortens the length-of-stay in the hospital and reduces
recovery times. Critics of the systems targeted at HCI aspects focus on the steep learning
curve for surgeons who adopt use of the multisensor environment, in the sense that it is diffi-
cult and takes much effort to learn the robot-assisted operations. This means a learning curve
with a long, fairly flat region, followed by a big, sudden jump. One gains almost no ability un-
til after 50-70 hours of training. Similar surgical interfaces have been developed: MiroSurge
[Tobergte et al. 2011] is a multisensor surgical workstation with several force/torque sensors
on haptic input and output devices. It is used in research-based suturing and palpation tasks.

Other multisensor interfaces include robots for basic deliveries or transports of medica-
tions, meals, and materials through hospitals, see for example TUG [2017]. In all these mul-
tisensor applications it is to be mentioned that crowdsourcing has many options for quality
assurance control of medical procedures done with assisted or autonomous robotics, see for
example Chen et al. [2014b].
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1.3 Non-Clinical Systems
Most non-clinical systems are designed to interact directly with patients. Some non-clinical
systems need to understand a patient’s intentions, attitude, emotional status, and additional
information. In terms of multimodal input processing, facial expression, gaze direction, and
emotion as tracked user information are of particular interest. Multimodal input processing
helps to provide a holistic view of the patient. Many new medical education systems use
multimodal output (e.g., speech and diagnosis graphs). Medical applications are consistent
with the general literature on multimodal processing advantages.

Nutrition, physical exercise, and other non-clinical factors contribute to health and well-
being. Nowadays, people load their data onto fitness portals such as ’MyFitnessPal,’ ’Fitbit’,
or ’Garmin Connect’. By integrating those resources, some companies have begun to aggre-
gate the data and show analytics with bars or pie charts, thereby providing new opportunities
for user-oriented, personalized non-clinical user interfaces. Web-based solutions can feature
an incremental knowledge acquisition process with at least two stages, acquiring fitness data
with mobile devices and presenting aggregated data in Web portals. As pointed out in Fried-
land and Tschantz [2018], advances in multimedia content analysis threatens privacy. People
must be made aware that non-clinical data collection and analysis can enable unexpected and
invasive inferences about people.

Current research and development efforts of non-clinical systems include wearables (dig-
itally enhanced accessories) that are instantiated in familiar real-world objects like watches,
wrist bands, digital pens, and tablets. The design question is to make them more useful, ver-
satile, or attractive for digital input processing. As pointed out in Oviatt and Cohen [2015],
one advantage of these interfaces is their transparency to users and ability to leverage exist-
ing activity patterns, which minimizes a user’s cognitive load. One long-term interface design
direction will be to combine emerging tangible interfaces that support multimodal input with
ones that simultaneously sense users’ cognitive load, health status, and similar information in
order to adapt system responding to user status. Current non-clinical interfaces for health sys-
tems have an emphasis on multisensor interfaces. This extends patient monitoring at hospitals
to data collections at home by using portable sensors providing information about a patient’s
recovery status.

Because EHRs are used to keep track of medications, allergies, conditions, family history,
vitals, and exercise, a speech-based question answering system can take this information
as additional input. Vitals tracking using smart devices may offer additional sensors. One
example is WatsonPaths [Lally et al. 2017], a question answering system that can be asked
for the most likely diagnosis or most appropriate treatment, over unstructured information
where the answer is not contained in documents. Another application example is GenieMD
[2017], a telemedicine platform. One may be interested in side effects of a cortisone shot, or
recommendations for available treatment options. Users are able to upload medical records
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such as X-rays and lab results for personalized recommendations by answering a short
questionnaire relating to chief complaints. The system is not yet multimodal at its interface
nor does it use sensor input, but future versions may do so.

To provide a better basis for motivating and accelerating future non-clinical systems for
medical and health systems, we provide examples of existing and futuristic systems. All
of the medical application examples presented in this section have limitations in scope, but
collectively they provide converging perspectives on non-clinical systems towards the design
of medical multimodal-multisensor interfaces.

1.3.1 Multimodal Interfaces
We summarize the strengths of multimodal interfaces by providing four examples along four
dimensions: multimodal data sources, multimodal interaction, method, and goal.

Sawamoto et al. [2007] explore a method for multimodal interaction logs data sources.
Gestures and speech are used. Pattern mining methods are applied to medical interviews in
order to extract certain doctor-patient interactions.

Weibel et al. [2013] explore how technology can support natural multimodal interfaces
for medical information to provide more effective communication in the medical office. The
data sources are EMR interaction logs. The system exploits speech interaction together with
sensors to track computer-based activity, visual attention and body movements. The method
is pattern mining. The goal is to inform the design of new multimodal healthcare interfaces.

Bickmore et al. [2009] describe an animated, empathic virtual nurse interface for educating
and counseling hospital patients in their hospital beds at the time of discharge. It should
be emphasized that little research has been done to date on systems to provide information
to patients while they are in their hospital beds. Multimodal interaction is provided by a
virtual nurse agent (an embodied conversational agent with touchscreen input). The goal is
to empower low health literacy hospital patients.

Lisetti et al. [2015] discuss a research project aimed at building socially expressive virtual
health agents. Data are collected from interaction logs. They collect data from multiple targets,
from obesity to alcohol and drug use, to lack of treatment adherence. Multimodal fusion
and fission techniques are primary. The goal is to deliver brief motivational interventions
for behavior change in a communication style that individuals and patients not only accept,
but also find emotionally supportive and socially appropriate.

1.3.2 Multisensor Interfaces
The focus of this subsection is to summarize the strengths of multisensor interfaces to reduce
healthcare costs by results from research and application projects, and to describe how they
have been applied to date. In this regard, the present list is by no means exhaustive. Robots
and their senso-motoric intelligence are not described [Haddadin et al. 2017]. We focus on
activity monitoring of humans by non-intrusive sensors, biofeedback and biomarkers, and
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multisensor interfaces in the context of social and virtual companions. In the future, new
multisensor applications, especially for diagnostic reasoning, will arise.

1.3.2.1 Activity monitoring of humans by non-intrusive sensors
We focus on sensor-based recognition that can be used remotely from cameras or microphones
or sensors that are embedded into devices such as smartphones. Chaurasia et al. [2014] discuss
a reminder system for carrying out instrumental activities of daily living (iADLs); the system
does not focus on interaction with the user, but instead processes data from a network of
sensors. An activity probability model is created to prompt the user via a text interface for
the next step in the iADL when inactivity is being observed. Complementary, assistants
such as Siri and Google Home (TM) can rely on smartphone sensors. Graus et al. [2016]
found out that a smartphone’s reminder function is an interesting predictor: the creation time
is a strong feature in predicting the notification time, and that including the reminder text
further improves prediction accuracy with implications for the design of systems aimed at
helping people to complete tasks and to plan future activities. Castro et al. [2015] present a
research system to predict daily activities from egocentric images using deep learning. They
learn a person’s behavioral routines and predict daily activities from first-person photos and
contextual metadata such as day of the week and time, or contextual information derived from
other sensors. Automatic expressive behavior understanding helps to diagnose, monitor, and
treat medical conditions that themselves alter a person’s social and affective signals. Valstar
[2014] describes automatic behavior understanding, based on multiple sensors. Weiss et al.
[2016] compare smartwatch and smartphone-based activity recognition, and smartwatches
are shown to be capable of identifying specialized hand-based activities which cannot be
effectively recognized using a smartphone. Evaluation results show that smartwatch sensors
can identify the "drinking" activity with 93.3% accuracy while smartphone sensors achieve
an accuracy of only 77.3%. Maurer et al. [2006] report on medical activity recognition and
monitoring using multiple sensors on different body positions for patient monitoring. They
focus on sensor fusion. Further examples of user state (e.g., alertness, engagement, physical
activity) and trait recognition (e.g., personality, age, gender) where face, fingerprint, and other
visual cues are combined, are discussed in Schuller [2018] from Volume 2. Multisensory affect
detection is described in D’Mello et al. [2018].

1.3.2.2 Biofeedback and Biomarkers
Integrating biomarkers for mental state detection, for example combining emotional and
behavioral indicators for autism detection, represent promising research directions. We de-
scribe how multisensor interfaces have been applied to date. New sensor networks including
Internet-of-things (IoT) devices may produce new multisensor biomarkers for mental disor-
ders. Typical mental disorders can be detected by new multisensor interfaces in the future.
Garbarino et al. [2014] describe a wearable wireless multisensor device for real-time comput-
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erized biofeedback and sensor data acquisition. Sriram et al. [2009] propose a mobile medical
sensor architecture to provide an efficient, accurate, and economic way to monitor patients’
health outside the hospital. They provide arguments that patient authentication is a necessary
security requirement in remote health monitoring scenarios. da Silva et al. [2014] present
Bitalino, a novel development platform for using biosignals. Their low-cost hardware and
open-source software toolkit provides streaming functionality of EMG and EDA (electroder-
mal activity) to build prototypes for future wearable health tracking devices. Niemann et al.
[2018b] use Bitalino to monitor EDA for cognitive assessments for future dementia tests at
home. An extended multisensor prototype based on Bitalino will be presented in case study
2 (section 1.4.2). Picard et al. [2017] describe how a commercial wrist sensor reveals sym-
pathetic hyperactivity and hypoventilation in real-time seizure detection by recording wrist
motion via 3-axis accelerometer and EDA. Extensions to this work for other mental disorders
such as dementia will also be presented in case study 2.

1.3.2.3 Multisensor Interfaces in Social and Virtual Companions
Scherer et al. [2013] describe audiovisual behavior features for depression assessment during
multimodal virtual human interviews. They investigated if audiovisual nonverbal behavior
descriptors indicative of depression are observable within semi-structured virtual human
interview recordings. Additionally, they assessed the correlation of those behaviors with
the assessed depression severity. Chen et al. [2016] conduct a study to motivate patients
to exercise. They used multisensor fitness trackers including gyroscope, accelorometer, and
EDA. Mehlmann et al. [2016] discuss a research project about modeling grounding for
interactive social companions based on sensor input, where common ground is needed for
joint action and social speech-based dialogue. Further aspects of common ground are planning
to achieve joint goals and turn-taking. Especially turn-taking in speech-based dialogue can be
informed by sensor input, for example by eye tracking (see chapter 4 in this volume).

1.4 Case Studies
We present three medical case studies in the clinical domain. These are chosen because
they describe the transition from monomodal to multimodal applications (first study). The
use of sensors helps to interpret a clinical patient’s physical state, health status, mental
status, and engagement in activities relevant for the assessment and monitoring of pathologies
such as Alzheimers (second study). The transition to multimodal-multisensor interfaces is
a particularly seminal one in the design of digital tools for behavior characterization in the
context of neurodegenerative disorders (third study).

1.4.1 Case Study 1: A Multimodal Dialogue System
In this case study, we present a dialogue system for the annotation and retrieval of medical
images where different clinicians are involved in the use of multimodal user interfaces.
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1.4.1.1 Background
In contemporary, daily hospital work, clinicians can only manually search for “similar”
images using outdated desktop search applications. After considering the relevant categories
of similarity, they subsequently apply one filter after the other. For instance, a clinician first
sets a filter for the imaging modality (e.g., CT angiography), the second filter for the procedure
(e.g., coronary angiography), and so on. In addition to the fact that this approach is quite time-
consuming, it is neither possible to formulate complex and semantically integrated search
queries in a convenient way, nor can a radiologist easily annotate images with new anatomy
or disease information. Hence, the need exists for a seamless integration of medical images
and different user applications by direct access to image semantics. Semantic image retrieval
should provide the basis for the help in decision support and computer-aided diagnosis.

Our solution is a speech-based dialogue system that integrates a multimodal interface for
speech-based annotations of medical images and an image annotation tool for manual seman-
tic annotations on a desktop computer [Sonntag and Möller 2010, Sonntag et al. 2012]. This
system implements two of the main applications of medical knowledge acquisition and knowl-
edge integration: first, clinical decision support where some of the clearest opportunities exist
to reduce costs by minimising the time for finding treatments based on similar patient cases
[Bates et al. 2014], and second, treatment optimization for diseases affecting multiple organ
systems. In this case study, we also demonstrate the image retrieval (querying) functionality
of the multimodal dialogue interface.

1.4.1.2 Problem Description
Automatic detection of image semantics, i.e., medical annotations of image regions, seems
to be feasible, but is too error-prone (at least on the desired annotation level where multiple
layers of tissue have to be annotated at different image resolutions or when external expert
knowledge is needed). Accordingly, our major challenge is the so-called knowledge acqui-
sition bottleneck. Automatic image recognition cannot easily acquire the necessary medical
knowledge about the image contents. As automatic annotation is difficult, we have to address
this knowledge acquisition bottleneck problem by concerning ourselves with the question of
how to integrate statistical image region annotation (automatic annotation) with manual or
semi-automatic annotations.

The requirements discussed with medical experts point to integrate an image annotation
tool for annotations on a desktop computer typically performed by medical students (semi-
automatic annotation), and a multimodal interface for expert annotations (manual annotation)
into a common framework that benefits from manual, semi-automatic, and automatic image
annotations. Mainly, a speech-based system for manual annotations of experts should be
developed. For new incoming patients, the doctors have to maintain the database and search
for similar cases in real-time. Multimodal user interfaces play a significant role in achieving
this goal. The system should support the full range of multimodal interaction patterns, such



14 Chapter 1 Medical and Health Systems

as deictic or cross-modal references in the context of the annotation process. A remote RDF
repository which stores the semantic medical image information and connects the annotation
and querying task into a common framework, should make the overall architecture relevant to
clinical practice.

1.4.1.3 Solution
For the semantic annotation on a regular desktop workstation, Möller et al. [2009] developed
RadSem, a medical semantic annotation and retrieval tool. It consists of a component that
implements a method to annotate images, and upload/maintain a remote RDF repository
with the images and image semantics. For annotations, RadSem reuses existing reference
ontologies and terminologies. More precisely, the Foundational Model of Anatomy (FMA)
ontology [Mejino et al. 2008] for anatomical annotations, i.e., annotations of body parts. To
express features of the visual manifestation of a particular anatomical entity or disease of
the current image, RadSem uses fragments of the RadLex ontology, see Langlotz [2006].
Diseases are formalized using the International Classification of Diseases (ICD-10) [Möller
et al. 2010]. Figure 1.2 shows the graphical user interface of the RadSem annotation tool.
Images can be segmented into regions of interest (ROI). Each of these regions can be
annotated independently with anatomical concepts (e.g., “lymph node”), with information
about the visual manifestation of the anatomical concept (e.g., “enlarged”), and with a disease
category using ICD-10 classes (e.g., “Nodular lymphoma” or “Lymphoblastic”). However,
any combination of anatomical, visual, and disease annotations is allowed, and multiple
annotations of the same region are possible. The resulting annotations (mostly anatomical,
performed by medical students) are stored in the RDF repository.

In this usage scenario, the expert user—the radiologist—stands in front of the touchscreen
installation (figure 1.3, upper part). The interactive system is based on a generic framework
for implementing multimodal dialogue systems. Technically, the generic framework follows
an object-oriented programming model that eases the interface to external third-party com-
ponents (i.e., the automatic speech recognizer (ASR) and the text-to-speech synthesis (TTS)
component) while using ontology concepts in a model-based design. Several interfaces for
the multimodal framework have been implemented: the multimodal touchscreen interface, the
event bus, the speech dialogue system, and the application backend as a remote RDF repos-
itory. The multimodal touchscreen interface is implemented as a native application using a
special window manager for pointing gestures on a touchscreen display. The client provides
means to connect to the dialogue system via an event bus, to notify it of occurred events, to
record and playback audio streams, and to render the received display data obtained from the
dialogue system. The dialogue system contains an ontology-based rule engine for processing
dialogue grammars and an external service connector.

The diagnostic analysis of medical images typically concentrates around two questions: i)
what is the anatomy? ii) is it normal or abnormal? To satisfy the radiologist’s information
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Figure 1.2 Desktop Interface of the Annotation Tool RadSem [Sonntag and Möller 2010] for Manual
Semantic Annotations of Medical Images.
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need, he or she can formulate the questions in natural speech when a respective image
annotation exists. Most importantly, the multimodal interface helps to annotate the respective
images and image regions during the patient finding process. Our prototype systems gives
a first answer to the following two research questions: first, what kind of information is
relevant for the radiologist’s daily tasks (a combination of annotation and retrieval). And
second, at what stage of the workflow should selected information items be offered and
aggregated/annotated in the diagnostic process while using a touchscreen and speech dialogue
interface. A multimodal dialogue example is explained in the following:

1. U: “Show me the CTs, last examination, patient XY.” (retrieval stage)

2. S: Shows corresponding patient CT study picture series.

3. U: “Show me the internal organs: lungs, liver, then spleen.”

4. S: Shows patient images according to referral record.

5. U: “Annotate this with lymph node enhancement” (+ pointing gesture on region); "so
lymphoblastic” (expert finding, additional disease annotation (ICD-10)).

6. S: “Region has been annotated.”

7. U: “And replace the characteristic of the other by RadLex: shrunken.”

8. S: “Region characteristic has been updated.”
→ The radiologist switches to another patient (for illustration purposes with a broken
finger) and asks for a summary in this additional retrieval stage.

9. U: “Give me a summary of this patient.” (retrieval stage)

10. S: “This is a summary of the fracture: ... ”

11. S: “Five corresponding CTs will be displayed.”
→ The radiologist can now switch again to the differential diagnosis of the suspicious
case together with a second medical expert (for the first patient), where the case is
examined again and the image annotations can be completed.

A variety of multimodal interaction patterns are implemented in this dialogue, e.g., the
resolution of multimodal references. In (5), a deictic reference is resolved (a pointing gesture
uniquely singles out an object, it is said to have object-pointing function), whereby in (7)
an exophoric reference is given by “the other” annotation already present; it refers to the
environment in which the dialogue is taking place, the context of situation is what is displayed
on the screen. The command “annotate with” is an implicit reference in the context of the CT
image in the current focus. Last but not least, the system builds an own anaphoric reference
“corresponding” in (11).

Queries are sent to the open source triple store Sesame [2017]. A direct access to the RDF
statements is possible while using the query language SPARQL. This allows us to specify
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Figure 1.3 Combined Multimodal User Interface for the Semantic Annotation and Retrieval of Medical
Images.
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Figure 1.4 RDF Result Graph with Medical Annotations.

queries of almost arbitrary complexity. Queries can span from patient metadata to image
annotations to medical domain knowledge and are used to translate the dialogue questions
into SPARQL statements. Figure 1.4 shows a graphical representation of the RDF graph that
is retrieved when using the query. System responses are based on the retrieved RDF graph.
The following SPARQL query example is a translation of the clinician’s dialogue question,
“Show me the CTs, last examination, patient XY.”

SELECT ?person ?patient ?imageURL

WHERE {

?person mao:surname ?var0 .

FILTER (regex(?var0, "XY", "i")) .

?patient mdo:referToPerson ?person.

[...]

?series mdo:modality "CT".

?series mdo:containsImage ?image.

?image mdo:referenceFile ?imageURL.

[...]

}
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Figure 1.5 Architecture of the Radspeech System showing components and data protocols, see

RadSpeech [2011].

While using a tablet for interaction (see the architecture in figure 1.5), additional multi-
sensor information from the tablet such as accelerometer or gyroscope information can be
used in future radiology interfaces. The communication between the tablet and the dialogue
system is based on state-of-the-art web service protocols: the Representational State Trans-
fer (REST) is an established standard that defines a set of constraints to be used for creating
web services for distributed information retrieval applications. In summary, the multimodal
interface allows the user to annotate medical images with ontology-based medical concepts
(RadLex); the annotations are directly transferred to a remote RDF repository. At this point,
the radiologist can (1) access the images and image region annotations (a summary can also
be synthesized), (2) complete them, and (3) refine existing annotations while using a multi-
modal dialogue system. Finally, the RDF repository is updated again. Future plans include the
inplementation of the speech-based dialogue system in virtual reality where 3D images can
be inspected an annotated (also cf. future directions in chapter 1.5).
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1.4.2 Case Study 2: A Multisensor Digital Pen Interface
This case study describes a categorisation and implementation of digital pen sensors for
behavior characterisation. We focus on the clinical interpretation of time-stamped stroke
data from digital dementia tests. Based on using digital pens in breast imaging for instant
knowledge acquisition [Sonntag et al. 2014a], where the doctor uses the digital pen for
reporting, we now begin to use the digital pen for the patient [Prange et al. 2015].

1.4.2.1 Background
This research is situated within a long-term project Kognit [Sonntag 2015] with the ultimate
goal of developing cognitive assistance for patients with automatic assessment, monitoring,
and compensation in the clinical and non-clinical context. In the clinical context, we can
identify a special target group of interactive cognitive assessment tools as public sector
applications: cognitive assistance for doctors in terms of automatically interpreted clinical
dementia tests. We think that automatic and semi-automatic clinical assessment systems for
dementia have great potential and can improve quality care in healthcare systems. Our new
project Interakt [Sonntag 2017] with clinical partners from Charité in Berlin complements
previous fundamental research projects for non-clinical interfaces for dementia patients and
clinical data intelligence [Sonntag 2015, Sonntag et al. 2015].

Previous approaches of inferring cognitive status from subtle behavior in the context of
dementia have been made in a clock drawing test (CDT), a simple pencil and paper test
that has proven useful in helping to diagnose cognitive dysfunction such as Alzheimer’s
disease. This test is the de facto standard in clinical practice as a screening tool to differentiate
normal individuals from those with cognitive impairment and has been digitized in a first
version with a digital pen only recently [Davis et al. 2014, Souillard-Mandar et al. 2016].
As pointed out in Davis et al. [2014], the use of (1) a digital pen on paper or (2) a tablet
and stylus may distort results by its different ergonomics and its novelty. We implement both
interfaces for a selection of standard dementia tests in this case study. This should inform
future developments of objective neurocognitive testing methods. In particular, we address
the issue of what role automation could play in designing multimodal-multisensor interfaces
to support precise medical assessments.

1.4.2.2 Problem Description
Neurocognitive testing assesses the performance of mental capabilities, including for exam-
ple, memory and attention. Most cognitive assessments used in medicine today are paper-
pencil based. A doctor, physiotherapist, or psychologist conducts the assessments. These tests
are both expensive and time consuming. Further, the results can be biased. In addition to un-
derstanding people, their processes, their needs, their contexts, in order to create scenarios
in which Artificial Intelligence (AI) technology can be integrated, we are particularly con-
cerned to assess and predict the healthcare status with unintrusive sensors such as those in
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digital pens or in tablets. The goal is to improve the diagnostic process of dementia and other
forms of cognitive impairments by digitizing and digitalizing standardized cognitive assess-
ments for dementia. Here digitizing is the process of changing from analog assessments to
digital forms with hand-writing and gesture recognition. Digitalization is the process to in-
clude automatic assessments into the caregiver’s task. We aim at weekly procedures in day
clinics and base the assessments on clinical test batteries such as the CERAD developed by
Morris et al. [1988]. The test is digitized by hand-writing recognition and sketch recognition.
Additional new parameters are provided by the digital pen’s internal sensors. The conducted
cognitive walkthrough for digitalization started with a task analysis with experts at the clinic
that specifies the sequence of steps or actions a doctor requires to accomplish a pencil-paper
based assessment task as well as the potential system responses to a digitalized version of it.
In this case study we identified together with clinical experts that using a digital pen has the
following potential benefits:

• the caregiver’s time to spend on conducting the test can be reduced;

• the caregiver’s time to spend on evaluating the written form can be reduced;

• the caregiver’s attention can be shifted from test features while writing (e.g., easy-to-
assess completion of input fields) to important verbal test features.

• Digital assessments are potentially more objective than human assessments and can
include non-standardised tests and features (for example timing information) whereby
previous approaches leave room for different subjective interpretations;

• they can be used to get new features of the pen-based sensor environment, to detect and
measure new phenomena by more precise measurement;

• they are relevant for new follow-up checks, they can be conducted and compared in a
rigorous and calibrated way;

• they can automatically adapt to intrinsic factors (e.g., sensorimotor deficits) if the user
model is taken into account;

• they allow for evidence in the drawing process (e.g., corrections) instead of static
drawings that look normal on paper;

• they reduce extrinsic factors (e.g., misinterpreted verbal instructions);

• they can, in the future, be conducted in non-clinical environments and at home.

The challenges we face are three-fold:

1. To identify interface design principles that most effectively support automatic and semi-
automatic digital tests for clinical assessments.
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2. At the computational level, it is important to investigate approaches to capture both
digital pen features and multimodal-multisensor extensions. Some tests assume content
features (what is written, language use, perseveration, i.e., the repetition of a particular
response such as a word, phrase, or gesture) in usual contexts, as well as para-linguistic
features (how is it written, style of writing, pauses, corrections, etc.). These are potential
technical difficulties and/or limitations in the interpretation of the results.

3. At the interface level, it is important to devise design principles that can inform the
development of innovative multimodal-multisensor interfaces for a variety of patient
populations, test contexts, and learning environments.

1.4.2.3 Solution
The scenario includes the doctor and the patient at a table in a day clinic (figure 1.6) which
provides most utility. In the following, we focus on the doctor’s assessment task. Here, the
term utility refers to whether the doctors’ intelligent user interface provides the features they
need. The conducted cognitive walkthrough started with a task analysis with experts at the
clinic that specifies the sequence of steps or actions a doctor requires to accomplish a pencil-
paper based assessment task as well as the potential system responses to a digitalized version
of it. According to the requirements, we implement a sensor network architecture to observe
states of the physical world and provide real-time access to the state data for interpretation.
In addition, this context-aware application may need access to a timeline of past events
(and world states) in terms of context histories for reasoning purposes while classifying the
input data. The result of the real-time assessment of the input stroke data and context data
is presented to the doctor in real-time, see figure 1.6. The display includes (1) summative
statistics of test performances, (2) real-time test parameters of the clock drawing test and
similar sketch tests, and (3) real-time information about pen features such as tremor and in-air
time of the digital pen.

Usability design choices, how easy and pleasant the interface is to use, are made according
to industrial usability guidelines [Sonntag et al. 2010b] based on usability inspection methods
[Nielsen and Mack 1994] and design heuristics based on the psychophysiology of stress
[Moraveji and Soesanto 2012]. They can be summarized as follows: For the patient, the digital
pen is indistinguishable from a normal pen. So usability is high and (additional) stress is
generally low. But the psychophysiology of stress needs to be explored. Lupien et al. [2007]
suggest that some of the age-related memory impairments observed in the literature could
be partly due to increased stress reactivity in older adults to the environmental context of
testing. For the doctor, the psychophysiology of stress needs to be explored, too. There needs
to be a possibility to control interruptions (e.g., phone calls) [Moraveji and Soesanto 2012]. In
general, for both user interfaces, the effects of stress and stress hormones on human cognition
are important. Lupien et al. [2007] enumerate the following stressor characteristics (SC) of
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Figure 1.6 Assessment environment with patient and doctor. It also shows the realtime intelligent user
interface for the doctor.

interfaces that we use to form further design principles: SC1: Feels unpredictable, uncertain,
or unfamiliar in an undesirable manner; SC2: Evokes the perception of losing/lost control.
SC3: Has potential to cause harm or loss to one’s self or associated objects, living things, or
property. SC4: Is perceived as judgment or social evaluative threat including threats to one’s
identity or self-esteem. Especially SC4 applies in the situation of the patient assessment.
Digital pen on normal paper reduces this effect, whereby using a tablet and stylus might
increase SC4 stress levels.

The therapist interface, where the real-time interpretations of the stroke data are made
available in RDF, is meant to advance existing neuropsychological testing technology accord-
ing to our interface design principles. Technical details are as follows: First, it provides cap-
tured data in real-time (e.g., for a slow-motion playback), and second, it classifies the analysed
high-precision information about the filling process, opening up the possibility of detecting
and visualising subtle cognitive impairments; also it is zoomable to permit extremely detailed
visual examination of the data if needed (as previously exemplified in Davis et al. [2014]).
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name pen input symbols

AKT - Age-Concentration 100% cross-out
CDT - Clock Drawing Test 100% clock, digits, lines
CERAD - Neuropsychological Battery 20% circles, rectangles, cubes, etc.
DemTect - Dementia Detection 20% numbers, words
MMSE - Mini-Mental State Examination 9% pentagrams
MoCA - Montreal Cognitive Assessment 17% clock, digits, lines
ROCF - Rey-Osterrieth 100% circles, rectangles, triangles, lines
TMT - Trail Making Test 100% lines

Table 1.1 Comparison of the most widely used cognitive assessments

Multimodal-multisensor extensions can be implemented with a tablet device (figure 1.7).
Additional modalities can help in the analysis of observed user behavior. When interacting
with a tablet computer, multiple built-in sensors can be used in addition.

Besides pen-based input, we consider eye tracking and facial expression analysis via the
video signal of the front-facing camera, natural speech captured by the built-in microphone,
and additional sensor inputs of modern tablet devices. RGB-based eye tracking is interesting
for multimodal interaction with a tablet, because it is deployable using the built-in front-
facing camera. However, this gaze estimation is erroneous which should be considered in the
interaction design [Barz et al. 2018]. OpenFace [Baltrusaitis et al. 2018b] is an open source
toolkit for facial behavior analysis using the stream of an RGB-webcam. It provides state-of-
the-art performance in facial landmark and head pose tracking, as well as facial action unit
recognition which can be used to infer emotions. The openSMILE toolkit [Eyben et al. 2013]
provides methods for speech-based behavior analysis and is distributed under an open source
license. It offers an API for low-level feature extraction from audio signals and pre-trained
classifiers for voice activity detection, speech-segment detection and speech-based emotion
recognition in real-time.

The implemented pencil and paper tests are shown in table 1.1, namely AKT [Gatterer
et al. 1989], CDT [Freedman et al. 1994], CERAD [Morris et al. 1988], DemTect [Kalbe et al.
2004], MMSE [Folstein et al. 1975], MoCA [Nasreddine et al. 2005], ROFC [Canham et al.
2000], and TMT [Reitan 1992].

The pencil and paper tests have been transferred one-to-one, meaning that the digital
versions of pen input fields look just as the analog versions. Table 1.1 shows the absolute
percentages of the test questions where the pen is used to answer them. The selection of
the tests accounts for a variety of patient populations and test contexts. Concerning the
test context, a doctor can always switch between the digital pen and the tablet and stylus
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Figure 1.7 Multimodal-multisensor tablet device.

version. The tablet version can always use multimodal-multisensor input to cover additional
test contexts.

1.4.2.4 Lessons learned
In this section we discuss which choices we have made in the first 18 months of the project In-
terakt, the analysis of alternatives considered, as lessons learned. We focus on specific designs
and decisions that reduce the potential for failures when considering similar applications.

1. The primary motivation of using a digital pen on normal paper stems from the spatial
and temporal precision of the obtained stroke data which provides the basis for an
unprecedented degree of precision during analysing these data for small and subtle
patterns; classifying the strokes for their meaning is a sketch interpretation task in
addition. As a result, we can get assessment data based on what is written or sketched,
and how the spatio-temporal pattern looks like. The alternative of using a tablet and stylus
turned out to be an additional stress factor for both patients and doctors, as first formative
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evaluations suggest. As a result, the formative evaluations with patients will be done on
the digital paper version. This choice restricts the possibility to gather multimodal data
from a tablet, which provides the same spatial and temporal precision of the obtained
stroke data.

2. While the tablet version is not always the first choice, the technical implementation is
much easier than the digital pen on normal paper version. The reason is the complicated
software development kit (SDK) for creating the digital paper forms on normal paper.

3. How will the data from the experiment be gathered without violating privacy regulations
[Friedland and Tschantz 2018]? For example, video capture is currently not allowed.
In addition, we need a method to capture assessment results (or corrections/comments)
from the doctor while he or she is using the doctor’s interface. Will it interfere with the
anticipated normal use? Here, the enumeration of the stressor characteristics need to be
completed and turned into interface design principles.

4. A version for self-assessment at home for the patient needs to have an ability to control
interruptions (e.g., phone calls) [Moraveji and Soesanto 2012].

5. The digitalisation of widely used cognitive assessments has four consecutive steps: first,
the one-to-one transfer from a paper and pencil test to a digital version; second, the
selection of pen features that are relevant for the classification task; third, the adaptation
of the caregivers’ instructions to include automatically interpreted test results. And
fourth, the inclusion of multimodality and multisensor data for additional test parameters.

6. Digital assessments allow for evidence in the drawing process (e.g., corrections) instead
of static drawings that look normal on paper. Doctors need to be instructed when to use
the slow-motion playback function. To automatically propose replaying a writing scene
for further inspection is another interesting classification task where the system can take
initiative.

7. The coverage of implemented tests is rather independent of the availability of suitable
patient populations and test subjects. It is rather difficult to get the critical amount of
conducted tests for machine learning experiments to find subtle patterns that are sensitive
or specific to dementia assessment.

Using digital pens for the assessment of dementia can be generalized in several ways, most
notably for use by those in the cognitive impairments field. Digitalized dementia tests can
be used for the detection of other neurodegenerative diseases such as Parkinson. Some of the
described tests in table 1.1 have already been used in this direction, such as MMSE and a more
sensitive similar test MoCA. In addition, this work could help returning veterans suffering
from traumatic brain injuries (TBI). J Wagner et al. [2011] used CDT to assess cognition
and predict inpatient rehabilitation outcomes among persons with TBI. Doctors working in
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inpatient neurorehabilitation settings are often asked to evaluate the cognitive status of persons
with TBI and to give opinions on likely rehabilitation outcomes. In this clinical setting, several
other digital pen tests could be used for cognitive assessment and outcome predictor among
inpatients receiving neurorehabilitation after TBI. It should be possible to better monitor the
rehabilitation outcome. As explained above, digital assessments could be relevant for new
follow-up checks. They can be conducted and compared in a rigorous and calibrated way.

Future research in the clinical domain includes pen-based assessments to treat patients in an
automatic fashion and from multimodal input. Conserning multimodal input, for interpreting
verbal utterances of the CERAD test battery for example (therapists have problems in taking
notes of user answers and comments while conducting a test), a dialogue framework can be
used in the future. Combining active speech and pen input should, in the future, be explored
towards multimodal approaches to determining cognitive status. This can be done through the
detection and analysis of subtle behaviors and skin conductance sensors.

Using digital pens for the assessment of dementia can be generalized for use by those
outside the cognitive impairments field. Current research investigates the use of handwriting
signal features to predict domain expertise in several educational contexts [Oviatt et al.
2018c]. The trend towards multimodal learning analytics becomes apparent, where natural
communication modalities like writing (or speech) are complemented with gestures, facial
expressions, and physical activity patterns. The combination of our low-level stroke features
with selected components of the implemented cognitive tests, together with the domain
expertise prediction task in Oviatt et al. [2018c] might open up opportunities to design
new educational technologies based on individualized writing data resulting in better user
modeling.

1.4.3 Case Study 3: A Multimodal-Multisensor Framework
In this case study, we report on a multimodal multisensor framework for recording and
analyzing handwriting input that is captured using a digital pen (cf. case study 2) and
electrodermal activity (EDA) captured by the Bitalino sensor board for extending behavior
characterisation for cognitive assessments in cognitive impairment cases.

1.4.3.1 Background
In the future, large scale community screening programs can arise from multimodal data col-
lections to identify profiles of impairment across different cognitive, psychiatric and func-
tional disabilities. Multimodal-multisensor data guide differential diagnosis and further as-
sessment, because digital assessments are unbiased to a large degree. Stress and emotion
changes reflect the activity of the sympathetic branch of the autonomous nervous system
[Boucsein 1992]. Because sweat is an electrolyte solution, changes in the sweat level lead
to changes in the skin conductance or electrodermal activity. Changes in EDA, especially the
skin conductance response (SCR) can be used to detect stress, affect, and arousal [Kurniawan
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et al. 2013, Pecchinenda 1996, Saitis and Kalimeri 2016, Zhai and Barreto 2006]. Because of
this correlation of stress (and cognitive load) and EDA, we believe it to be a suitable tool for
the indication of cognitive impairments, in combination with digital pen features.

1.4.3.2 Problem Description
To include EDA into future digital pen based screening methods is very interesting because
it is a process tracing method (unobtrusive and continuous measure) for neural activity and
can reflect psychological processes, but context and sensor fusion is needed because it is
a multifaceted phenomenon (sensitive but not specific). The digital pen-based environment
provides such a sensor fusion context for its interpretation. Towards a multimodal cognitive
assessment framework, three challenges need to be addressed. First, the selection of a useful
subset of multimodal digital tests together with their implementations. Second, the inclusion
of EDA and pen data into a multimodal-multisensor platform. And third, the study design for
a future multimodal and digital cognitive assessment framework.

1.4.3.3 Solution
One of the most often used assessments for cognitive impairment is the CDT (also see case
study 2), where the subject is asked to draw an analog clock including the numbers of the
clock face and a specific time [Freedman et al. 1994]. Most of the existing tools concentrate
on automating existing scoring schemes, which were originally designed to be processed and
evaluated by therapists. In this described solution, Niemann et al. [2018a] combine EDA with
digital pen data for a direct interpretation of writing behavior and biosignals: In addition to
the traditional assessment categories (e.g., clock face numbers being in the correct place) they
also take into account the EDA sensor data. In order to do so, writing tasks need to be split
into semantic categories first. Figure 1.9 shows the visualization of a selected semantic feature
set in the context of CDT. Participants are asked to draw a clock face with the time set to 10
past 11 o’clock. The drawn clock is then examined by a trained physician and rated based on
a predefined scoring scheme, reflecting the visual appearance and integrity of the clock using
a numerical score. In CDT, we extract the following semantic features from the traditional
scoring system:

• c denotes the center point of the clock (centroid), the closer it is to the center of the
clock’s circle, the more points are awarded.

• Lh and Lm represent the lengths of the hour and minute hands respectively. If the clock
is well drawn, the hour hand should be shorter than the minute hand.

• The angle between the hour and minute hands is denoted as α, together with the
orientation of the hands it can be used to determine if the correct time was set.

• ∆9 is the displacement of clock face digits relative to their ideal location. In this example
it is the vertical offset of digit number 9 to its correct center position.
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name approx. time needed speech input pen input EDA input evaluation
AKT 15 min NO YES YES i-scores
DemTect 6-8 min YES YES YES s-scores
MMSE 5-10 min YES YES YES s-scores
TMT 3-5 min NO YES YES s-i-t-scores
CDT 2-3 min NO YES YES i-t-scores

Table 1.2 Comparison of the most widely used cognitive assessments concerning multimodal input.

With the help of semantic features and appropriate time stamps, the EDA signal can be
fused with the digital pen interpretation and high EDA amplitudes traced back to writing
and sketching tasks. In other words, the deviation of semantic feature interpretations from
the norm indicate stress and cognitive load points that can be synchronized and validated by
the sensitive, but non-specific EDA signal. Similar semantic features can be extracted from
similar tests [Prange et al. 2018b]. The test overview in table 1.2 includes how much time the
assessment usually takes, multimodal-multisensor aspects of active/passive pen input, active
speech input, and passive EDA input, as well as how the assessment is evaluated by experts.
The selection is based on the trade-off between the amount of tasks including handwriting
input, the amount of movement during tasks (which might interfere with EDA signal data),
and the need for additional speech input by the patient towards multimodal-multisensor
interaction. An interesting point is how the evaluation is done: generalized standard scoring
(g-scores) and/or individual scoring (i-scores) and/or time scoring (t-scores) or a combination
of those. G-scores are calculated by adding points for successfully solved questions and tasks.
Final g-scores take age, sex, and similar factors into account. The digitalization of g-scores
is straightforward. I-scores are individual interpretations of the doctor, as in the CDT for
example. There is a huge potential to interpret those i-scores in a standardized way in the
future. T-scores track the time needed to solve specific sub-tasks. They can be calculated
automatically with a digital pen.

Now we focus on the multimodal-multisensor platform (figure 1.8): To capture real-time
handwriting input, we employ the Neo Smartpens N2 and M1 [Neosmartpen 2018]. We use
the NeoSmartpen SDK that is available on Github for connecting the N2 digital pen and
streaming the data using bluetooth. The input is captured as a series of ink samples, which
are grouped together forming strokes in pen-up and pen-down events, including timestamps
and pen pressure data. The obtained digital ink gets automatically analyzed by the handwrit-
ing recognition component, which is based on the Myscript [2018] recognition engine. To
distinguish between handwritten input and correction gestures we employ mode detection de-
scribed by Sonntag et al. [2014a]. Niemann et al. [2018a] use several sensors to capture input
and biosignals of the subject during the assessment and are planning to include more in the
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near future. The Streaming and Recording Layer serves as an abstraction layer for the spe-
cific hardware components used in the Sensor Layer, its main task is to stream and record the
raw sensor data. Depending on the exact sensor type different libraries are used to connect
the sensor to the overall framework. Synchronization, resampling, and input fusion take place
during the Data Preparation & Synchronization Layer. Resulting data are visualized (Data
Visualization Layer) and stored together with the raw input (Data Storage Layer) for later
usage. The Feature Extraction / Data Annotation Layer prepares the handwriting input and
EDA sensor data for machine learning tasks (interpretation and late fusion).

Now the focus is on the study design: Werner et al. [2006] used computerized handwrit-
ing evaluation to discriminate Mild Alzheimer Disease (AD) and Mild Cognitive Impairment
(MCI). They observed that participants with MCI and mild AD spent a significantly longer
time with the pen in the air than healthy participants and that all kinematic measures (ex-
cept for velocity) differ between healthy and impaired participants. Findings by Schroter et al.
[2003] suggest that it is possible to distinguish between different forms of cognitive impair-
ment and healthy subjects by analyzing the kinematic aspects of handwriting movements.
For the digital pen recording, we prepare the paper on the table, positioned in a comfortable
position to the participant, and ask the patients to hold a digital pen in the same hand they
hold a normal pen while writing. Inside the tip of the Neo pen an infrared camera recognizes
the special microdot pattern printed onto the paper, which is merely visible and therefore
similar to normal, white paper. If needed the subject is allowed to fixate the paper using the
non-dominant hand and instructed to avoid movement with that hand if possible.

Movement of the hand results in either more or less pressure on the electrodes and,
therefore, in noisy data. In order to minimize the chance of false signal peaks from unwanted
movement, we suggest putting additional tape on the electrodes to fixate them in-place.
The usage of additional cycling gloves has proven to be useful when recording tasks that
might include frequent movement of the non-dominant hand (e.g. turning pages). From our
experience the amount of movement is highly dependent on the individual subjects. As EDA
is a relatively slow signal (latency of about 0.5 to 5 seconds) [Boucsein 2012] in combination
with the recovery time of the amplitude, there should be at least 6 seconds between each task
of interest. It is advised to run a baseline measurement period between two and four minutes,
when the participant is not engaged in any given task [Braithwaite et al. 2013].

Preliminary evaluations of the study design on the CDT, DemTect, and MMSE suggest
that, through the automation of these cognitive assessments for dementia, the caregiver’s
time spent on conducting the tests can be reduced and his or her attention can be shifted
from test features while writing (e.g., easy-to-assess completion of input fields) to other more
subtle observations. EDA is displayed to the caregiver and helps in interpreting those subtle
observations (yet to be quantified).
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1.5 Future Directions
Future directions include applications of multimodal-multisensor combinations and virtual
reality applications which we will discuss in the rest of this chapter.

1.5.1 Multimodal-Multisensor Combinations
These interfaces combine multiple user input modalities with multiple sensor information
(e.g., location, acceleration, proximity, tilt). Sensor-based cues may be used to interpret a
user’s physical state, health status, mental status, and many other types of information. Sensors
may capture biosignals in addition, such as EDA (see case study 3). On the other hand, users
may engage in intentional actions when deploying sensor controls, such as hand gestures
which are captured by a video sensor.

Simsensei [2014] introduced by [DeVault et al. 2014] is an example of a multimodal-
multisensor combination, i.e., a virtual agent-based interface with an additional collection of
body sensors. This application should recognize and identify psychological distress from mul-
tiple signals in a multimodal dialogue. The mental status subsystem automatically tracks and
analyzes in real-time facial expressions, body posture, acoustic features, linguistic patterns
and higher-level behavior descriptors (e.g., attention and fidgeting). It is very interesting to
mention the two roles the multisensor system has. First, it contributes to the indicator analysis
to identify psychological distress from those multiple signals. Just as in case study 2 with digi-
tal pen features, these distress indicators can allow the clinician or healthcare provider to make
a more informed diagnosis. Second, the sensors’ outputs are broadcasted to the other compo-
nents of the multimodal interface: Sensor outputs assist the virtual human with turn taking,
listening feedback, and building rapport by providing appropriate non-verbal feedback.

Other applications are intelligent tutoring systems for educational healthcare. These sys-
tems use multimodal presentation of information to allow users (e.g., medical students) with
different preferences and abilities to use information in their preferred way. In addition, mul-
tisensor processing might include speaker traits. For example, Chatterjee et al. [2015] analyze
the most discriminative elements of a speaker’s non-verbal behavior that contribute to the
perceived credibility or passionateness.

Another example is Kognit [Sonntag 2015], a research project about multisensor input pro-
cessing to counteract cognitive impairments, based on episodic memory construction through
activity recognition. Kognit includes eye tracking sensors for activity recognition and mul-
timodal speech-based dialogue in augmented reality applications. Eye tracking and activity
recognition are explored in multiple upcoming research projects, but in Kognit, a robot senses
a patient at home and interacts with him or her in a multimodal way. The patient can use
speech or a digital pen to communicate with the robot. Multimodal output involves the robot’s
output from two or more modalities: A head-mounted visual display for the patient is com-
bined with auditory feedback, which is provided as multimodal feedback to the user. Other
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important directions of multimodal-multisensor combinations include clinical multimodal-
multisensor systems for doctors, where incremental knowledge acquisition, multimodal dia-
logue constraints, and virtual reality applications are brought together.

1.5.2 Virtual Reality
The design, development and evaluation of virtual reality (VR) systems targets the areas of
clinical diagnosis and decision support, clinical assessment, and rehabilitation. VR headsets
provide a powerful new tool for future exploration of sensors, for example an Oculus Rift-
integrated binocular eye tracking system [Oculus 2018]. In addition, digital pen-based inter-
faces can be combined with multiple approaches to determining cognitive status through the
detection and analysis of subtle behaviors [Davis et al. 2014].

Examples of futuristic VR applications include clinical training [Rizzo and Talbot 2016].
Multimodal dialogues include avatars that responds to pre-selected choices, for example in
the context of VR exposure therapy for combat-related posttraumatic stress disorder (PTSD)
[Cukor et al. 2016]. Greenleaf [2016] states that significant impact of VR technology will be
in the area of clinical medicine and healthcare, mostly because VR can address and ameliorate
some of the most difficult problems in healthcare, i.e., ranging from mood disorders such as
anxiety and depression to post traumatic stress disorder, addictions, autism, cognitive aging,
and physical rehabilitation. VR examples include interactive visualization of shared electronic
patient records, previously acquired with a remote tablet device, in a virtual environment.
Hand tracking, eye tracking, and vision-based peripheral view monitoring can be integrated.
Luxenburger et al. [2016] provide a combination of hand gesture and eye tracking recognition
in order to assess whether all regions of a medical image have been explored by the doctor in
the VR environment (figure 1.10).

One of the main research questions for the multimodal interaction community is how
to match affordances in VR with the medical task domain to (1) stimulate learning and
understanding, (2) stimulate cognition, (3) improve overall performance in medical decision
support applications. Based on the case study presented in section 1.4.1, Prange et al. [2018a]
developed a multimodal VR prototype for the doctor. The system uses a headset google
in a remote collaboration setting. In the application scenario, the radiologist starts with
a patient examination form by using a tablet with built-in stylus for notes and drawing.
The handwritten multi-stroke sketches are transcribed by using handwriting and gesture
recognition1, then analysed and stored based on common medical ontologies [Sonntag et al.
2009]. The doctor then examines the patient records in VR, and he can interact with the
3D MRI medical images of the patient. Ard et al. [2017] present a similar scenario where
neurology images are displayed in VR. The end-to-end system of Prange et al. [2018a]
provides a GPU-accelerated machine learning model for automated decision support that

1 http://medicalcps.dfki.de/www/wp-content/uploads/BIRADS-30-seconds.mp4
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Figure 1.10 Medical remote collaboration using eye gaze and hand gesture input in VR.

computes therapy predictions in real-time. This video2 shows the complete workflow. The
dialogue system supports task-based interaction with the patient data shown on the virtual
display (e.g., "Open the patient file for Gerda Meier.", "Show the next page."), question
answering functionality about factoid contents of a patient record (e.g., "When was the last
examination?"), and the therapy prediction component ("Which therapy is recommended?").
This prototype suggests that in future work, it is worth investigating how a VR application,
together with dialogue-based therapy prediction, impacts the medical findings process in
daily hospital routine, in particular when 3D images can be observed by haptic objects in
a natural mapping (figure 1.11). Recent advancement of VR technology for clinical purposes,
i.e., added value over traditional diagnosis, decision support, or assessment approaches,
may lead to improved immersion effect. Multimodality aspects that can potentially lead to
immersion are for example the following: pen, speech, (head) movement, VR controllers
for input and a 3D VR scene, 3D image material, animated 3D graphics, and speech for
input and output. Since people’s object and concept perceptions are multisensor, people are
influenced by an array of object affordances (e.g., auditory, tactile) and their visual properties.
In addition, the acoustic qualities of a computer voice can influence a user’s immersion and
engagement. Future work includes additional input modalities such as eye-tracking to improve
the multimodal interaction in VR by other physiological sensors.

2 http://medicalcps.dfki.de/www/wp-content/uploads/KDI_V2_Pro_v04_2.mp4
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Figure 1.11 Immersion by haptic objects in VR.

1.6 Conclusion
We discussed the trends of multimodal-multisensor interfaces of medical and health systems
and emphasized the theoretical foundations of multimodal interfaces and systems in the
healthcare domain. We started with a discussion of the background of medical and health
systems, defined MCPS, and focused on the distinction of clinical and non-clincial systems,
followed by three clinical use case studies. The first study described a multimodal dialogue
system in the radiology domain, the second focused on a multisensor digital pen interface for
cognitive assessment, and the third described a multimodal-multisensor framework including
EDA. Future directions include multimodal-multisensor combinations.

For MCPS, in addition to the specific recommendations of multimodal-multisensor inter-
actions, prototypes will have to go through product lifecycles, including the design, develop-
ment, distribution, verification, validation, deployment and maintenance of these devices. The
exact challenges for real-world MCPS developers, in particular for verification and validation
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of such medical interfaces, remain mostly unknown. For example, EDA-based sensor input is
easy to capture, but one gets motion artifacts if the hand with the electrodes moves as well as
when the state of the hand changes, for instance, from open to close. The changed state of the
hand results in either more or less pressure on the electrodes and, therefore, in more or less
skin conductance. Future research in medical and health systems should include research on
wearable body area networks for continuous monitoring of patients at home, based on wireless
sensor networks for healthcare [Alemdar and Ersoy 2010]. Darwish and Hassanien [2011] for
example explain the important role of body sensor networks in medicine to minimize the need
for caregivers and help the chronically ill and elderly people live an independent life.

In designing future architectures for multimodal-multisensor interfaces for medical and
health systems, important insights clearly can be gained from cognitive principles of sensory
integration of passive and active input modes. One challenge will be to create human-in-
the-loop medical cyber-physical systems that incorporate a broad range of information by
data-driven approaches of large multimodal databases. Those data-intensive systems can
fuse multiple modalities. These infrastructures are capable of integrating multisensor input,
potentially increasing the reliability of a percept through multisensor integration. A further
consideration is improved robustness, and hence trust, in future assistive MCPS, where the
higher level automatic intent recognition leads to collaborative action with humans in medical
care. This also suggests that future research should explore whether individual patients’
biomarkers may provide a useful signature for adaptation purposes (of advanced fusion-
based multimodal interfaces for example). Such an approach is currently limited by diagnostic
tools that are insensitive to changes in behavior future systems should adapt to automatically.
Special, new biomarkers are of particular interest, i.e., markers of emotion regulation, social
response and social attention. For example, learning representations of affect from speech
[Ghosh et al. 2015] can be used in autism detection and treatment and prove that multimodal-
multisensor interfaces have medical applications not only in sensomotoric and cognitive
intelligence aspects, but also emotional and social intelligence aspects of medicine.

It is beneficial to take a broad perspective. We described the AI perspective that prime ap-
plications include clinical decision support, patient monitoring, and automated devices to as-
sist in surgery or patient care. Concerning clinical decision support, advances of multimodal-
multisensor interfaces can promise to change the cognitive tasks assigned to human clinicians
by cognitive assistants and structured patterns of inference.

1.7 Supplementary Digital Materials: Focus Questions
• Why is WCET (worst-case execution time) an important consideration for medical CPS?

• To support individuals on their personal health we must take a life-time perspective.
Why?
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• What is the paradigm shift in healthcare provision and how can we manage patients more
effectively with multisensor information and multimodal communication technologies?

• Why is it important to focus in the first instance on people with certain risk factors such
as cardiovascular risks like high blood pressure or high blood glucose?

• How can emergency response services at home be improved by a multimodal-multisensor
interface?

• Why are automatic prevention services so cost-effective? How can multimodal-multisensor
interfaces support primary and secondary prevention?

• What information can be extracted from active input modalities to support medical
applications based on biosignals?

• How can multimodal-multisensor systems be integrated in daily life situations?

• What adaptation approaches will result in effective multimodal and multisensor inter-
faces for real-word deployment with patients?
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