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Background

I Translated texts tend to be structurally different from original
texts: caused partly by a systematic influence of the source
language on the target language.

I Translationese features retain some characteristics like,
part-of-speech, n-grams, common words or positional token
frequency that pertain to the source language.

I Translation direction is an important factor, yet it is largely
ignored for Machine Translation (MT) evaluations.

Related Work

I [1] showed that language models (LM) compiled from
source-to-target translated texts (TL) outperform the ones
compiled from original target language text (OL) in
statistical machine translation (SMT).

I [2] investigated the effect of translationese on SMT tuning.
I Concurrent to our work is [3] that shows that the use of

translationese as input of test sets results in higher direct
assessment (DA) scores for MT systems.

I More recently, [4] demonstrated the adverse effects of
translationese on MT evaluation results.

Research Questions

I What is the impact of translationese across MT architectures
and languages?

I How can translationese features be used to improve auxiliary
tasks such as MT and vice versa?

Data Statisticsα

I Europarl bilingual corpora from L2s, i.e, German, French,
Italian, Romanian into English.
I FR, DE: 135k sentences parallel segments, 200k TL, 370k OL,

115k monolingual.
I IT: 100k parallel segments, 84k TL, 370k OL, 40k monolingual.
I RO: 95k parallel segments, 12k TL, 80k OL, 6k monolingual.

Approach

I Supervised phrase-based statistical MT (PBSMT)
Modules: Translation model p(s|t), language model p(t)
Training of translation model on parallel segments of data without
any direction specificity.
Training of one language model on TL, one language model on
OL.

I Supervised seq2seq neural MT (NMT)
Single-layer biLSTM encoder-decoder with attention mechanism.
TL model trained on a parallel corpus of original-L2 sentences and
their English translations.
OL model trained on a parallel corpus of original-English sentences
and their L2 translations.

I We use BLEU scores for evaluation of final models which
is performed on the test set.

α rounded-off sentence count.
β Similar trends in the result were observed when experimented
with same amount of TL and OL data.
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Conclusion

I Regardless of language and framework, translationese-based
models outperform original-language models (with the
exception of Romanian-English NMT, possibly due to corpus
size effects on the neural model)

I Resultsβ are consistent despite a significant corpus size
difference between the translated and original English
corpora.

I Translation directionality significantly influences translation
performance.

However, results can’t be compared to existing work due to limited
amount of corpora with labeled translation direction.

Future Work

I Use unsupervised PBSMT+NMT[5] to make use of
monolingual corpora for low-resource scenarios.

Based on - language modeling that act as a denoiser in the neural
case, initialization from dictionaries inferred from monolingual corpora
and iterative backtranslation between monolingual corpora.

I Augment corpora for low-resource language translation with
translationese in closely related languages.

I Use more complex NMT architectures like Transformer[6].
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