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Abstract—Deep learning methods have proven useful for

head pose estimation, but the effect of their depth, type and
input resolution based on infrared (IR) images still need to be
explored. In this paper, we present a study on in-car head pose
estimation on the IR images of the AutoPOSE dataset, where
we extract 64 x 64 and 128 x 128 pixel cropped head images.
We propose the novel networks Head Orientation Network
(HON) and ResNetHG and compare them with state-of-the-art
methods like the HPN model from DriveAHead on different
input resolutions. In addition, we evaluate multiple depths
within our HON and ResNetHG networks and their effect on
the accuracy.
Our experiments show that higher resolution images lead
to lower estimation errors. Furthermore, we show that deep
learning methods with fewer layers perform better on head
orientation regression based on IR images. Our HON and
ResNetHG18 architectures outperform the state-of-the-art on
IR images on four different metrics, where we achieve a
reduction of the residual error of up to 74%.

I. INTRODUCTION

In-car driver or passenger observation aiming for driver

state prediction and action recognition has become very
popular in the last years within the computer vision com-
munity. Research on fundamental computer vision tasks
like detection of facial features, human pose or head pose
estimation pushed by safety-related use cases like driver
drowsiness detection or ADAS-related assistive functions
became even more relevant for the automotive industry.
In general, computer vision algorithms achieve better results
if the images can be pre-processed or normalized. As driving
can be done during a sunny day or in the dark at night,
classical RGB cameras can capture scenes with extremely
varying illumination conditions. Thus, infrared images come
in handy as the images are less dependent on the global
illumination. This makes them interesting for tasks like head
pose estimation in cars. IR image-based head pose estimation
may have different requirements for deep learning, as they
only have one channel and thus contains less information,
but more consistent looking scenes than RGB images. This
paper aims for a study on IR images with different deep
networks and resolution sizes to get more insights on whether
larger networks and higher resolution sizes are relevant for
this task. For this study, we evaluate state-of-the-art deep
learning methods on the AutoPOSE dataset.
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Fig. 1. Pipeline of the evaluation. a) On top is an example frame from
the AUTOPose dataset. b) In the second step, the images are being cropped
to head size and a resolution of 128 x 128 pixel images. Additionally, a
64 x 64 pixel version is being generated. c) In a next step, the different
networks are used to regress a head orientation. The architectures used on
the 128 x 128 pixel images are shown here. d) The outcome is further
compared and evaluated on different metrics.

o We provide algorithms for head pose estimation where
we outperform the state-of-the-art on IR images with
our HON and ResNetHG networks.

« We analyze and compare the effect of deeper networks
and more resolution on in-car head pose estimation
performance based on IR images.

o We prove performance gains with fewer layers in deep
neural networks on IR images.

o We show that IR images with higher resolution result
in a lower pose error.

In the remainder of the paper, we discuss the related work on
head pose estimation and on latest IR head pose datasets in
section II. We discuss head pose estimation methods on the
AutoPOSE dataset in section III and present our evaluation
in section IV.



II. RELATED WORK
A. Head Pose Estimation

Computer vision methods for head pose estimation either
utilize 2D information like RGB [1], [2], IR images [3], or
3D information like depth information [4], [5]. The specific
head pose estimation approach and its category determine a
suitable input type selection. Three main categories of head
pose estimation approaches exist: 3D model registration,
feature-based and appearance-based approaches [6], [7], [4].
3D model registration derives 3D information in form of
a head model from the data. The derived information is
used to regress a head pose. In this category, either 2D
or 3D information or both can be made use of. As a 3D-
only approach of this category, Papazov et al. use facial
point clouds to match them with possible pose candidates
[8]. Ghiass et al. fit a 3D morphable model using the depth
data and including the RGB information of the image, thus
utilizing 2D and 3D information [9]. The model is used to
predict the pose.

Definition of facial features like eye or mouth corners are
needed in feature-based approaches. These are then being
localized in 2D or 3D to perform a pose estimation. Barros
et al. combine two different feature-based approaches to
derive head pose [10]. One approach is the usage of defined
facial landmarks on the face. The second one uses keypoints
computed by motion. The approach requires 2D images only.
Yang et al. combine 2D and 3D information [11]. HOG
features [12] are being extracted from RGB and depth images
to perform a head pose estimation.

Appearance-based approaches make use of the complete
information available to regress a pose and are in most cases
learning-based methods. The information can be either a
raw 2D image or a depth map, as in the HPN approach
in DriveAHead [3]. HPN uses both, 2D and 3D information
in form of IR images and depth information to regress a
head pose. In the POSEeidon-framework [4], [S5], only 3D
information is used. Other types of information like motion
and grayscale image are being derived to regress the 3D
orientation.

Recent works have shown that deep neural network have a
high potential for head pose estimation [4], [5], [13], [14].
Therefore, we exclusively use deep neural networks in our
study, which require large amounts of data.

B. IR Head Pose Datasets

IR images are advantageous for in-car scenarios, as it
dramatically lowers dependency to changing light source
direction when driving. To utilize this vital advantage of IR
images, we considered three IR based head pose datasets.
One of them is the DriveAHead [3] dataset, introduced in
2017. Two more recent head pose datasets based on IR
images are DD-Pose [15] and AutoPOSE [16].

The DriveAHead dataset consists of about 1M frames which
were recorded with the resolution of 512 x 424 pixels. The
dataset provides only cropped images, the mean size being
25x50 [15]. Thus, it is not suitable for our study which

focuses on higher resolution levels.

The dataset DD-Pose consists of 330K 2048 x 2048 pixel
binocluar stereo IR images [15]. It is recorded while driving,
thus containing natural movements. At the same time, as
the recording was done in an uncontrolled environment, the
motion of the car while driving affects the tracking system
accuracy.

The dataset AutoPOSE provides around 1.1M 752 x 480
pixel IR images and was recorded in a car simulator [16].
Subsequently, it contains less natural movement but more
correct ground truth and higher accuracy.

As the goal of our study is to analyze the impact of different
deep neural networks and image sizes on the pose estimation,
we need a large dataset with a small ground truth error. Thus,
we utilize the AutoPOSE dataset to train our deep neural
networks as it contains more data and little ground truth
error.

III. DEEP NEURAL NETWORK ARCHITECTURES

We use different networks on the IR data to perform and
evaluate head pose estimation. We conduct pre-processing
on the raw images, where we clean the images first based
on head visibility. Afterwards, we generate head cropped im-
ages. Figure 1 gives an overview of the evaluation pipeline.

A. Dataset preparation and cropped image generation

In a first preparation step, we sort out frames, where we

keep the frames with rotations higher than 120 degrees for
training to increase robustness, but eliminate them from the
validation and test set. In addition, we equalize and normalize
the images.
Borghi et al. use the output of a different neural network
to compute the 2D head position, which they then use for
cropping the image [4], [5]. Similarly, any open source
library such as [17] can be used to find a head bounding
box. As the orientation is more volatile and more crucial in a
driving scenario, we do not want to add imprecision through
position estimation in this orientation evaluation. Thus we
do not perform head position estimation. Instead, we obtain
the head center from the ground truth data. This prevents
having additional error in the pose estimation part introduced
through another position estimation method. Subsequently,
we determine the head center in image coordinates (2, Y ).
The head bounding box is deduced from the acquired head
center, which is defined by the width wy and the height hy,
used to crop the frames. The horizontal and vertical focal
lengths of the acquisition device, distance D between the
head center and the acquisition device and R, and R,,, which
are the average width and height of a face help deducing a
dynamic size bounding box. The head width R, and height
R, in 3D are defined uniformly as 32 cm, so the head is equal
in size inside the cropped images. Additionally, we discard
the cropped image, if more than a third of the head is not
visible in the frame. We generate two options to evaluate
on different resolution levels, one being 64 x 64, the other
128 x 128 pixels. We train and evaluate a variety of networks
on the generated images for 3D head pose regression.



B. HPN model (DriveAHead)

At first, we consider one of the most recent, learning-based
head pose estimation algorithms on IR data: The HPN model
[3], [18], originally created as a baseline estimator for the
DriveAHead dataset. We reimplement and train the model
from scratch on the AutoPOSE dataset with the same initial
learning rate o = 0.001 with the Adam optimizer [19]. We
only change the output layer to regress euler angles to match
all other models in this paper which regress euler angles. We
perform no further changes on the model.

C. Head Orientation Network - HON

Secondly, we design our own, efficient network named
”Head Orientation Network” (HON) inspired by VGG [20]
and the model of the POSEidon-framework [5] (Figure 2).

Fig. 2. Our Head Orientation Network for 128 pixel images.

We use this model only on 128 x 128 pixel images, as there
is a baseline with a network in the AutoPOSE paper for
64 x 64 pixel cropped images. We train HON with an Adam
optimizer with the initial learning rate o = 0.0001. We exploit
Dropout as regularization (o = 0.5) at the two fully connected
layers. Finally, we develop one more, novel approach for the
head pose estimation task.

D. ResNet-based model

As an alternative to the aforementioned models, we de-
veloped a model based on ResNet [21] and Hourglass [22]
architectures. The model maintains information and feature
within building blocks of ResNet with skip connection as
described in [21]. In addition, lower level features from the
head of earlier layers are being connected with later layers
working on higher level head features with hourglass like
skip connections [22]. Thus, coarse and fine-grained features
of the head are being utilized for a head pose regression. We
choose ResNet-18, which we further elaborate in subsection
IV-B. Figure 3 shows an overview of the architecture, which
we refer to as "ResNetHG” in general and "ResNetHG18”
for the ResNet-18 variant in the following.

We realize the additional two skip connections by first
applying a Convolution with a stride of 8 or 2, respectively.

Then, the output of the source block is being added to the
output of the destination block, additionally applying the
ReLu-Activation.

We trained and tested the described models on cropped
images from the AutoPOSE dataset on two different scaling
levels.

IV. EVALUATION

We train the Deep Neural Networks on the 64 x 64 and

128 x 128 pixel cropped images of the dataset. An exception
is HON, which was specifically designed for the 128 x 128
pixel images.
For training, we define our loss function as done by Borghi
et al. [4], [5] and already used in the baseline of AutoPOSE
[16]. It puts more focus on the yaw, which is predominant in
the automotive context. It is the weighted Lo loss between
label and prediction, where the difference between them
is weighed differently: the yaw with 0.45, pitch with 0.35
and roll with 0.2. Furthermore, we also take 19 of the 21
sequences of the subjects for training and use one sequence
for the validation set and one for the test set. Thus, the
test and validation sets consist of around 50k images each,
whereas the rest is used for training. We train the networks
in randomly chosen batches with a size of 128. We train the
models on 4 Nvidia Geforce GTX 1080 Ti until convergence.
To evaluate the models, we use the benchmarking metrics
defined in the AutoPOSE paper. These metrics are briefly
described in the following section.

A. Evaluation metrics

For evaluation, we use the same 4 metrics defined for
benchmarking purposes in the AutoPOSE paper [16]. y and
y define the labels and the predictions, respectively.

The first metric is the angle estimation error or Mean
Absolute Error (MAE).

1 n
MAE = — -y 1
n;w il (1)

We compute it on all axis seperately and on all axis at
once for the total estimation error. The second metric is the
Standard Deviation (STD), for further insight to the error
distribution around the ground truth.

The third metric is the Root Mean Squared Error (RMSE)
which weighs larger errors higher.

2

RMSE penalizes high variation in predictions of an algo-
rithm, which result in a higher error. Computing the mean
over one or all axis and subsequently calculating the square
root of the outcome produces the same unit as the predictions
and ground truth, thus making it more understandable.

The last metric is the Balanced Mean Angular Error
(BMAE). It enables further insight as it takes the unbalanced
amount of different head orientations due to driving and its
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Fig. 3.

The ResNetHG18 architecture. The "ConvBlock” and the “ResBlock™s are as described in [21]. We added connections from “ResBlockl” to

”ResBlock4” and “"ResBlock2” to "ResBlock3”. The model is suitable for both cropped image sizes.

bias towards frontal orientation by defining different ranges
into consideration:

d :
BMAE = ; biivai € ANN0, K], 3)

@i it+a 1s defined as the average angular error. For our
evaluation, we use the same section size d to 5 degrees and
maximum degree k£ to 120 as selected by Selim et al. [16].
We tested the previously presented, trained models on the

metrics to analyze the effect of different networks with
different sizes and varying input resolutions.

B. Results

The training of the models gave us insight on what type
of architectures are more suitable for IR images on different
resolution levels as we trained on 64 x 64 and 128 x 128
pixel images.

We also evaluate different network depths on ResNetHG
and the HON model to deduce what amount of layers for
IR image-based head pose regression is more fitting. After
comparing ResNet-50, ResNet-34 and ResNet-18 as a basis
including the added skip connections, ResNet-18 showed the
most promising results for the task and data at hand. In
general we found out that the more layer we have in the
ResNetHG and HON, the worse the estimation becomes.
This is illustrated in figure 4, where we plot the error in
degree on three metrics of of the aforementioned variants
of the HON and the ResNetHG architecture. Both results
may be caused due to the IR images being grayscale and
having one channel. In comparison to RGB images which
usually have 24 bit information, grayscale images only have
8 bit information, leading to overparametrization in deeper
networks. Therefore, smaller networks may be sufficient for
IR images. Thus, we settled on our models with fewer layers
for ResNetHG and HON.

At first, we compare the results of our trained networks on
64 x 64 cropped images (Table I).

The results show that the baseline provided based on the

| Metric | Model | Pitch | Roll | Yaw | Avg |

POSEidon [16], [5] 2.96 3.16 3.99 3.37

MAE ResNetHG18 (ours) 4.02 3.32 5.20 4.18
HPN (DriveAHead) [18] 8.18 6.68 13.31 9.39
POSEidon [16], [5] 4.63 3.93 7.82 5.46

STD ResNetHG18 (ours) 6.25 4.98 11.57 7.60
HPN (DriveAHead) [18] | 10.36 9.62 21.68 | 13.89
POSEidon [16], [5] 4.73 4.55 7.98 5.97

RMSE ResNetHG18 (ours) 6.37 5.20 11.58 8.20
HPN (DriveAHead) [18] | 11.25 9.70 21.69 | 15.18
POSEidon [16], [5] 7.10 9.42 19.05 | 11.86

BMAE ResNetHG18 (ours) 12.18 | 13.58 | 35.41 | 20.39
HPN (DriveAHead) [18] | 20.96 | 23.66 | 59.69 | 34.77

TABLE 1

RESULTS ON THE 64 X 64 PIXEL CROPPED IMAGES.

POSEidon network in the dataset paper [16] performs
best on the 64 pixel images, being the smallest network.
ResNetHG18 achieves comparable results on the MAE, STD
and RMSE, especially regarding Pitch and Roll. On the
BMAE, it shows worse results, suggesting a difference in
performance on different orientation ranges of ResNetHG18.
With our 128 x 128 pixel cropped images, we achieve lower
error on every metric (Table II).

The figure shows that our HON achieves the best results
on all metrics and axis, excluding the roll on MAE, where
ResNetHG18 produces less error. ResNetHG18 performs
comparable to HON on many metrics and axis. We observe
a performance loss on the yaw on STD, RMSE and BMAE.
The HPN model leads to considerably higher error rates
compared to the other methods amongst all axis and metrics
and resolutions.

We finally compare the resolution levels and the model
performances. As the POSEidon model was trained only on
64 x 64 pixel images and HON only on 128 x 128 pixel
images, we directly compare them as they are both less deep
networks for each resolution level (Table III).

We can observe that HPN performs similarly on both res-
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shows ResNetHG with ResNet-18, ResNet-34 and ResNet-50 as a basis.

| Metric | Model | Pitch | Roll | Yaw | Avg |
HON (ours) 2.68 2.73 3.56 2.99
MAE ResNetHG18 (ours) 3.29 2.48 4.15 3.30
HPN (DriveAHead) [18] | 8.32 6.87 13.81 9.67
HON (ours) 4.21 3.55 6.99 4.92
STD ResNetHG18 (ours) 4.86 3.74 9.23 5.94
HPN (DriveAHead) [18] | 10.36 | 9.62 | 21.68 | 13.89
HON (ours) 4.25 3.87 7.15 5.30
RMSE ResNetHG18 (ours) 4.98 3.98 9.33 6.52
HPN (DriveAHead) [18] | 11.38 | 9.81 | 21.76 | 15.27
HON (ours) 4.97 7.26 | 15.10 | 9.11
BMAE ResNetHG18 (ours) 8.00 8.18 27.62 | 14.60
HPN (DriveAHead) [18] | 20.93 | 23.96 | 59.4 | 34.81
TABLE II
RESULTS ON THE 128 X 128 PIXEL CROPPED IMAGES.
| Resolution | Model | MAE | STD | RMSE | BMAE |
64 X 64 POSEidon [16], [5] 337 | 546 | 597 11.86
128 x 128 HON (ours) 299 | 492 | 530 9.11
64 x 64 ResNetHG18 (ours) 4,18 | 7.60 8.20 20.39
128 x 128 ResNetHG18 (ours) 330 | 594 | 6.52 14,60
64 x 64 | HPN (DriveAHead) [18] | 9.39 | 13.89 | 15.18 | 34.77
128 x 128 | HPN (DriveAHead) [18] | 9.67 | 13.89 | 15.27 | 34.81

TABLE III
DIRECT COMPARISON OF THE METHODS ON DIFFERENT RESOLUTIONS.

olution levels, having the highest error compared to the
other networks. For our ResNetHG18 architecture, we see a
performance boost on the higher resolution level, as the error
declines on all metrics. Especially the error on various degree
levels as measured by BMAE and outliers as measured in
RMSE declined significantly. Furthermore, in comparison to
the POSEidon result provided in the dataset paper, our HON
model performs better on all metrics.

On a direct comparison of the models on different resolu-
tions, we show that HON outperforms all other methods,
achieving less than 3 degree error on average on the MAE
metric. Our ResNetHG18 model achieves comparable, but
mostly less accurate results than its VGG-based CNN coun-
terparts like POSEidon and HON with less layers. As we
concluded from our ablation study of different depths for
our HON and ResNetHG architectures, less layers result in

better estimation performance. Thus, the better performance
of the CNNs may be caused due to the ResNet-18 foundation
of ResNetHG18, containing considerably more amount of
layers and parameters.

V. CONCLUSION

In this paper, we conducted a study on IR image-based
head pose estimation, in which we compare various deep
neural networks of different types and depths. We designed
an efficient VGG- and POSEidon-inspired network named
HON, a novel network named ResNetHG based on ResNet
and Hourglass and used the DriveAHead network for com-
parison. Based on the AutoPOSE dataset, we extracted
64 x 64 and 128 x 128 pixel cropped head images from the
raw data for training, testing and evaluation. In addition, we
evaluated different depths within our HON and ResNetHG
networks and their effect on the accuracy.

Our evaluation on the AutoPOSE dataset showed that deep
neural networks with fewer layers perform better on head
orientation regression based on IR images. In addition, we
have shown in our experiments on the effects of resolution
that higher resolution images lead to lower estimation errors.
Finally, our HON and ResNetHG18 architectures outperform
the state of the art on IR images with an error with a
reduction of the residual error of up to 64% to 74%,
depending on the metric.

Future work should be aimed at analyzing additional input
resolutions and model depths and benchmarking the models
on the DD-Pose dataset for comparison on real-world data.
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