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ABSTRACT

In this paper we introduce a novel architecture for rapid 
development and assessment of advanced 3D visual 
tracking systems. Indeed, we notice that it does not exist up 
to now a universal tracking approach that fulfills the 
requirements of all possible application scenarios at the 
same time. On contrary, very specific and performing 
solutions can be developed for given situations and uses. 
Therefore, software for visual tracking must be designed as 
a highly flexible system that can be quickly re-configured 
in order to enable the development of optimised solutions 
in terms of accuracy, robustness, frame rate and delay. 
to this purpose we designed an architecture that offers 
many functionalitys,  which can be combined together, and 
thus build a new processing chain.  The overall system 
offers numerous advantages, such as interactive 
programming, real-time access to the data and parameter at 
runtime. 
Index Terms— architecture, middleware, 3D tracking.

1. INTRODUCTION

Precise and fast tracking of TV-cameras represents a key 
technology for 3D-TV. Several systems have been 
developed in the past such as “free-d” from the BBC [1]. 
Nevertheless, these systems require special infrastructure in 
the environment such as markers or emitters, what restrict 
strongly their usability and the range of applications. We 
intend on contrary to develop marker-less solutions that use 
only natural features and a priori 3D information about the 
scene [2]. In order to get more stable results, in particular 
during strong motion, we use a tiny inertial sensor mounted 
onto the camera [3]. The development of such a system is 
challenging; we consider that the design and 
implementation of a powerful software architecture, which 
offers reliability, fast prototyping, and 3D visualisation of 
the tracking results to be a key issue.
The system is dedicated to researchers looking for fast 
prototyping possibilities as well as advanced users who like 
to adapt given tracking procedures to their specific 
application scenario.
This paper first presents related work and reviews very 
briefly existing architecture approaches. It follows an 
analysis of our requirements and the mapping to software 
functionalities. Our approach is described in paragraph 4. 

Paragraph 5 presents major implementation issues and 
finally two examples of instances of the final software.

2. RELATED WORK

Related existing software architectures can be found in 
similar domains such as computer vision, robotics, and 
virtual reality systems.
One well-know system is OpenCV [4], which is actually 
designed as a classical C/C++ library and offers a large 
number of utilities and implemented applications. It 
nevertheless does not support higher-level programming or 
prototyping and is purely restricted to computer vision.
Architectures for mobile autonomous robots are at the first 
sight closer to our needs.  Those architectures are often built 
in a hierarchical manner; the data flow is often linear from 
the sensor over the planning to the actuators modules. Gat 
[5] proposed a three-layer approach, which consists of a 
Controller, Sequencer and Deliberator and provides a 
generic concept for navigation software for robotics.
In the 3D rendering domain, highly configurable systems 
exist [6]. Based on the X3D and VRML standards, they 
allow rapid development of VR applications with X3D 
coding and java scripting. Unfortunately they do not 
contain extensive image processing or even visual tracking 
possibilities. Most of these systems are optimised to send 
data (mostly static) down the graphics hardware and use 
only small amounts of data to control their behaviour. In a 
vision system we need to handle large amounts of image 
data and like to think of stream processing, which is why 
we choose not to enhance one of these systems but build a 
new architecture. However, we consider such systems our 
archetype in terms of runtime configuration and end user 
application building.

3. MAPPING REQUIREMENTS TO 
FUNCTIONALITIES

1. Off-line requirements
Fast prototyping: 3D marker-less tracking is highly 
complex, and today it does not exist one approach that 
covers all the possible scenarios. Therefore, one must have 
the possibility to configure and design a tracking system 
quickly, at a high-abstraction level and without the need of 
any re-compilation.
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System extension: Any extension of the system at 
programming language level should not require changes in 
the overall system.
Integration in VR/AR systems: The final tracking system 
must be easy to integrate in an existing system and offer 
different mechanisms and APIs for that integration. 

2. Run-time requirements
Performance: the main requirement is of course 
performance.  The complexity and flexibility of the system 
should not restrict high performance.
Parallelization:  In particular multi-core processors should 
be supported in an efficient way.  Parallelization should be 
independent from the application and thus occurs 
automatically. 
Reliability: The system designed interactively must be 
very reliable. If hardware components such as sensor or 
system sub-components are not available it should not 
stuck the overall system. Re-start of sub-component should 
be possible.
Testability and tuning: Marker-less tracking is complex, 
especially if several sensors are used.  In order to test and 
tune the system, each component’s parameter and data 
should be accessible and modifiable during the runtime. 
Visualisation: The targeted applications are TV-studios or 
augmented reality set-ups. For validation and usability the 
system should offer real-virtual world registration as well 
as basic 3D visualisation functionalities.

4. DESIGN APPROACH

1. Core concepts
To meet the requirements, we abstract tracking procedures 
into classes with a fixed interface. These are called 
“Actions” and contain atomic pieces of an algorithm like 
an image processing step or feature extraction. Those can 
be easily reused in other tasks or as a stand alone 
processing method. The Actions exchange data through a 
global shared memory, which we call “Dataset”. All objects 
in the Dataset are identified by a unique key which is used 
by the Action to fetch the data before execution. The 
Actions are put together to form algorithms by defining 
data dependencies, which is done by assigning keys to their 
input and output ports. Another view of this concept is the 
top-down view: the algorithms are split into small reusable 
units and encapsulated by the Action interface. 
The indirection over a key element for data access allows 
the use of a graphical interface or a scripting language to 
setup the data-flow. The Action interface also allows export 
of internal variables as attributes, these can be viewed and 
changed in the runtime system to tune process parameters.

2. Parallelization and synchronization

The system offers three different levels of parallelisation, in 
order to support state of the art multi-core and multi-
processor systems.
The lowest level consists in the classical and straight 
forward multi-threading implementation achieved by the 
developer to improve performance of a specific algorithm.
The mid-level is done automatically and is based on 
dependency analysis of the dataflow. As a result we get a 
dependency graph which is used to select Actions with 
independent data inputs, able to run in parallel without any 
conflicts. This method can be seen from the outside as a 
sequential processing and does not require precautions to 
protect the data from access by simultaneous running 
threads, due to the precondition of having independent 
data. The method does not require any knowledge about the 
algorithm and is the easiest to use. Furthermore the user 
can develop the tracking system in a clear hierarchical 
manner (top down). Although this method might not 
produce an optimal result,  it is a convenient way to 
improve performance.
As a third method, our system provides a “Component” 
which is a configuration of Actions, executed in its own 
thread. This concept is important for tracking with devices 
running at different frame-rates, like inertial sensors (e.g. 
100Hz) and cameras (e.g. 25Hz). In such a case the sensor 
interface and a pose estimation algorithm, like a Kalman 
filter, would run in one component at sensor framerate, 
while the slower camera and vision part runs in another 
component.
In order to reduce unnecessary data exchange between 
these components, the data objects incorporate a locking 
mechanism. The same mechanism also handles signals to 
notify other components about changes in the data. 
Additionally our data objects can be time stamped to 
identify related data in an asynchronous setup, where 
multiple sensor inputs must be handled.

3.High-level programming and prototyping
New Action and data classes built into shared libraries can 
be added to our framework by loading them during 
runtime. This makes the system extendable without 
rebuilding it, allowing enhancements by adding more 
problem specific Actions while reusing the existing Actions 
for common processing steps.
All Actions can be instantiated from a TypeFactory [7]. 
This allows creation by name, i.e. Actions can be created 
"dynamically" from a GUI or a configuration file. 
Once the tracking procedure is set up it can be saved to a 
XML configuration file for later usage within a runtime 
system or for further editing. The runtime system can be a 
device backend in a 3D visualisation system.
Image1 shows a snapshot from our GUI front-end. It can be 
used for algorithm configuration and execution. It also 
serves as a testbed for newly implemented processing steps 
and provides generic methods to gain insight into the data 
as it is processed. Furthermore data specific viewers can be 



added together with the processing steps to visualise 
intermediate data and results. In addition it takes time-
samples of the active processing steps which is a first 
instance in finding performance bottlenecks.

[image1] GUI at work, the left shows the attribute editor, the 
right the running actions and contents of the dataset.

5. TRACKING FRAMEWORK

5.1 Basic steps of 3D tracking 
In order to simplify the implementation of tracking 
algorithms in the presented architecture, we define a 
tracking framework consisting of several base classes 
representing the major steps of tracking procedures. We 
identified the following steps which are common to all 
visual 3D tracking systems:
Image processing: This base class contains methods to 
modify the incoming video images to fit the requirements 
of the following processing steps.
Feature detection: At this step higher level information 
such as interest points of an image are generated. This step 
is specific to a given tracking procedure.
Tracking,  matching or classification: The process of 
correspondence determination is very specific to a tracking 
procedure and can consists in searching features seen in the 
past images (tracking), comparison with reference data 
(matching) or features sorting (classification).
Pose estimation: Computation of a camera pose with a 
given set of correspondences.
Between each of these steps, we defined dedicated data 
blocks, which are passed from one processing step to 
another.  Additionally, an Action might need static data 
(e.g. object or scene descriptions). This kind of data can be 
passed to the Action using the Attributes mentioned above.

5.2 Definition of the 3D environment
The basic idea is that every tracker is fed with a (eventually 
preprocessed) live video image and a world description, 

containing one or more objects to be tracked. The tracker(s) 
then tries to track all tracked objects of the world based on 
their object models description. The tracking results are 
written into a pose object in the Dataset.
In our system the real world and our cameras or objects to 
be tracked are represented by a few elementary data 
structures. These are the following:
World  – A “World” is a container for the object 
descriptions. It also defines a reference coordinate system 
for the tracking.
Tracked object – A “Tracked object” is used to describe a 
real world object that has to be tracked. It consists of one or 
more object models containing the necessary data for 
tracking with the different methods.
Object model - The “Object model” represents concrete 
data for tracking (some instances are listed in section 6). A 
tracked object can then be described by one or more object 
models, of different or same type. E.g. an object which will 
be tracked can be represented by 3 Markers, 1 KLT model 
and 1 line model, so it can be tracked with any of these 
methods. The tracked object also contains a 3D-pose 
representing the translation and rotation of the camera in 
object coordinates, a tracker uses this pose to store the 
output of the tracking process.

6. BUILDING BLOCKS FOR VISUAL TRACKING 
ALGORITHM DEVELOPMENT

For our common processing steps we have a library of 
implementations, a few of them are listed in the following 
table:
Image processing:
gradient image, image pyramid, binarisation, edge 
detection, video sources from file and cameras, …
Feature detection:
Harris, KLT [8], SURF [9] 
Correspondence generation:
tracking = KLT point tracking, line tracker
matching = match features with references - MSER [10]
classification = e.g. randomised trees [11]
Pose computation:
generic pose calculation: Kalman Filter,  RANSAC (linear 
or non linear estimation with inliers/outliers tests)
linear pose calculation: HEIV [12]
none linear pose estimation (Levenberg-Marquardt)
Based on this selection from our library we now outline 
two tracking procedures.

6.1 KLT tracker
This tracker consists of a feature extractor which detects 
interest points in the image and cuts out image patches 
acting as the descriptor for a point.
The correspondence generation part tracks these features in 
2D under affine invariance with brightness and contrast 
compensation.  The 2D/3D correspondences are determined 



by back-projection into a given 3D model or by 
triangulation of 2D points from different views. This can be 
combined with non linear pose estimation and RANSAC to 
calculate the camera pose.

6.2 Line tracker
The line tracker [13] projects a “wireframe” 3D model of 
an object into an image and uses orthogonal search for 
gradient extrema at equidistant control points at the model 
lines to fit the model into the image and produces 2D/3D 
correspondences, which can be fed into the pose 
computation. Since this tracker does not use features in the 
sense of points in the image,  it has no feature extraction 
part.

6.3 Combining tracking methods
It is also possible to combine a frame to frame tracker, like 
the KLT, with an absolute tracker, such as a line tracker, to 
compensate drift. Such combinations are very powerful 
because they can benefit from all tracking methods to 
overcome problem situations where a single method would 
fail.

The two procedures described in the last two sections can 
be combined to form a tracking system, which uses the line 
method for initialisation after start up or for re-initialisation 
when the track was lost,  and KLT tracking for real-time 
frame to frame processing. The details about this tracking 
procedure are given in [2].

[image2]: line tracker and KLT, the red lines in the top right 
part show the fitted line model, the top right shows KLT 
features. The bottom left image shows the camera image 
overlaid with the 3d object, bottom left is a visualization of 
intermediate tracking results (uncertainties of the KLT point

7. RESULTS

The overall performance of our tracking systems highly 
depends on the type of tracking and the algorithms in use. 

The framework provided, can be used to efficiently 
implement optimisations and multithreaded algorithms 
using today’s multicore processing environments, thus 
improving performance with less effort. The actual 
performance achievements can be looked up in the papers 
describing our tracking implementation [2][3][13].

8. CONCLUSION

In this paper we presented a novel software architecture 
which allows us to quickly implement new real-time 
tracking procedures, and provides a comfortable 
environment for evaluation and tuning. With the 
architecture we are able to develop complex and 
challenging tracking system and thus push the current state 
of the art in this area.
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