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Abstract—With the aid of accurate channel state information
(CSI) at the transmitter, a wireless system can receive great
performance by adaptively selecting its transmission parameters.
However, the CSI becomes outdated quickly due to the rapid
channel variation caused by multi-path fading, leading to severe
performance degradation. Such an impact is applicable on a
wide variety of adaptive transmission systems, the fading channel
prediction that can combat the outdated CSI is therefore of
great significance. The aim of this paper is to propose two novel
recurrent neural network (RNN)-based predictors, leveraging the
strong time-series prediction capability of long short-term memory
or gated recurrent unit. Performance evaluation is conducted and
the results in terms of prediction accuracy verify that the proposed
predictors notably outperform the conventional RNN predictor.

I. INTRODUCTION

Given accurate channel state information (CSI) at the trans-
mitter, a wireless system is capable of adaptively selecting its
transmission parameters, such as the constellation size, transmit
power, coding rate, precoding codeword and transmit antennas,
to realize great performance gains. In most systems, the CSI is
estimated at the receiver and then fed back to the transmitter.
However, the obtained CSI is probably outdated at the time
of using the selected parameters to transmit. Although a time-
division duplex system can avoid the feedback delay through
channel reciprocity, the processing delay still raises inaccuracy,
especially in high mobility or high frequency band scenarios.
It has been well recognized that the outdated CSI has an
overwhelming impact on the performance of a wide variety of
adaptive transmission systems, spanning from multiple-input
multiple-output (MIMO) [1], multi-user MIMO [2], massive
MIMO [3], interference alignment [4], antenna selection [5],
relaying [6], resource allocation [7], mobility management [8],
to physical layer security [9]. More details can refer to [10].

In order to combat the outdated CSI, the researchers pro-
posed a large number of mitigation algorithms and protocols,
which either passively compensate for the performance loss
with a cost of scarce wireless resources [11] or aim to achieve
merely part of the full potential under imperfect CSI [12]. In
contrast, an alternative technique referred to as channel predic-
tion [13] provides an efficient approach to improve the accuracy
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of CSI directly without spending extra wireless resources.
Through statistically modeling a wireless channel as a set
of radio propagation parameters, two conventional prediction
approaches, namely parametric model [14] and autoregressive
model [15], [16], have been developed. However, there exists
a gap between the model and reality, and additionally the
parameter estimation relying on complex algorithms such as
MUSIC is tedious, making their application in practical systems
infeasible [17]. Due to the data-driven nature that can avoid the
tedious estimation process of propagation parameters, neural
networks [18] attracted the focus of researchers in this field.
Making use of its capability of time-series prediction [19], a
recurrent neural network (RNN) was firstly proposed in [20] to
build a predictor for narrow-band single-antenna channels and
was further extended to MIMO channels by [21], followed by a
frequency-domain RNN predictor [22] suitable for application
in frequency-selective MIMO channels. The authors of [23]
proposed to utilize a real-valued RNN to implement a multi-
step predictor and further verified its effectiveness in a MIMO
system [24]. Furthermore, the feasibility of applying deep
learning was also preliminarily studied [25] and an overview
of RNN-based prediction methods was provided in [26].

Going beyond the conventional RNN predictor, this paper
aims to build two novel recurrent networks, leveraging long
short-term memory (LSTM) and gated recurrent unit (GRU),
respectively. To the best knowledge of the authors, it is the first
time to apply LSTM and GRU for predicting multi-path fading
channels. Performance assessment in terms of prediction accu-
racy is carried out in MIMO fading environment, taking into
account a number of influential factors such as additive noise,
the Doppler shift, the scale of MIMO, activation function, and
the number of hidden neurons. Some representative numerical
results are provided, verifying that the proposed predictors
can achieve a remarkable performance improvement. The rest
of this paper is organized as follows: Section II introduces
the principles of LSTM and GRU. Section III describes the
simulation setup and presents the results. Finally, Section IV
closes this paper with our remarks.

II. AN OVERVIEW OF LSTM AND GRU
Recurrent neural network is a class of machine learning

technique that shows good potential in processing time-series
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Fig. 1. Schematics of an RNN network with an LSTM memory cell.

data by storing the historical input information in its hidden
state [19]. However, it suffers from the problems of gradient
exploding or vanishing during its training, where the back-
propagated error signals either tend to infinity, leading to
oscillating weights, or tend to zero that means a prohibitive
training time or the training does not work at all. To tackle
this problem, Hochreiter and Schmidhuber proposed the LSTM
model in 1997 [27], which was gradually improved over the
years. Despite of its short history after being proposed, LSTM
already achieved a great success in both academia and com-
mercial world, demonstrated by many unprecedented intelligent
services such as Google Translate and Apple iPhone Siri.

The key innovation to enlarge LSTM’s capability to deal with
long-term dependencies is the introduction of a memory cell
and multiplicative gates that regulate the pattern of information
flow. The input gate protects the memory contents stored in
the cell from perturbation by irrelevant inputs, the forget gate
decides how much the historical information remains in the cell,
and the output gate controls the extent to which the memory
information applied to generate the output activation of the
LSTM cell. Unlike a feed-forward network where activations
flow only in one direction from the input to the output layer,
as illustrated in the left part of Fig.1, an LSTM network has
a feedback loop that allows self-recurrent connections between
the neurons within the hidden layer. At each time step, the
cell generates the output y according to the input x, along
with the hidden state feeding back from the previous time step.
Unrolling the network through time, as illustrated in the right
part of Fig.1, the memory cell derives two internal states - the
short-term state st−1 and the long-term state ct−1 - at time step
t − 1. Traversing the cell from the left to the right, ct−1 first
throws away some old memories at the forget gate, integrates
some new memories selected by the input gate, and then sends
out as the long-term state ct for the next time step t+ 1. The
current input vector xt and the previous short-term memory

st−1 are fed into four different fully connected (FC) layer,
generating the activation vectors of gates:

ft = σg (Wfxt +Ufst−1 + bf ) , (1)
it = σg (Wixt +Uist−1 + bi) , (2)
ot = σg (Woxt +Uost−1 + bo) , (3)

where W and U are weight matrices for the FC layers, b stands
for bias vectors, the subscripts f , i, and o associate with the
forget, input, and output gate, respectively, and σg represents
the sigmoid activation function, defining by

σg(x) =
1

1 + e−x
. (4)

Dropping some old memories and adding some new ones, the
previous long-term memory ct−1 is transferred to

ct = ft ⊗ ct−1 + it ⊗ σh (Wgxt +Ugst−1 + bg) , (5)

where ⊗ denotes the Hadamard product (element-wise multipli-
cation) for matrices, and σh is the hyperbolic tangent function
denoted by tanh, defining by

σh(x) =
e2x − 1

e2x + 1
. (6)

Then, the long-term memory ct passes through the hyperbolic
tangent function that is further filtered by the output gate to
produce the short-term memory, as well as the output, i.e.,

st = yt = ot ⊗ σh (ct) . (7)

Since the emergence of LSTM, its original architecture
continues to evolve. Cho et al. [28] proposed a simplified
version with fewer parameters in 2014, known as GRU, which
exhibits even better performance over LSTM on certain smaller
data sets. As shown in Fig.2, the short- and long-term states
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Fig. 2. Illustration of a GRU memory cell.

are merged into a single one in GRU, and a single gate zt is
used to replace the forget and input gates, namely,

zt = σg (Wzxt +Uzst−1 + bz) . (8)

The output gate is removed, but an intermediate state rt is
applied, i.e.,

rt = σg (Wrxt +Urst−1 + br) . (9)

Likewise, the hidden state at the previous time step transverses
the memory cell, drops some old memory, and loads some new
information, resulting in the current state that is given by

st = yt =(1− zt)⊗ st−1

+ zt ⊗ σh (Wsxt +Us(rt ⊗ st−1) + bs) . (10)

III. PERFORMANCE EVALUATIONS

A performance comparison between the proposed LST-
M/GRU predictors and the previous RNN predictor is conduct-
ed and some representative results are provided in this section.
We apply independent and identically distributed (i.i.d) flat-
fading MIMO channels having 4 transmit antennas and a single
receive antenna as the baseline for comparing the performance.
Each subchannel follows the Rayleigh distribution with an
average power gain of 0dB, where its channel gain h is zero-
mean circularly-symmetric complex Gaussian random variable
with the variance of 1, i.e., h∼CN (0, 1). The maximal Doppler
frequency shift is set to fd=100Hz for emulating fast time-
varying environment. To build a data set, continuous-time
channel responses are sampled with a sampling rate of 1KHz,
satisfying a flat fading assumption. The data set contains a
series of 104 consecutive CSI {H[t] |t=1, 2, . . . , 10000}, with
an interval of each time step Ts=1ms. In our simulation, 75%
of the data is allocated for training and the remaining 25% is
used for testing. As an example, Fig.3 visualizes a small piece
of the collected channel data over MIMO subchannel 1.
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Fig. 3. An exemplified illustration of channel data used for training and testing.

TABLE I
SIMULATION PARAMETERS

Parameters Values

Sampling rate fs = 1KHz

Maximum Doppler shift fd = 100Hz

Channel model Rayleigh fading

Doppler spectrum Jakes’s model

MIMO size 4× 1

Batch size 256

Dataset size 104

Training algorithm Adam optimizer

Cost function MSE

(default) Prediction length 1ms

(default) Actuation function tanh

(default) Hidden neurons 10

A 3-layer recurrent network, including an input layer, an
output layer, and a hidden layer with an LSTM or GRU memory
cell, is employed. The default number of hidden neurons is 10,
while the activation function of hyperbolic tangent is applied at
each hidden neuron as default. A training process starts from an
initial state where all weights and biases are randomly selected.
At time step t, recalling Fig.1 and 2, the input of the memory
cell is xt = H[t] and the output is its D-step ahead prediction,
i.e., yt = Ĥ[t + D]. Mean squared error (MSE), the metric
for measuring the prediction accuracy, is chosen as the cost
function during the training phase. It is defined as

MSE =
1

T

T∑
t=1

∥∥∥Ĥ[t+D]− H[t+D]
∥∥∥2 , (11)

where T is the total number of channel samples used for
evaluation, Ĥ[t + D] denotes the predicted channel matrix at
time t, H[t+D] stands for its actual value, and ∥·∥ notates the
Frobenius norm of a matrix. Using the batch training method,
a batch of 256 samples are fed into the recurrent network at
each epoch, the resultant outputs are compared with the desired
values and the error signals are propagated back through the
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Fig. 4. Performance comparisons with respect to: (a) prediction time length; (b) the number of hidden neurons; and (c) the strength of additive noise.
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Fig. 5. Performance comparisons with respect to: (a) activation function and (b) the size of MIMO.

network to update the weights and biases by training algorithms
such as the Adam optimizer used in our simulation. The training
process is iteratively carried out until the network reaches a
certain convergence condition. Once it completes, the trained
recurrent network can be employed to predict the CSI at the
next time steps.

The performance comparison of three predictors in terms
of different prediction lengths is first conducted. Starting from
the one-step ahead mode, i.e., D=1, which corresponds to a
prediction length of 1ms according to the channel sampling rate
of fs = 1KHz. As shown in Fig.4a, the two proposed predictors
clearly outperform the conventional one, where GRU achieves
the best performance that is approximately 3dB better than that
of RNN. Note that Fig.4 displays the MSE values in decibels for
a clear illustration, calculating by MSEdB=10 log10(MSE).
Increasing D from 1 up to 5 incrementally, the results on longer
lengths ranging from 1ms to 5ms are obtained. The prediction
accuracy becomes worse with the growing prediction length,
because channel’s temporal correlation weakens. Except the
case of 5ms, which seems to approach the upper limitation
of channel coherence time given a maximal Doppler shift of
fd=100Hz, the proposed two predictors are better than the

conventional RNN predictor in spite of the change of prediction
length. The impact of different number of hidden neurons on
the performance is also investigated. At the small number of
5 neurons, as illustrated in Fig.4b, LSTM and GRU achieve a
similar MSE that outperforms RNN with a significant gain of
more than 3dB. When the number of hidden neurons grows,
the capability of predictors raises and the accuracy improves
accordingly. Although LSTM performs a bit unstably, two new
predictors can achieve notable performance gains. In particular,
GRU performs more stably and has the gain of at least 1dB
over RNN. In addition, the effect of noise is observed and
illustrated in Fig.4c. The horizonal axis of the figure is the
signal-to-noise ratio (SNR) of the channel samples, where the
rightmost ”infinity” corresponds to an extremely large SNR,
meaning noiseless or noise-free. At the lower end with the
SNR of 15dB, three predictors have approximately the same
(worse) MSE result. That is because the effect of noise is too
strong, leading to large prediction errors that overwhelm the
benefits from improving the capability of predictors. Started
from the SNR of 20dB, the MSE curves are separable, where
the proposed predictors can effectively improve the prediction
accuracy with a gain of around 1dB.



The performance comparison with respect to different acti-
vation functions and different MIMO configurations are further
carried out. As illustrated in Fig.5a, the recurrent networks
can collectively achieve their best performance by using tanh,
which is the default activation function in our simulation. But
our focus is on the largest performance gain brought by the
new predictors, rather than the differences exhibited among
activation functions. It appears in the linear case, where the
prediction accuracies of LSTM and GRU are boosted with an
order of magnitude, dropping the MSE from over 0.025 to
approximately 0.0025. GRU remarkably outperforms RNN in
all activation functions and is also better than LSTM slightly.
Looking finally at the impact of MIMO scale, as shown in
Fig.5b, the performance degrades with the increasing number
of antennas. That is because the neural networks have to deal
with higher dimension input data, bringing burden to both
the training and predicting. In the cases of 2 × 1 to 8 × 1
MIMO, LSTM provides the best prediction accuracy because
its stronger power matches such higher demand.

In a nutshell, it can be concluded from the numerical results
shown in Fig.4 and Fig.5 that the proposed two predictors can
effectively improve the accuracy of multi-path fading channel
prediction, especially the GRU predictor that reaps a significant
gain in all investigated simulation scenarios.

IV. CONCLUSIONS

In this paper, two novel predictors empowered by recurrent
neural networks with long short-term memory and gated re-
current unit, respectively, were proposed for multi-path fading
channels in wireless communications. The performance assess-
ment taking into account a number of influential factors, i.e., the
prediction length, the number of hidden neurons, additive noise,
activation function, and MIMO scale, was carried out. The
numerical results in terms of mean squared error verified that
the proposed predictors can bring a significant improvement
in prediction accuracy, compared with the conventional RNN
predictor. The positive outcomes in this paper encourages a
further exploration on the application of machine learning
techniques in fading channel prediction. As the follow-up
work, we will not only apply advanced learning techniques,
such as deep neural networks, but also design new dedicated
algorithms, to further improve predication accuracy.
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