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Abstract—Channel state information (CSI) plays a vital role
in adaptive transmission systems, which adapt their transmission
parameters to instantaneous channel conditions. However, the
CSI tends to become outdated due to the rapid channel variation
caused by multi-path fading. The inaccuracy of outdated CSI
imposes a severe impact on the performance of a wide range
of wireless systems, highlighting the significance of channel
prediction that can combat the outdated CSI effectively. The aim
of this paper is to propose a novel predictor, leveraging the strong
time-series prediction capability of deep learning, where a deep
recurrent neural network incorporating long short-term memory
or gated recurrent unit is applied. Performance evaluation
is carried out upon multi-antenna fading channels, and the
numerical results in terms of prediction accuracy unveil that deep
learning can bring a notable performance gain compared with
the conventional predictors built on shallow neural networks.

I. INTRODUCTION

With the aid of channel state information (CSI) at the
transmitter, a wireless system is able to adaptively choose its
transmission parameters, such as the transmit power, constel-
lation size, and coding rate, to achieve great performance.
In frequency-division duplex systems, the CSI is obtained
through estimating pilot signals at the receiver and then fed
back to the transmitter. But the CSI is often inaccurate since it
becomes outdated at the time of using the selected parameters
to transmit. Despite the avoidance of the feedback delay in
time-division duplex systems, the processing delay still raises
inaccuracy, especially in high mobility or high frequency band
scenarios. It has been extensively recognized that the outdated
CSI has an overwhelming impact on the performance of a
wide variety of adaptive transmission systems, such as mas-
sive multiple-input multiple-output (MIMO) [1], multi-user
scheduling [2], interference alignment [3], transmit antenna
selection [4], opportunistic relaying [5], resource allocation
[6], mobility management [7], and physical layer security [8].

To alleviate the effect of outdated CSI, a large number of
algorithms and protocols have been proposed by means of
passively compensating for the performance loss with a cost
of scarce wireless resources [9] or aiming to achieve merely
part of the full potential under the assumption of imperfect CSI
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[10]. In contrast, an alternative technique referred to as channel
prediction [11] provides an efficient solution that improves
the accuracy of CSI directly without spending extra radio
resources. Its key idea is to forecast future CSI in advance
with a time span that can counteract the experienced delay.
Through modeling a wireless channel into a set of radio
propagation parameters, two statistical prediction approaches
- autoregressive [12] and parametric model [13] - have been
proposed. However, the modelling is fossilized, leading to
a gap between these models and real channels, and - in
addition - the parameter estimation process relying on complex
algorithms such as MUSIC and ESPRIT [14] is tedious,
destroying its applicability in practical systems [15]. As a
data-driven technique, neural networks [16] can avoid this
estimation process and therefore attracted the interest from
researchers. Taking advantage of its capability on time-series
prediction [17], a recurrent neural network (RNN) was first
proposed to predict single-antenna flat-fading channels in [18]
and was further extended to MIMO channels in [19], followed
by [20] that designed a frequency-domain RNN predictor for
frequency-selective MIMO channels. Besides, the authors of
[21] argued for a real-valued RNN to implement a multi-step
predictor and further verified its effectiveness in a multiple
transmit antenna selection system [22]. More details about the
impact of outdated CSI, existing model-based and data-driven
predictive methods can refer to [23].

By far the aforementioned prediction approaches are still
limited to shallow neural networks, to the best knowledge
of the authors, deep learning (DL) is still untouched in this
field. This paper aims to propose a novel predictor lever-
aging the strong time-series prediction capability of a deep
recurrent neural network, which incorporates long short-term
memory (LSTM) or gated recurrent unit (GRU). Performance
assessment in terms of prediction accuracy is carried out in
multi-antenna fading channels, taking into account a number
of factors such as additive noise, mobility (measured by the
Doppler shift), MIMO scale, activation function, and number
of hidden neurons. Some representative numerical results are
illustrated, unveiling that DL can notably improve prediction
accuracy in comparison with the conventional predictors built
on shallow recurrent neural networks. The rest of this paper
is organized as follows: Section II introduces a deep recurrent
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Fig. 1. Schematic diagram of an example two-hidden-layer deep recurrent network with LSTM memory cells.

network incorporating LSTM or GRU. Section III details the
simulation configuration and presents the numerical results.
Finally, Section IV closes this paper with our remarks.

II. DEEP RECURRENT NEURAL NETWORKS

A recurrent neural network is a class of artificial neural
networks that can well process sequences of input data by
storing historical information in its internal state, exhibiting
great potential in time-series prediction [17]. However, it
suffers from the problems of gradient exploding or vanishing
during its training process, where the back-propagated error
signals either tend to be very large, leading to oscillating
weights and biases, or tend to zero that implies a prohibitively
long training time. To this end, Hochreiter and Schmidhuber
proposed the LSTM model in 1997 in their pioneer work of
[24]. Though its history is not long, LSTM already broke
technological records in machine translation and speech recog-
nition, demonstrated by many unprecedented services with
great commercial success, such as Google Translate and Apple
iPhone Siri.

The key innovation to enlarge LSTM’s capability to deal
with long-term dependencies is the introduction of a memory
cell and multiplicative gates that regulate the pattern of in-
formation flow. The input gate protects the memory contents
stored in the cell from perturbation by irrelevant inputs,
the forget gate decides how much the historical information
remains in the cell, and the output gate controls the extent to
which the memory information applied to generate the output.
Unlike a feed-forward network where activation flow only in
one direction from the input to the output layer, each LSTM
memory cell has a feedback loop that allows self-recurrent
connection. A deep recurrent network can be built by stacking
multiple LSTM memory cells. Without loss of generality, Fig.1
shows an example deep network that consists of an input layer,
two hidden layers, and an output layer.

At an arbitrary time step, as shown in the left part of Fig.1, a
data vector x is fed into the first cell as its input. Together with
the self-recurrent unit feeding back from the previous time
step, an intermediate unit d is generated and forwarded to the
second cell, which gets the output y. Unrolling the network
through time, as illustrated in the right part of Fig.1, a memory
cell holds two internal states - the short-term state st−1 and
the long-term state ct−1 - at time step t − 1. Traversing the
cell from the left to the right, ct−1 first throws away some
memories at the forget gate, integrates new contents selected
by the input gate, and then sends out as the current long-term
state ct. Looking inside the first cell as an example, xt and
st−1 are fed into four different fully connected (FC) layers,
generating three gate vectors:

ft = σg (Wfxt +Ufst−1 + bf ) , (1)
it = σg (Wixt +Uist−1 + bi) , (2)
ot = σg (Woxt +Uost−1 + bo) , (3)

where W and U are weight matrices for the FC layers, b
stands for bias vectors, the subscripts f , i, and o associate
with the forget, input, and output gate, respectively, and σg

represents the sigmoid activation function, defining by

σg(x) =
1

1 + e−x
. (4)

Dropping a few old memories and adding something new, ct−1

is transformed into the current long-term state

ct = ft ⊗ ct−1 + it ⊗ σh (Wgxt +Ugst−1 + bg) , (5)

where ⊗ denotes the Hadamard product (element-wise mul-
tiplication) for matrices, and σh is the hyperbolic tangent
function denoted by tanh, i.e.,

σh(x) =
e2x − 1

e2x + 1
. (6)



In addition, ct passes through the tanh function and is further
filtered by the output gate to produce the short-term memory,
as well as the intermediate unit, i.e.,

st = dt = ot ⊗ σh (ct) . (7)

Since the emergence of LSTM, its original architecture
continues to evolve. Cho et al. [25] proposed a simplified
version with fewer parameters in 2014, known as GRU,
which exhibits even better performance over LSTM on certain
smaller data sets. In a GRU cell, the short- and long-term states
are merged into a single one, and a new gate marked by zt is
used to replace the forget and input gates, namely,

zt = σg (Wzxt +Uzst−1 + bz) . (8)

The output gate is removed, but an internal state rt is applied:

rt = σg (Wrxt +Urst−1 + br) . (9)

Likewise, the hidden state at the previous time step transverses
the cell, drops some old memories, and loads some new
information, resulting in the current state that is given by

st =(1− zt)⊗ st−1

+ zt ⊗ σh (Wsxt +Us(rt ⊗ st−1) + bs) . (10)

III. PERFORMANCE EVALUATION

A performance comparison between the proposed DL pre-
dictor and the previous predictors based on shallow recurrent
neural networks is conducted. Some representative numer-
ical results in terms of prediction accuracy are illustrated
in this section. We apply independent and identically dis-
tributed (i.i.d) flat-fading MIMO channels having 4 transmit
antennas and a single receive antenna as the baseline for
comparing the performance. Each subchannel follows the
Rayleigh distribution with an average power gain of 0dB,
where its channel gain h is zero-mean circularly-symmetric
complex Gaussian random variable with a variance of 1, i.e.,
h∼CN (0, 1). The maximal Doppler frequency shift is set to
fd=100Hz, emulating fast time-varying environment. To build

TABLE I
SIMULATION PARAMETERS

Parameters Values

Sampling rate fs = 1KHz

Maximum Doppler shift fd = 100Hz

Channel model Rayleigh fading

Doppler spectrum Jakes’s model

(default) MIMO scale 4× 1

Batch size 256

Dataset size 104

Training algorithm Adam optimizer

Cost function MSE

(default) Prediction length 1ms

(default) Actuation function tanh

(default) Hidden neurons 30

a data set, continuous-time channel responses are sampled
with a rate of fs=1KHz, satisfying the assumption of flat
fading. The data set contains a series of 104 consecutive CSI
{H[t] |t=1, 2, . . . , 10000}, with a time interval of Ts=1ms.
In our simulation, 75% of the data is allocated for training
and the remaining 25% is testing data.

A conventional RNN predictor, denoted by RNN in the
legend of the figures, is actually a 3-layer recurrent network
consisting of an input layer, an output layer, and a hidden layer.
If the hidden layer is replaced with an LSTM or GRU memory
cell, the network is transformed into a shallow LSTM or
GRU network, respectively, marked by LSTM and GRU in the
legend. The default number of hidden neurons is 30, and tanh
is applied as the default activation function at each hidden
neuron. Regarding the proposed predictor, a two-hidden-layer
recurrent network with a GRU memory cell at each layer is
employed as a representative setup of deep learning, notated
by DL in the legend. For a fair comparison, the total number
of hidden neurons for two hidden layers is also 30. A training
process starts from an initial state where all weights and biases
are randomly selected. At time step t, recalling Fig.1, the input
of the memory cell is xt = H[t] and the output is its D-step
ahead prediction, i.e., yt = Ĥ[t + D]. Mean squared error
(MSE), a metric for measuring prediction accuracy, is chosen
as the cost function during the training phase. It is defined as

MSE =
1

T

T∑
t=1

∥∥∥Ĥ[t+D]− H[t+D]
∥∥∥2 , (11)

where T is the total number of channel samples used for
evaluation, Ĥ[t +D] denotes the predicted channel matrix at
time t, H[t+D] stands for its actual value, and ∥·∥ notates the
Frobenius norm of a matrix. Using the batch training method,
a batch of 256 samples is fed into the network at each epoch,
the resultant outputs are compared with the desired values
and the error signals are propagated back through the network
to update the weights and biases by training algorithms such
as the Adam optimizer used in our simulation. The training
process is iteratively carried out until the network reaches a
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Fig. 2. The results of prediction accuracy for four different predictors.
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Fig. 3. Performance comparisons in terms of: (a) prediction time steps and (b) the strength of noise.
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Fig. 4. Performance comparisons with respect to: (a) activation function and (b) the size of MIMO.

certain convergence condition. Once it completes, the trained
network can be employed to predict a future CSI.

The prediction accuracy of the DL predictor as a function
of the number of hidden neurons is evaluated, in comparison
with those of three conventional predictors. Starting from 10
hidden neurons, as shown in Fig.2, the best result achieved by
the conventional predictors is MSE=0.0021. The proposed
predictor reduces the MSE to 0.0013 under the same number
of hidden neurons. In other words, deep learning can improve
the accuracy of channel prediction remarkably by shifting part
of hidden neurons to an extra layer, implying comparable com-
putational complexity, rather than adding more neurons with
higher complexity. Note that Fig.2 and the following Fig.3
display MSE values in decibels (dB) for a clear illustration,
calculating from MSEdB=10 log10(MSE). With the growth
of hidden neurons, the performance of the predictors improves
at first because the network capability is strengthened. Howev-
er, after a turn point, at which the network capability saturates,
the occurrence of data overfitting worsens performance. For
instance, the minimal MSE of the DL predictor happens
when the total number of hidden neurons is 30. As shown
in Fig.2, the optimal results of RNN, LSTM, and GRU are
0.0015, 0.0012, and 0.0011, respectively, while deep learning

lowers such value to 0.0007. Hence, deep learning remarkably
outperforms shallow neural networks, regardless of different
number of hidden neurons.

The MSE results of the predictors in terms of different
prediction lengths are illustrated in Fig.3a. To begin with one-
step ahead mode, i.e., D=1, which corresponds to a prediction
length of 1ms as the sampling rate is fs = 1KHz. The pro-
posed predictor clearly outperforms three conventional ones,
with performance gains of 3∼5dB. Increasing D from 1 up to
5 incrementally, the results on longer ranges from 1ms to 5ms
are obtained. The prediction accuracy becomes worse with
the growing prediction length, because channel’s temporal
correlation weakens. Under different prediction lengths, deep
learning can receive a gain of 1∼2dB compared with others. It
is worth emphasizing again that the benefit is achieved under
the identical number of hidden neurons, implying comparable
complexity. In addition, the effect of noise is observed and
illustrated in Fig.3b. The horizonal axis of the figure is the
signal-to-noise ratio (SNR) of the channel samples, where the
rightmost ”infinity” corresponds to an extremely large SNR,
i.e., noiseless or noise-free. In noisy channels, three conven-
tional predictors have approximately the same (bad) MSE
results. It implies that an effort to improve accuracy against



noise through using an LSTM or GRU cell to enhance the
capability of a shallow neural network is invalid. In contrast,
deep learning performs well and set a clear performance border
with others, exhibiting a gain of nearly 1dB.

The performance comparison with respect to different acti-
vation functions and different MIMO scales are also carried
out. As illustrated in Fig.4a, the recurrent networks can
collectively achieve their best performance by using tanh,
which is the default activation function in our simulation. In
particular, the prediction accuracy of the conventional RNN
with the linear activation function is obviously weak, because
it cannot deal with nonlinearity well. In this case, LSTM and
GRU boosts the performance with an order of magnitude,
dropping the MSE value from over 0.025 to less than 0.0025.
As we can observe from the figure, deep learning has the best
performance under all kinds of activation functions. Looking
finally at the impact of MIMO scale, as illustrated in Fig.4b,
the performance degrades with the increasing number of
antennas. That is because a neural network has to process
more dimensions of the input data, bringing extra burden in
both the training and predicting. Comparing fairly under the
same total number of hidden neurons, a DL-based predictor
can achieve clear improvement either in a smaller or in a larger
MIMO scale, surpassing all shallow neural networks.

IV. CONCLUSIONS

In this paper, a novel channel predictor empowered by a
deep recurrent neural network incorporating long short-term
memory or gated recurrent unit, were proposed for multi-
path fading channels in wireless multi-antenna systems. Per-
formance assessment taking into account a number of affecting
factors such as prediction range, number of hidden neurons,
additive noise, activation function, and MIMO scale, were
conducted, in comparison with three conventional predictors
based on shallow recurrent neural networks. The numerical
results in terms of mean squared error revealed that deep learn-
ing can effectively improve the accuracy in the prediction of
MIMO fading channels, with remarkable performance gains.
The positive outcomes reported from this paper will encourage
a further exploration of deep learning not only in the field of
fading channel prediction but also other aspects of wireless
communications.
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