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Abstract

While serial robots are known for their versatility in applications, larger
workspace, simpler modeling and control, they have certain disadvantages like lim-
ited precision, lower stiffness and poor dynamic characteristics in general. A parallel
robot can offer higher stiffness, speed, accuracy and payload capacity, at the downside
of a reduced workspace and a more complex geometry that needs careful analysis and
control. To bring the best of the two worlds, parallel submechanism modules can be
connected in series to achieve a series-parallel hybrid robot with better dynamic char-
acteristics and larger workspace. Such a design philosophy is being used in several
robots not only at DFKI (for e.g., Mantis, Charlie, Recupera Exoskeleton, RH5 hu-
manoid etc.) but also around the world, for e.g. Lola (TUM), Valkyrie (NASA), THOR
(Virginia Tech.) etc. These robots inherit the complexity of both serial and parallel
architectures. Hence, solving their kinematics and dynamics is challenging because
they are subjected to additional geometric loop closure constraints. Most approaches
in multi-body dynamics adopt numerical resolution of these constraints for the sake
of generality but may suffer from inaccuracy and performance issues. They also do
not exploit the modularity in robot design. Further, closed loop systems can have
variable mobility, different assembly modes and can impose redundant constraints on
the equations of motion which deteriorates the quality of many multi-body dynamics
solvers. Very often only a local view to the system behavior is possible. Hence, it is
interesting for geometers or kinematics researchers, to study the analytical solutions
to geometric problems associated with a specific type of parallel mechanism and their
importance over numerical solutions is irrefutable. Techniques such as screw theory,
computational algebraic geometry, elimination and continuation methods are popu-
lar in this domain. But this domain specific knowledge is often underrepresented
in the design of model based kinematics and dynamics software frameworks. The
contributions of this thesis are two-fold. Firstly, a rigorous and comprehensive kine-
matic analysis is performed for the novel parallel mechanisms invented recently at
DFKI-RIC such as RH5 ankle mechanism and Active Ankle using approaches from
computational algebraic geometry. Secondly, the general idea of a modular software
framework called Hybrid Robot Dynamics (HyRoDyn) is presented which can be used
to solve the geometry, kinematics and dynamics of series-parallel hybrid robotic sys-
tems with the help of a software database which stores the analytical solutions for
parallel submechanism modules in a configurable and unit testable manner. HyRo-
Dyn approach is suitable for both high fidelity simulations and real-time control of
complex series-parallel hybrid robots. The results from this thesis has been applied
to two robotic systems namely Recupera-Reha exoskeleton and RH5 humanoid. The
aim of this software tool is to assist both designers and control engineers in develop-
ing complex robotic systems of the future. Efficient kinematic and dynamic modeling
can lead to more compliant behavior, better whole body control, walking and manipu-
lating capabilities etc. which are highly desired in the present day and future robotic
applications.





Zusammenfassung

Während serielle Roboter für ihre Vielseitigkeit in verschiedensten Anwendungen
einen größeren Arbeitsbereich, einfachere Modellierung und Steuerung bekannt
sind, haben sie bestimmte Nachteile, wie z.B. eine begrenzte Präzision, geringere
Steifigkeit und schlechte dynamische Eigenschaften im Allgemeinen. Ein paralleler
Roboter kann eine höhere Steifigkeit, Geschwindigkeit, Genauigkeit und Nutzlastka-
pazität unter dem Nachteil eines reduzierten Arbeitsbereichs bieten, wie auch eine
komplexere Geometrie, die eine sorgfältige Analyse und Regelung erfordert. Um die
Vorteile aus parallelen und seriellen Robotern gemeinsam zu nutzen, können diese
zu hybriden Strukturen kombiniert werden, die gute dynamische Eigenschaften bei
möglichst große Arbeitsbereich aufweisen. Eine solche Designphilosophie kommt
nicht nur am DFKI in mehreren Robotern zum Tragen (z.B. Mantis, Charlie, Recu-
pera Exoskeleton, RH5 humanoid etc.), sondern wird weltweit in Robotern, wie z.B.
Lola (TUM), Valkyrie (NASA), THOR (Virginia Tech.) etc. genutzt. Diese Roboter
weisen die Komplexität sowohl serieller als auch paralleler Architekturen auf. Da-
her ist die Lösung ihrer Kinematik und Dynamik eine Herausforderung, da sie zusät-
zlichen geometrischen Einschränkungen geschlossener kinematischer Ketten unter-
liegen. Die meisten Ansätze in der Mehrkörperdynamik nutzen die numerische
Lösung dieser Zwangsbedingungen im Interesse allgemeiner Lösbarkeit , können
dabei aber größere Fehler bei längerer Rechenzeit aufweisen. Außerdem können
sie mögliche Modularitäten des Roboters nicht ausnutzen. Darüber hinaus können
geschlossene Systeme eine variable Mobilität aufweisen, wie auch verschiedene Mon-
tagemodi, was den Bewegungsgleichungen redundante Einschränkungen auferlegen
kann und die Qualität vieler Solver für Mehrkörpersystem beeinträchtigt. Sehr oft
ist nur eine lokale Sicht auf das Systemverhalten möglich. Daher ist es für Geometer
oder Kinematiker interessant die analytischen Lösungen für geometrische Probleme
zu untersuchen, welche einer bestimmten Art von Parallelmechanismus zugrun-
deliegen. Analytische Lösungen sind in ihrer Bedeutung gegenüber numerischen
Lösungen unabdingbar . Techniken wie Schraubentheorie, algebraische Geometrie,
Eliminierungs- und Fortführungsmethoden sind in diesem Bereich beliebt. Aber
dieses domänenspezifische Wissen ist beim Entwurf modellbasierter Kinematik- und
Dynamik-Software-Frameworks oft unterrepräsentiert. Die Beiträge dieser Arbeit
sind zweigeteilt. Erstens wird eine rigorose und umfassende kinematische Anal-
yse für neuartige, kürzlich am DFKI-RIC erfundene Parallelmechanismen wie dem
RH5-Fußgelenkmechnismus und dem Active Ankle unter Verwendung von Ansätzen
aus der algebraischen Geometrie und der Schraubentheorie durchgeführt. Zweitens
wird die allgemeine Idee eines modularen und aufteilbaren Software-Frameworks
namens Hybrid Robot Dynamics (HyRoDyn) vorgestellt, welches für die Lösung der
Geometrie, Kinematik und Dynamik von seriell-parallelen, hybriden Robotersyste-
men mit Hilfe einer Software-Datenbank verwendet werden kann, dass die ana-
lytischen Lösungen für parallele Submodule in konfigurierbarer und einheitenprüf-
barer Weise speichert. Der HyRoDyn-Ansatz eignet sich sowohl für Simulationen



mit hoher Wiedergabetreue, als auch für die Echtzeit-Steuerung komplexer, seriell-
paralleler Hybridroboter. Die Ergebnisse dieser Arbeit wurden auf zwei Robotersys-
teme angewendet, nämlich dem Recupera-Reha Exoskelett sowie dem Humanoiden
RH5 . Ziel dieses Softwaretools ist es, sowohl Konstrukteure als auch Reglungstech-
niker bei der Entwicklung komplexer Robotersysteme der Zukunft zu unterstützen.
Effiziente kinematische und dynamische Modellierung kann zu einem verbesserten
nachgiebigen Verhalten, einer besseren Ganzkörperkontrolle, Geh- und Manipula-
tionsmöglichkeiten usw. führen, die in der heutigen und zukünftigen Robotik sehr
relevant sind und sein werden.
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2 Chapter 1. Introduction

Chapter 1

Introduction

This chapter is the entry point of this thesis and serves three main purposes: 1) it

provides the motivation of the topic and illustrates its relevance, 2) it establishes the

main objectives of this thesis and sets it into the context, 3) it gives a brief descrip-

tion of the methodology developed and highlights the main contributions. Further,

it describes the structure of the thesis with a short summary of the content of each

chapter which lets the readers easily navigate through the document. Also, it notes

the list of scientific publications that were a result of this work.

1.1 Motivation

The thesis is generally motivated to provide a systematic treatment to the increasing

complexity of robotic systems. In particular, last decades have witnessed the rise

of series-parallel hybrid robot designs which inherit the complexity of both serial

and parallel designs. Starting with an introduction to this design architecture in

Section 1.1.1, the complexity of these robotic systems is highlighted (Section 1.1.2)

along with the need to standardize their design and control with modern software

architectures (Section 1.1.3).

1.1.1 Series-Parallel Hybrid Robots

Definition 1 A serial robot is a mechanical system that is designed as a series of links

connected by motor-actuated joints that extend from a base to a single end-effector.

Definition 2 A tree-type robot is a mechanical system that is designed as a series

of links connected by motor-actuated joints that extend from a base to multiple end-

effectors.

Serial and tree-type robots are well known for their versatility in applications,

large workspace, simple modeling and control. Hence, they often represent the state-
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of-the-art in robotic systems. However, they generally feature only limited precision,

low structural stiffness, and poor dynamic characteristics. For these reasons, robots

based on a pure tree type topology suffer from speed and torque limitations. Fig. 1.1a

and Fig. 1.1b show schematics of exemplary serial and tree-type systems respectively.

Definition 3 A parallel robot is a mechanical system that uses several serial chains

to support a single platform, or end-effector.

In contrast to serial robots, parallel robots can provide higher stiffness, speed, ac-

curacy, and payload capacity. On the downside, they possess a reduced workspace and

a more complex geometry which requires careful analysis and control. Parallel robots

have been traditionally used in more tailored use cases such as fast pick-and-place

applications [Brinker and Corves, 2015], driving simulators [Stewart, 1965], fast ori-

entation devices [Gosselin and Hamel, 1994] etc. Table 1.1 presents an overview of

comparison between serial and parallel robots. It can be noticed that advantages and

disadvantages of two designs are almost complemenatry.

(a) Serial robot (b) Tree-type robot (c) Series-parallel hybrid robot

Figure 1.1: Serial, tree-type and series-parallel hybrid robots

Definition 4 A series-parallel hybrid robot is defined as a robot which is built from

a serial or tree-type combination serial and parallel mechanisms.

Series-parallel hybrid designs (see Fig. 1.1c) combining the advantages of se-

rial and parallel topologies are common in the field of heavy machinery, e.g.,

cranes, excavator arms, bulldozers etc. for a long time. Such designs have

also recently caught the attention of robotics researchers from the industry and
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Table 1.1: Comparison of serial / tree-type robots and parallel robots

Serial / Tree-type Robots Parallel Robots

+ State of the art, easier to control − Complex geometry, difficult to control
+ Large workspace − Limited workspace, singularities
− Inherent low stiffness ± High stiffness (inhomogeneous)
− Lower precision + Higher precision
− Lower payload capacity + Higher payload capacity
− Acceleration limits + High accelerations (up to 100 g)

academia. For instance, the stiffness of an industrial manipulator can be sig-

nificantly improved by including a simple parallelogram mechanism. In particu-

lar, industrial robots as ABB’s IRB4400, IRB6660, KUKA’s KR 40-PA., KR 50-PA.,

KR 700-PA robots, and Comau’s Smart NJ series, SR400 utilize this design con-

cept [To and Webb, 2012], [Gautier et al., 1995]. Logabex’s LX4 robot piles four stew-

art platform modules in series to achieve a redundant series-parallel hybrid ma-

nipulator with large workspace and good payload (75 Kg) to weight (120 Kg) ratio

[Mer, 2006]. In academics and R&D, the idea to use closed loop mechanisms and

Parallel Kinematic Machines (PKM) has been utilized more liberally, giving rise

to a number of biologically inspired lightweight robotic systems with good dynamic

characteristics. Some prominent examples including Stewart platform, 2SPU+1U 1

[Serracín et al., 2012], double parallelogram linkage [Kumar et al., 2017a] etc. have

been used in various hybrid robots like hominid CHARLIE [Kuehn et al., 2014], multi-

legged robot MANTIS [Bartsch et al., 2016], AXO-SUIT [Bai et al., 2017] and hu-

manoid robot LOLA [Lohmeier et al., 2006], THOR [Lee et al., 2014] etc. The design

motivation of such hybrid robots is evident: use of PKM-based submechanisms helps

designers to achieve lightweight, modular and compact design while enhancing the

stiffness and dynamic characteristics of the robot.

1.1.2 Complexity in Kinematic and Dynamic Modeling

Our expectations from robotic systems have been steadily increasing. Present day

robots are expected to be fast, agile, safe, soft, precise, compliant, predictable and

intelligent at the same time which can also sometimes sound contradictory. To ad-

dress these demands, the robotic systems need to have an intelligent design as the

intelligence in behavior and control can not alone meet the growing expectations.

Nature has always captivated the attention of roboticists and inspired the design

of robotic systems. Most industrial robotic arms (see Fig. 1.2a) include a shoulder-

1In mechanism theory, it is typical to identify mechanisms using their type. For details,
see [Kong and Gosselin, 2007].
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(a) Anthropomorphic Arm
[Wang and Artemiadis, 2013]

(b) Elbow joint in human
(Adapted from [Arts2Science, 2018])

Figure 1.2: Biologically inspired design in robotics

elbow-wrist architecture similar to humans abstracted with either seven revolute

joints grouped in spherical (S) - revolute (R) - spherical (S) joint pairs or six revolute

joints grouped in universal (U) - revolute (R) - spherical (S) joint pairs. An example

of the former is KUKA iiwa LBR robot and the latter is Staubli RX90 robot. An

advantage of this architecture is the principle solvability of its inverse kinematics

problem. This kind of architecture is inspired from biology but mostly on the surface.

Looking under the skin, one finds various muscle groups actuating a certain joint

in rather a series-parallel architecture. Fig. 1.2b shows the elbow joint in human

arm with the biceps and triceps muscles connected with the rigid skeleton with the

help of tendons. This allows for intelligent placement of the actuators along the links

and improve the payload to weight ratio of the arm. This is becoming the design

inspiration in modern robotics and designers around the world are trying to abstract

different kinematic joints with the help of parallel mechanisms (see right side of

Fig. 1.2b).

On one hand series-parallel hybrid designs combine the advantages of serial and

parallel architectures, on the other, they inherit the kinematic complexity of both

designs. Observing this development in robotics, it can be noticed that robots are

becoming increasingly complex for modeling and control. It is well known that the

inverse kinematics problems for serial chains are difficult to solve and forward kine-

matics problems are difficult to solve for the parallel robots [Nielsen and Roth, 1999].

Hence, both forward and inverse kinematics problems are difficult to solve for series-

parallel designs. While numerical tools for solving such problems exist, they often
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provide only a local view to their kinematic behavior. Tailored analytical solutions to

these problems can provide deeper and global insights into their kinematics. Hence,

it is interesting for geometers and kinematics researchers, to study the analytical so-

lutions to geometric problems associated with a specific type of parallel mechanisms

using methods from screw theory, computational algebraic geometry, distance geom-

etry etc. Their importance over numerical solutions is irrefutable. A novel 3 DOF

parallel mechanism called ACTIVE ANKLE [Simnofske, 2015] (see Fig. 1.3a) was in-

vented to design a modular spherical joint for hip and ankle applications in a full body

exoskeleton. Similarly, a novel 2 DOF orientational parallel mechanism as shown in

Fig. 1.3b has been developed for ankle joint of a humanoid robot at DFKI-RIC. For-

ward and inverse problems related to their geometry and kinematics have not been

studied previously.

(a) 3 DOF ACTIVE ANKLE mechanism (b) 2 DOF RH5 ANKLE mechanism

Figure 1.3: Newly invented orientational parallel mechanisms at DFKI-RIC

Due to difficulties in modeling of series-parallel hybrid robots, their full dynamic

model is not exploited. For example, in most cases these robots are often lim-

ited to position control (e.g. MANTIS, CHARLIE, SHERPATT [Cordes et al., 2018])

where a joint to actuator mapping is utilized to achieve a kinematic control of the

robot. When equipped with real time dynamic control, an inverse dynamic model in

generalized coordinates (neglecting the contribution from the closed loops) is often

combined with an inverse static model in actuation space to compute the actuator

forces [Hopkins et al., 2015], [Vonwirth, 2017], [Paine et al., 2015]. This approach is

used in torque controlled series-parallel hybrid humanoids such as THOR, Valkyrie,

Lola etc. An obvious advantage of this simplification is the reduced CPU time needed

to solve the inverse dynamic model but it leads to unnecessary increase of PD gains

for achieving the desired controller tracking performances. The trade offs of this

model simplification have not been studied systematically.
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Figure 1.4: D-RoCK (Credits: Jakob Schwendner, DFKI GmbH)

1.1.3 Model Based Software Development of Complex Robots

Building a robot is a sophisticated process which requires knowledge from differ-

ent domains like mechanics, electronics, computer science etc. Hence, there is a

strong need to bring together domain specific knowledge from the experts and to

make available to public use. The rise of open source robotics initiatives are serv-

ing to this purpose. A major challenge in robotics is to develop systems efficiently

and cost effectively, which are able to deal with this complexity in a robust manner.

Software plays a decisive role in dealing with the complexity of these systems. The x-

RoCK project series2 is concerned with tools and methods for developing software for

robots. The concepts of modularization and modeling are used to make the process

manageable. The modularity must be reflected in the design of hardware (mechani-

cal structure, electronics) and software components (low level controllers, kinematics

and dynamic modeling, behaviour modeling etc.) which constitute a robotic system.

While modularization enables efficient reuse of components, modeling describes how

these components can be used in a given context. RobMoSys [RobMoSys, 2018] is

another European project in this direction.

The prime focus of the first project in x-RoCK project series namely D-RoCK is

the aspect of model based software development in the context of mobile manipula-

tion systems [D-RoCK, 2018]. The modeling comprises software, hardware and be-

2x-RoCK is a project series at DFKI-RIC involving D-RoCK [D-RoCK, 2018], Q-
RoCK [Q-RoCK, 2019] etc.
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havior of the systems. Behavior is mapped onto software, and software is mapped

onto hardware. At run-time the system state is aligned with the models, to allow

monitoring and dynamic system reconfiguration. Fig. 1.4 demonstrates the three

different aspects i.e. hardware, software and behavior in the development of robots

and the inter-connections between them. A kinematics and dynamics library is one

of the most crucial links between the hardware and behavior models and is an in-

tegral part of the robot motion software domain. It is needed because it provides

a bi-directional mapping between the task space and actuator space of the robots.

While the task space is a natural setting to describe high level behaviors, the actua-

tor space is necessary to perform low level control of the robot. Most kinematics and

dynamics libraries do not exploit the modularity in robot design which is particularly

important in the modeling and control of series-parallel hybrid robots. Further, the

loop closure constraints are resolved numerically which may lead to inaccuracy and

poor performance.

1.2 Objectives

The general objective of this thesis is to provide a systematic treatment of kinematic

and dynamic modeling of series-parallel hybrid robotic systems so that the methods

developed in this thesis can be used by designers and control engineers to develop and

control the complex robotic systems of the future. First, an extensive survey on the

various multi-dof joints used in series-parallel hybrid robots is performed to identify

a notion of modularity. Based on the survey, two main objectives of this thesis are

identified:

1. rigorous kinematic analysis of two novel parallel mechanisms using modern

kinematics approaches

(a) Active Ankle is a 3 DOF parallel mechanism which behaves in an almost

spherical manner and can be used as an abstraction to spherical joints (see

Fig. 1.3a). It finds applications in hip and ankle designs of the Recupera

Exoskeleton.

(b) RH5 Ankle is a 2 DOF parallel mechanism which can be used as an ab-

straction to universal joint (see Fig. 1.3b). It finds applications in the de-

sign of wrist, ankle and torso joints in the RH5 humanoid.

2. develop a software workbench for kinematic and dynamic modeling of series-

parallel hybrid systems which allows

(a) modular composition of multi-dof serial or parallel joints
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(b) reuse of the closed form solutions derived for specific types of parallel mech-

anisms

(c) model abstraction by exploiting the hierarchy in robot design

The methods and software framework developed in this thesis are applied to the

modeling and control of following two series-parallel hybrid robotic systems recently

developed at DFKI-RIC.

1. Recupera-Reha Exoskeleton has 32 active DOFs and is built by combining

several higher DOF joint modules: a Stewart platform of type 6-UPS in torso, a

double parallelogram in shoulder for flexion–extension movement and ACTIVE

ANKLE mechanism as a 3 DOF joint in hip and ankle. Its modular design allows

it to be used in either the wheelchair configuration (see Fig. 1.5a) or the full body

configuration (see Fig. 1.5b).

2. RH5 Humanoid, as shown in Fig. 1.5c, is a lightweight and biologically in-

spired humanoid robot which uses linkages and PKM modules for most of its

joints for e.g. hip flexion-extension, knee, ankle, torso and wrist. The robot also

has 32 active DOFs.

An outlook of this work is to study the model simplification in the dynamic control

of series-parallel hybrid robots. Overall, this work aims to address various aspects

related to the kinematic and dynamics analyses of series-parallel hybrid robots.

(a) Recupera Wheelchair Exo (b) Recupera Full Body Exo (c) RH5 Humanoid

Figure 1.5: System applications: Recupera Exoskeleton and RH5 Humanoid

1.3 Contributions

To identify the notion of modularity, a systematic survey of various series-parallel

hybrid robotic systems developed in the field of legged robotics, exoskeletons and
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industrial automation is performed in mechanics, electronics and software do-

mains [Kumar et al., 2019c]. It was found that most of these hybrid robots utilize

parallel submechanisms as an abstraction to a higher degree of freedom active joint

(for e.g. universal, spherical, six dof). Further, they let the designers exploit the non-

linear transmission, enhance the stiffness and dynamic capabilities of the robot and

produce a light weight modular design.

The first main contribution of the work includes the study of two novel par-

allel mechanisms, namely RH5 ANKLE [Kumar et al., 2018c] and ACTIVE AN-

KLE [Simnofske et al., 2016], which provide an abstraction to universal and spherical

joints respectively. Their designs were optimized for their tailored use cases and a rig-

orous kinematic analysis was performed using approaches from modern kinematics.

Their forward and inverse kinematics problems were solved and their configuration

spaces and work spaces are characterized [Kumar et al., 2018a, Kumar et al., 2018c].

In particular, methods from computational algebraic geometry were used to an-

swer questions regarding their global kinematic behavior [Kumar et al., 2018b,

Kumar et al., 2018c]. Further, loop closure functions (LCF) for these mechanisms

were derived based on such analyses.

The second main contribution of this work is the development of an ana-

lytical and modular software workbench called Hybrid Robot Dynamics (HyRo-

Dyn) [Kumar et al., 2018d] which can be used to solve the kinematics and dynamics

of series-parallel hybrid robots. The overall concept of HyRoDyn software framework

is shown in Fig. 1.6. While numerical resolution of loop closure constraints can al-

ways be chosen as a first approach for studying the kinematic behavior of a parallel

mechanism, to get a full understanding of its behavior requires rigorous kinematic

analysis. Once, the mechanism has been analysed, this knowledge is made reusable

with the help of subsystem software database. The main idea here is to store the an-

alytically derived loop closure functions (LCF) in a configurable mechanism library

which is identified by its type (for e.g. RH5 ANKLE [Kumar et al., 2018c]). Based

on submechanisms defined in a hybrid robot, it can modularly compose the LCF of

the overall system in an automated way. The resulting loop closure Jacobian has a

block diagonal structure that can be exploited in the computation of various forward

and inverse kinematics and dynamics algorithms. The software is implemented in

C++ and utilizes O(n) multi-body dynamics algorithms for tree type systems from

RBDL [Felis, 2017](based on [Featherstone, 2008]). Presently, closed form solutions

to mechanisms such as 1-RRPR, 2-SPU+1U, 2-SPRR+1U, 6-RUS, 6-UPS, parallelo-

gram chains are available in its submechanism libraries and the software can be

used to analytically solve the kinematics and dynamics of arbitrary series-parallel

hybrid robots composed of these submechanism modules. Actuation of the robot can

be arbitrarily selected. The software has been successfully used in the analysis and
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control of some complex series parallel hybrid robots such as the Recupera-Reha ex-

oskeleton [Kumar et al., 2019b] and the RH5 humanoid. Further, it can also be used

to generate Look Up Tables (LUT) for different submechanism modules which allow

for distributed computation of robot’s kinematics.

As an outlook, this research also addresses the model simplification tradeoff for

series-parallel hybrid systems by introducing some error and performance metrics

for variable fidelity modeling of these systems [Kumar et al., 2019a].
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Figure 1.6: HyRoDyn concept: HyRoDyn software framework acts between a hard-
ware database (which stores robot descriptions as models) and software database
(which stores closed form solutions to loop constraints of various parallel submech-
anism modules). Based on the modular description of the hardware model, it can
modularly compose the loop closure function of the hybrid composition and transfer
them to various kinematics and dynamics algorithms.

1.4 Structure

This thesis is organized in a total of 10 chapters which are categorized into 5 parts

namely, I. Introduction and SOTA, II. Geometric Analysis, III. Kinematics and Dy-

namics, IV. HyRoDyn Design and Applications and V. Conclusion. Fig. 1.7 shows

the overall outline of this thesis. In the following, a summary of the each chapter is

provided which lets the readers easily navigate through the thesis document.
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Figure 1.7: Thesis Outline

Part I: Introduction and SOTA collects the Chapters 1 & 2 of this thesis which

provide an introduction and study of state of the art in this area.

Chapter 1 (Introduction) serves as an entry point to the thesis and presents the

motivation, objective and contributions of this work. It also provides details about

the structure of the thesis and how the scientific results from this thesis are dissem-

inated.

Chapter 2 (State of the Art) provides a state of the art survey on various series-

parallel hybrid robots in various application domains. Further, it studies the modular

and distributive aspect of their design in both hardware and software domains. It also

provides a survey on various approaches used in their modeling and control.

Part II: Geometric Analysis collects the Chapters 3, 4 and 5 of this thesis as they

essentially present the geometric analyses of parallel mechanisms.

Chapter 3 (Modern Approaches in Geometric Analysis) provides an overview

of modern approaches in the geometric analysis of closed loop mechanisms.
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Chapter 4 (Study of 2SPRR+1U Device for Abstraction of Universal Joint)

presents a comprehensive geometric analysis of a two DOF ankle mechanism which

can be used as an abstraction to universal joint. The chapter introduces the

mechanim’s architecture, solutions to forward and inverse geometric problems and

workspace analysis using tools from computational algebraic geometry. Variants of

this mechanism are used in RH5 humanoid in the ankle, wrist and torso designs.

Chapter 5 (Study of 3R-[2SS] Device for Abstraction of Spherical Joint)

presents a thorough geometric analysis of a three DOF ankle mechanism which

can be used as an abstraction to a spherical joint. The chapter introduces the

mechanism’s architecture, solutions to forward and inverse geometric problems and

workspace analysis using tools from computational algebraic geometry. A novel tech-

nique for solving its rotative inverse geometric problem using the concept of virtual

joints is also discussed which enables the real time control of this mechanism. This

mechanism has been used in Recupera Exoskeleton in hip and ankle designs.

Part III: Kinematics and Dynamics collects the Chapters 6 and 7 which together

describe the modular recursive methods for solving the kinematics and dynamics of

series-parallel hybrid robots.

Chapter 6 (Screw Theory and Lie Group Methods for Tree Systems)

presents the screw theory and Lie group methods for multi-body dynamics of tree

type systems. The provided treatment is recursive in nature and rooted in graph the-

oretic description of such systems. Its application in solving the forward and inverse

dynamics problems is presented.

Chapter 7 (Modular and Analytical Methods for Series-Parallel Hybrid Sys-

tems) presents the modular and analytical methods for solving the kinematics and

dynamics of series-parallel hybrid systems. The notion of the modularity is motivated

from the robot design and is reflected in the modular enumeration of the graph. This

allows a modular composition of loop closure constraints which can be used for mod-

ular and recursive computation of kinematics and dynamics. The explanation of the

approach is aided with an example of a series-parallel humanoid leg.

Part IV: HyRoDyn Design and Applications is a collection of Chapter 8 and 9

which describe the modular software workbench called HyRoDyn and presents its

application in modeling and control of Recupera Exoskeleton and RH5 humanoid.
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Chapter 8 (HyRoDyn Software Architecture) presents the architecture of Hy-

RoDyn software. It presents how a robot can be described in HyRoDyn and how such

a description can be automatically generated using a visual editor called Phobos. Fur-

ther, it presents the design of HyRoDyn library in C++ and its integration in RoCK

middleware.

Chapter 9 (Results and Applications) presents the results from the application

of HyRoDyn in the simulation, analysis and real time control of series-parallel hybrid

robots. In particular, these results are obtained by solving various kinematics and

dynamics problems for the Recupera Exoskeleton and RH5 humanoid. As an outlook,

it also presents some insights into the possibility of model simplification in rigid body

dynamics computations in case of series-parallel hybrid robots. Finally, its real world

application in the area of robotic rehabilitation is presented.

Part V: Conclusion contains the last and concluding chapter of this thesis.

Chapter 10 (Conclusion and Outlook) presents the summary of the thesis, its

scientific results and identifies the future research directions.

Part VI: Appendix collects the four appendices on the mathematical foundations

required to properly understand the rigid body motion and analytical mechanics.

Appendix A (Lie Groups) presents an introduction to group theory with a moti-

vation to introduce Lie groups which are important objects in the study of rigid body

motion.

Appendix B (Differential Geometry) presents an introduction to differential ge-

ometry with a motivation to introduce Lie algebra which is often exploited in kine-

matic and dynamic modeling presented in Chapter 6 and 7.

Appendix C (Algebraic Geometry) presents an introduction to algebraic geom-

etry which is useful in understanding the algebraic methods for solving loop con-

straints. Its applications are presented in Chapter 4 and 5.

Appendix D (Screw Theory) presents an introduction to screw theory which is

again useful in various formulations presented in Chapter 6 and 7.
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Disclaimer on Content Reuse Single sentences as well as entire sections of this

thesis are taken from my own publications without explicit quotation either because

I am the main author or I contributed the used part to them. The same applies to

figures and tables. However, the papers from which the content has been borrowed

are clearly cited in the beginning of the chapters or sections. The text from this thesis

may be reused in my upcoming publications.

1.5 Dissemination of scientific results

The main scientific results along with their applications from this thesis have been

disseminated through various channels like peer-reviewed publications in journals

and conferences, poster presentations and invited guest lectures at various research

institutes.

1.5.1 Journals

1. Shivesh Kumar, Bertold Bongardt, Marc Simnofske, Frank Kirchner. “Design

and kinematic analysis of the novel almost-spherical mechanism Active Ankle”.

In: Journal of Intelligent and Robotic Systems (JINT), Springer Nature.

2. Shivesh Kumar, Hendrik Woerhle, Mathias Trampler, Marc Simnofske, Heiner

Peters, Martin Mallwitz, Elsa Andrea Kirchner, Frank Kirchner. “Modular De-

sign and Decentralized Control of the Recupera REHA Exoskeleton for Stroke

Rehabilitation”, In: MDPI Applied Sciences 2019, 9, 626.

3. Anirvan Dutta, Durgesh Salunkhe, Shivesh Kumar, Arun Dayal Udai, Suril V

Shah. “Sensorless Full Body Active Compliance in a 6-DOF Parallel Manipula-

tor”, In: Robotics and Computer-Integrated Manufacturing, Elsevier.

4. Shivesh Kumar, Hendrik Woehrle, Jose de Gea Fernandez, Andreas Mueller,

Frank Kirchner. “A Survey on Modularity and Distributivity in Series-Parallel

Hybrid Robots”. In: Mechatronics: The Science of Intelligent Machines, Else-

vier. [under revision]

5. Shivesh Kumar, Andreas Mueller. “An Analytical and Modular Software Work-

bench for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots”.

In: Journal of Mechanisms and Robotics, ASME. [under review]

1.5.2 Book Chapters

1. Shivesh Kumar, Abhilash Nayak, Bertold Bongardt, Andreas Mueller, Frank

Kirchner. “Kinematic analysis of Active Ankle using computational Algebraic
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Geometry”. In: Computational Kinematics, Saïd Zeghloul, Lotfi Romdhane, and

Med Amine Laribi (Eds.). Springer International Publishing, Cham, 117–125.

2. Shivesh Kumar, Abhilash Nayak, Heiner Peters, Christopher Schulz, Andreas

Mueller, Frank Kirchner, Kinematic analysis of a novel parallel 2SPRR+1U an-

kle mechanism in humanoid robot, In: Advances in Robot Kinematics (ARK

2018) Springer Proceedings in Advanced Robotics, vol 8. Springer, Cham.

1.5.3 Conferences

1. Marc Simnofske, Shivesh Kumar, Bertold Bongardt, Frank Kirchner. “Active

Ankle - an Almost-Spherical Parallel Mechanism”. In: 47th International Sym-

posium on Robotics (ISR 2016). Munich, Germany, June 2016.

2. Elsa Andrea Kirchner, Niels Will, Marc Simnofske, Luis Manuel Vaca Ben-

itez, Bertold Bongardt, Mario Michael Krell, Shivesh Kumar, Martin Mallwitz,

Anett Seeland, Marc Tabie, Hendrik Wöhrle, Mehmed Yüksel, Anke Heß, Rüdi-

ger Buschfort, Frank Kirchner. “Recupera-Reha: Exoskeleton Technology with

Integrated Biosignal Analysis for Sensorimotor Rehabilitation”. In 2. Trans-

disziplinäre Konferenz Technische Unterstützungssysteme, die die Menschen

wirklich wollen, Hamburg, VDE, pages 504-517, Dec/2016.

3. Shivesh Kumar, Marc Simnofske, Bertold Bongardt, Andreas Mueller, Frank

Kirchner. “Integrating Mimic Joints into Dynamics Algorithms - Exemplified

by the Hybrid Recupera Exoskeleton”. In: Proceedings of AIR 2017. ACM, NY,

USA, 6 pages. [2nd Prize in Best Oral Presentations, Springer]

4. Christoph Stoeffler, Shivesh Kumar, Heiner Peters, Olivier Bruels, Andreas

Mueller, Frank Kirchner. “Conceptual Design of a Variable Stiffness Mecha-

nism in a Humanoid Ankle using Parallel Redundant Actuation”, In: IEEE

Humanoids 2018, 06.11.-09.11.2018, Beijing, China.

5. Shivesh Kumar, Andreas Mueller. “An Analytical and Modular Software Work-

bench for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots”.

In: 43rd Mechanisms and Robotics Conference, 2019 ASME IDETC/CIE, Ana-

heim, California.

6. Shivesh Kumar, Julius Martensen, Andreas Mueller, Frank Kirchner. “Model

Simplification For Dynamic Control of Series-Parallel Hybrid Robots - A Rep-

resentative Study on the Effects of Neglected Dynamics”. In: IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS-2019), Macau,

China.



1.5. Dissemination of scientific results 17

1.5.4 Posters

1. Shivesh Kumar, Bertold Bongardt, Marc Simnofske, Frank Kirchner. “Task

space controller for the novel Active Ankle mechanism”. In: International

Conference on Robotics and Automation for Humanitarian Applications, (IEEE

RAHA-16).

2. Shivesh Kumar, Kai Alexander von Szadkowski, Andreas Mueller, Frank Kirch-

ner. “HyRoDyn: A Modular Software Framework for Solving Analytical Kine-

matics and Dynamics of Series-Parallel Hybrid Robots”, In: IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, (IROS-2018).

1.5.5 Invited Guest Lectures

1. Design, analysis and control of a novel almost spherical mechanism Active An-

kle, In Kinematics, Dynamics and Mechatronics in Motion Technology - Semi-

nar RWTH Aachen, 06 December 2017 at Institut für Getriebetechnik, Maschi-

nendynamik und Robotik, RWTH Aachen, Germany.

2. Modular and Distributable approach towards Kinematic and Dynamic modeling

of series-parallel Hybrid robots, 11 September 2018 at Institut für Robotik und

Prozessinformatik, TU Braunschweig, Germany.

3. A Modular Software Workbench for Kinematic and Dynamic Modeling of Com-

plex Series-Parallel Hybrid Robots, 26 June 2019 at Institute of Robotics

(ROBIN), Johannes Kepler University, Linz, Austria.

4. A modular approach for kinematic and dynamic modeling of complex robotic

systems using algebraic geometry, 13 July 2019 at the mini-symposium on Al-

gebraic geometry for kinematics and dynamics in robotics at SIAM Conference

on Applied Algebraic Geometry, Bern, Switzerland (co-authored with Prof. An-

dreas Mueller).

5. Overview of Robotics Activities at DFKI-RIC and A Software Architecture for

Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots, 05 Septem-

ber 2019 at NASA Jet Propulsion Laboratory, Pasadena, United States.

1.5.6 Tutorial

1. Lie Group Modeling of Robot Kinematics and Dynamics – A Hands-on Introduc-

tion at ASME IDETC 2019 conference, Anaheim, United States (co-authored

with Prof. Andreas Mueller).
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Chapter 2

State of the Art

This chapter presents the state of the art in design and control of series-parallel

hybrid robots based on [Kumar et al., 2019c]. The chapter is organized as follows.

Section 2.1 provides a survey on various series-parallel hybrid robots in various ap-

plication domains. Section 2.2 presents the notion of modularity and distributivity in

these hybrid robots from a hardware and software perspective. Section 2.3 discusses

the modeling and control methods for these robots while highlighting the theoretical

challenges and adopted solution approaches.

2.1 Series-Parallel Hybrid Designs

Series-parallel hybrid designs that combine the advantages of serial and parallel

topologies are common in the field of heavy machinery, e.g., cranes, excavator arms,

bulldozers etc. for a long time. It is only in the last two decades that the robotics

community has started to adopt these designs for real applications. The survey pre-

sented in this section studies the evolution of series-parallel hybrid robots primarily

in various domains: humanoids/bipeds, multi-legged robotic systems, exoskeletons or

physical man-machine interfaces and industrial automation.

2.1.1 Humanoids

Humanoids are bipedal robots with upper body, arms and head to mimic human

anatomy. These are complex mechatronic systems with highly interdependent tech-

nical aspects. The last few decades of research in humanoid robotics have shown

that humanoids designed for high dynamic performance require a stiff structure and

good mass distribution [Stasse and Flayols, 2019]. Both of these properties can be

achieved by utilizing parallel mechanisms in the design. Fig. 2.1a shows the bipedal

robot LOLA [Lohmeier et al., 2006] developed in 2006, which is probably the first
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humanoid robot designed using a modular parallel joint concept. The non-linear

transmission between the actuator space and output space in a parallel mechanism

can be utilized advantageously by adjusting its design parameters to the torque-

speed characteristics of typical movements of the robot [Lohmeier, 2010]. More-

over, utilizing multi-DOF parallel mechanisms can also help in achieving a more

uniform load distribution on the actuators. The design of NASA VALKYRIE hu-

manoid [Radford et al., 2015] as shown in Fig. 2.1b followed a similar design concept

by utilizing PKM modules for its wrist, torso and ankle joints. Similarly, the robot

AILA [Lemburg et al., 2011] also used PKM modules for her wrist, neck and torso

joints. The torque controlled humanoid TORO from DLR [Englsberger et al., 2014]

and TALOS [Stasse et al., 2017] (PAL Robotics) are largely tree type systems but

utilize a simple parallelogram linkage in their ankle for creating the pitch move-

ment (see Fig. 2.1c). Humanoid robots THOR [Lee et al., 2014], [Lee, 2014] and

SAFFIR [Lahr et al., 2016] from Virginia Tech. use 2 DOF PKM for hip roll-yaw and

ankle joints and utilize Hoeken’s mechanism for hip pitch and knee joints. LARM-

BOT [Cafolla et al., 2016] is a recently reported humanoid robot prototype which uti-

lizes two linearly actuated tripod parallel mechanisms as legs and a cable driven

parallel mechanism (CPDR) for its torso design. CARL is a compliant walking leg

designed using parallel redundant actuation which mimics the behaviour of the hu-

man muscles [Schütz et al., 2017]. RH5 is a lightweight and biologically inspired

humanoid robot recently developed by DFKI-RIC which uses linkages and PKM mod-

ules for most of its joints for e.g. hip flexion-extension, knee, ankle, torso and wrist

[Peters et al., 2017] (see Fig. 2.1d). It weighs 64 kg and is designed for a payload

capacity of 5 kg in each arm.

(a) LOLA (TUM)
[Lohmeier et al., 2006]

(b) Valkyrie (NASA)
[Radford et al., 2015]

(c) TORO (DLR)
[Englsberger et al., 2014]

(d) RH5 (DFKI)
[Peters et al., 2017]

Figure 2.1: Humanoid robots with series-parallel hybrid design
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2.1.2 Multi-Legged Robots

Closed loop linkages and parallel mechanisms are increasingly being used in multi-

legged robots which are specifically designed for high-payload applications. With

their use, certain joints can be strengthened without comprimising the overall leg

inertia. The multi-legged robot MANTIS [Bartsch et al., 2016] depicted in Fig. 2.2a

contains PKMs of type 2-SPU+1U [Serracín et al., 2012] in its ankle joints and slider-

crank mechanisms that drive certain revolute joints in its legs and torso. Fig. 2.2b

shows the hominid robot CHARLIE [Kuehn et al., 2014], featuring a Stewart platform

of type 6-RUS as a six DOF active joint module in spine and neck. It also utilizes

another parallel mechanism in the ankle joint. This robot supports both bipedal

and quadrupedal walking gaits. SHERPATT rover, which is a wheeled-leg hybrid

robot uses a closed loop linkage in inner and outer leg joints [Cordes et al., 2018],

[Cordes et al., 2017]. HERITAGEBOT [Ceccarelli et al., 2018] from University of

Cassino is a hybrid robot which is capable of flying and legged locomotion on ground.

Its modular design makes use of four tripod parallel mechanisms for the leg design.

(a) MANTIS (DFKI)
[Bartsch et al., 2016]

(b) CHARLIE (DFKI)
[Kuehn et al., 2014]

(c) SHERPATT (DFKI)
[Cordes et al., 2017]

(d) HERITAGEBOT

[Ceccarelli et al., 2018]

Figure 2.2: Multi-legged robots with series-parallel hybrid design

2.1.3 Exoskeletons

In exoskeletons or physical man-machine interfaces, most joints require a limited

range of motion because most of the human joints like the wrist or ankle are not

able to perform a 360◦ rotation movement. Hence, in exoskeletons based on serial

kinematic chain, a physical limitation of joint movements is necessary for safety

reasons. Software based joint limits may fail, hence, additional mechanical end

stops are required at each joint. The use of parallel mechanisms in exoskele-

tons can not only lead to a lightweight design but also their limited workspace

may be exploited as an additional safety feature. An early exoskeleton design

utilizing closed loop linkage is BLEEX [Zoss et al., 2006] as shown in Fig. 2.3a.

Fig. 2.3b demonstrates a highly modular light weight RECUPERA full-body exoskele-

ton [Kirchner et al., 2016, Kumar et al., 2019b] with 32 active DOFs which is built by
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combining several higher DOF joint modules: a Stewart platform of type 6-UPS in

torso, a double parallelogram [Kumar et al., 2017a] in shoulder for flexion–extension

movement and ACTIVE ANKLE mechanism [Simnofske et al., 2016] as a 3 DOF joint

in hip and ankle. Due to high modularity of its mechanics and electronics design, the

upper body including the two arms can be mounted on a wheelchair for rehabilitation

applications (see Fig. 2.3c). A passive double parallelogram mechanism has also been

employed in the design of AXO-SUIT [Bai et al., 2017] and a parallelogram mecha-

nism has been used in Harmony dual arm exoskeleton [Kim and Deshpande, 2017].

Another recent development is the SPHERICAL EXO SUIT as shown in Fig. 2.3d which

employs AGILE WRIST mechanism as a 3 DOF spherical joint module at hip and an-

kle joints [Sadeqi et al., 2017].

(a) Berkeley Lower
Extremity Exo(UCB)
[Zoss et al., 2006]

(b) Recupera full
body Exo (DFKI)
[Credits: Meltem Y.]

(c) Recupera wheel
chair Exo (DFKI)
[Credits: Meltem Y.]

(d) Spherical Exo
Suit (SFU, Canada)
[Sadeqi et al., 2017]

Figure 2.3: Exoskeletons with series-parallel hybrid design

2.1.4 Industrial Automation

Hybrid serial-parallel robots are also gaining recognition in the industrial applica-

tions. For high stiffness applications, serial robot designs are often complemented by

a parallelogram mechanism in the design (see Fig. 2.4b). Industrial robots such as

ABB’s IRB4400, IRB6660, KUKA’s KR 40-PA, KR 50-PA, KR 700-PA robots, and Co-

mau’s Smart NJ series, SR400 utilize parallelograms for increasing stiffness of one or

several joints [To and Webb, 2012], [Gautier et al., 1995]. Fig. 2.4a shows Logabex’s

LX4 robot which piles four Stewart platform modules in series to achieve a redun-

dant series-parallel hybrid manipulator with large workspace and good payload (75

Kg) to weight (120 Kg) ratio. The control of such a robot is difficult [Mer, 2006]. The

3-DOF DELTA robot has gained high popularity for fast pick and place operations in

the industry. Soon, a demand for mounting an active wrist was realized and several
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such robots with 1, 2 and 3 DOF wrists were developed. A comparitive study of vari-

ous series-parallel delta robot designs can be found in [Brinker et al., 2017]. FANUC

M-3iA/6A Delta Robot is an interesting six axis series-parallel hybrid robot designed

for pick and place operations in the food industry (see Fig. 2.4c). It is also available

in 4 axis version with a single axis wrist design.

(a) Logabox LX4
[Mer, 2006]

(b) ABB IRB4400
[Courtesy: ABB]

(c) 6-axis DELTA robot
[Courtesy: Fanuc]

Figure 2.4: Some series-parallel hybrid robots used in industrial automation

2.2 Modular and Distributive Aspects

In this section, we present the notion of modularity and distributivity in the series-

parallel hybrid robots from a hardware and software perspective. The subsection

Hardware is further subdivided into Mechanics and Electronics design. The subsec-

tion Software discusses the software architectures used in the control of such robotic

systems.

2.2.1 Hardware

Hardware of any robotic system can be broadly categorized into mechanics and elec-

tronics domain. In the following, we discuss these aspects of series-parallel hybrid

robots.

2.2.1.1 Mechanics

Hybrid robots are robots that are composed of a series of serial or parallel submech-

anisms. Table 2.1 and Table 2.2 present a list of closed loop linkages and parallel

submechanism modules which have been utilized in series-parallel hybrid robot de-

signs discussed in Section 2.1. In all cases, these submechanisms are used as a me-

chanical generator of m-dimensional motion subspaces of SE(3), i.e., they are used

as an abstraction to either an active lower pair joint (for e.g. revolute joint, spherical



24 Chapter 2. State of the Art

T
able

2.1:
L

in
k

ages
an

d
P

K
M

m
odu

les
in

series-parallel
h

ybrid
robots

w
h

ere
platform

coordin
ates

can
be

m
easu

red
directly

(red,green
an

d
yellow

colors
den

ote
active,E

E
an

d
oth

er
passive

join
ts)

M
ech

an
ism

P
ractical

A
pplication

s

S
ch

em
atic

T
ype

M
obility

(m
)

Join
t

M
odu

le
H

ybrid
R

obot

1-R
R

R
R

1
D

O
F

rotation
al

A
n

k
le

pitch
S

eries-elastic
leg

A
n

k
le

pitch
S

h
ou

lder
fl

exion
-exten

sion
Join

t
2

an
d/or

Join
t

3

T
O

R
O

h
u

m
an

oid
[ E

n
glsberger

et
al.,2014]

A
T

R
IA

S
[ H

u
bick

i
et

al.,2016]
T

A
L

O
S

h
u

m
an

oid
[ S

tasse
et

al.,2017]
R

E
C

U
P

E
R

A
-R

E
H

A
[ K

u
m

ar
et

al.,2017a],H
A

R
M

O
N

Y
[K

im
an

d
D

esh
pan

de,2017]
A

B
B

IR
B

4400,K
U

K
A

K
R

40-P
A

etc.

1-R
R

P
R

1
D

O
F

rotation
al

H
ip,T

orso
H

ip
fl

exion
-exten

sion
,K

n
ee

In
n

er
an

d
O

u
ter

leg
join

ts
H

ip-K
n

ee,K
n

ee-A
n

k
le

join
ts

M
A

N
T

IS
[B

artsch
et

al.,2016]
R

H
5

H
u

m
an

oid
[ P

eters
et

al.,2017],H
A

D
E

leg
[G

arcia
et

al.,2011]
S

H
E

R
P

A
T

T
rover

[ C
ordes

et
al.,2017]

C
A

R
L

[ N
ejadfard

et
al.,2018]

2-S
P

U
+

1U
2

D
O

F
u

n
iversal

W
rist,T

orso
A

n
k

le
A

n
k

le
H

ip
R

oll-Y
aw

,A
n

k
le

T
h

u
rster

steerin
g

R
H

5
h

u
m

an
oid

[ P
eters

et
al.,2017]

M
A

N
T

IS
[ B

artsch
et

al.,2016]
L

O
L

A
h

u
m

an
oid

[ L
oh

m
eier

et
al.,2006]

T
H

O
R

[ L
ee

et
al.,2014],S

A
F

F
IR

[L
ah

r
et

al.,2016]
A

U
V

L
en

g,E
u

rE
x

[H
ildebran

dt
et

al.,2013]

2-P
U

S
+

1U
2

D
O

F
u

n
iversal

W
rist,A

n
k

le
an

d
T

orso
V

A
L

K
Y

R
IE

h
u

m
an

oid
[ R

adford
et

al.,2015]

2-S
P

R
R

+
1U

2
D

O
F

u
n

iversal
A

n
k

le
R

H
5

H
u

m
an

oid
[ K

u
m

ar
et

al.,2018c]

2-S
U

[1-R
R

P
R

]+
1U

2
D

O
F

u
n

iversal
A

n
k

le
C

H
A

R
L

IE
[ K

u
eh

n
et

al.,2014]



2.2. Modular and Distributive Aspects 25

joint etc.) or universal joint which are building blocks of most robotic systems. It can

be immediately noticed from these tables that parallel submechanism modules are

mostly used as abstractions to orientational joints, exceptions are their application

as six dof joint in CHARLIE, RECUPERA-REHA exoskeleton and 2R1T wrist in R1

humanoid [Parmiggiani et al., 2017]. The most popular abstractions are discussed in

the following.

• 1 DOF Revolute joint: Abstraction of a revolute joint is basically done using

variants of a four bar linkage. For a simple 1 : 1 transmission, a parallel-

ogram [Englsberger et al., 2014], [Stasse et al., 2017] or double-parallelogram

linkage [Kumar et al., 2017a] is often employed. In comparison to direct drive

joints, the main motivation here is to reduce the resulting inertia of the robot

or to create a virtual center of rotation. The slider-crank mechanism (identified

as 1-RRPR in Table 2.1) is used to exploit the non-linear transmission prop-

erties of the mechanism. Also, the prismatic actuation gives the possibility to

mount the actuator along the link longitudnally which is advantageous from a

construction perspective.

• 2 DOF Universal joint: Abstraction of a universal joint is very useful when the

joint requires only a limited range of rotational motion and has to be placed

away from the base of the robot. Hence, the most common application is the de-

sign of ankle joint in humanoids or legged robots. They also have been used

in the design of wrist and torso mechanisms. All the orientational parallel

manipulators that have been used in this context are equipped with a passive

leg containing the universal joint [Kuo and Dai, 2013]. Such designs are very

advantageous because they do not have output singularities and provide good

stiffness to the moving platform. Also, it is easy to install rotary encoders to

measure the orientation of the platform directly so that forward kinematics of

the mechanism is not required to be solved in real time.

• 3 DOF Spherical joint: Since the workspace of 3 DOF orientational par-

allel manipulators is limited, they have been mostly used in the de-

sign of exoskeletons for the abstraction of hip and ankle joints. AGILE

EYE [Gosselin and Hamel, 1994] which was originally developed as a fast cam-

era orienting device is used as hip and ankle module in SPHERICAL EXO SUIT

concept. The disadvantage of this design is that it requires all the revolute joint

axes to intersect at one point which is not good for high payload or impact appli-

cations. ACTIVE ANKLE [Kumar et al., 2018a] is an interesting parallel mecha-

nism which overcomes this problem by utilizing spatial quadilateral mechanism

in each leg where only push-pull forces can exist in each leg. However, it is an
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almost spherical mechanism and is only suited for applications where small

translation of the EE point can be tolerated.

• Six DOF free joint: Many joints in humans like spine are actually very compli-

cated and not easy to abstract using lower kinematic pairs. To provide a 6 DOF

active spine to human-like robots, variants of STEWART GOUGH platform have

been utilized. In this survey, one could find designs with both rotary (6-RUS)

and prismatic actuation (6-UPS). The active spine can also be used as a 6 DOF

force-torque sensor and improves the workspace of limbs and lowers the veloc-

ity requirements of other limb joints [Kuehn et al., 2018]. The disadvantage of

using such mechanisms is the complicated nature of their forward kinematic

problem.

Table 2.1 shows the list of linkages and parallel submechanisms where the plat-

form coordinates (highlighted with green) are a subset of coordinates used to de-

scribe the mechanism. Since, it is well known that it’s difficult to solve the forward

kinematics of the parallel robots in real time, there is a tendency to choose paral-

lel mechanisms where additional sensors can be integrated to measure the platform

coordinates. Table 2.2 shows the list of parallel submechanisms where the platform

coordinates are not a subset of mechanism’s coordinates. Here, its also not possible

to put extra sensors to measure the platform coordinates directly but in some cases

they may be integrated in other passive joints to simplify the calculation of platform

coordinates from actuator states. Hence, the use of such parallel submechanisms

is less common in the design of series-parallel hybrid robots in comparison to the

ones presented in Table 2.1. Overall, two observations can be made from this survey:

submechanism modules are used as a mechanical generator of a motion subspace

(revolute, universal, spherical, free joint etc.) and the same type of submechanism

with different physical parameters is utilized as a module to serve different purposes

(ankle, wrist, torso joints etc.) in the same robot.

2.2.1.2 Electronics

One important development in robot electronics, that is especially helpful for parallel

and hybrid robots, is the use of decentralized or distributed processing and control

architectures.

In classical i.e. centralized control systems, all actuators are connected to one

central host computing system (Fig. 2.5 (a)). In contrast to these, distributed pro-

cessing systems (Fig. 2.5 (b, c)) consist of multiple computing devices (often called

processing elements or nodes) that are connected via a network to exchange data

with one another. Decentralized processing systems can be used to implement lo-
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cal controllers that control multiple joints in a synchronized fashion (see Secs. 2.2.2

and 2.3.4), which is especially important for the control of parallel and, hence, hybrid

systems.

In both centralized and distributed systems, a communication network

is required to exchange data between sensors, actuators, and controllers.

This is accomplished by using field-bus systems that are also often used

in the industrial or automotive fields like CAN, CAN-FD or higher-level

protocols like PROFIBUS [PROFIBUS & PROFINET International (PI), a].

Nowadays, different modified Ethernet-based protocols with realtime

support [Gutiérrez et al., 2018] are becoming increasingly popular, for

example PROFINET [PROFIBUS & PROFINET International (PI), b],

EtherCAT [EtherCAT Technology Group, 2003] or SER-

COS [Sercos International e. V., 2005]. Although the required bandwidth to

coordinate several joints is quite low (depending on the control strategy, the ex-

changed data consists of simple parameters, e.g., desired position, velocity, torque),

the response time should be as short as possible.

The nodes contribute to the overall processing of the system by performing specific

processing tasks and providing additional capabilities, for example peripherals. Dis-

tributed architectures are important for modularity, since they provide the possibility

to build independent substructures of robot systems. Local controllers implemented

in the distributed hardware can be used with high sensor sampling rates and a low

delay in comparison to a centralized approach.

A hierarchy with three types of modularity can be defined as follows: (1) joint-

level modules, i.e., highly integrated, fully operational modules that include an actu-

ator, sensors, and electronics for signal processing, communication and control. Com-

mercial examples are the Robotis Dynamixel and Dynamixel Pro series [Robotis, b,

Robotis, a], the Kinova KA-58 and KA-75+ actuators [Kinova, 2018], the Schunk

PowerCube, PR 2, PRH, PDU 2 and PSM 2 series, TREE actuators [TREE, 2018]

or the ANYdrive [ANYbotics, 2016]. However, reusable joint modules are not only

used commercially, but also developed by research facilities to build novel and ex-

perimental robotic systems, such as the DLR LWR III robot [Schaeffer et al., 2007]

or DFKI Charlie [Kuehn et al., 2016] joints. Further examples support often addi-

tional features, such as joint-modules with series elastic actuation as used in the

WALK-MAN [Negrello et al., 2015] and RoboSimian [Hebert et al., 2015] robots, an

integrated inertial measurement unit [Rader et al., 2017], or even space compliance

such as the DFKI-X joint [Sonsalla et al., 2017]. However, it is important to note that

many research joint modules usually do not have integrated, but closely attached

electronic controllers.

Series-parallel hybrid robots that contain reusable joint modules are
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the CHARLIE [Kuehn et al., 2014], MANTIS [Bartsch et al., 2016] and RECU-

PERA [Kirchner et al., 2016] systems. In these examples one or a few actuators are

combined with a processing system that is responsible for the first level control of an

actuator. Joint-specific limits (position, velocity, torque) can also be implemented in

the joint-level controller for a hierarchical safety implementation.

Joint level modules can be used to create systems with (2) submechanism-level

modularity, i.e., more complex subsystems that need to be controlled as a whole.

Examples are classical serial mechanisms like limbs or parallel mechanisms as

shown in Tab. 2.1 and 2.2. Examples for such independently working modules

are limbs in the ECCE humanoid robot [Jäntsch et al., 2010] or the ROBONAUT

hand [Bridgwater et al., 2012] or the spine in CHARLIE [Kuehn et al., 2014]. One

important point to note is that the use of these mechanisms requires to solve the

(forward/inverse) kinematics and dynamics of the corresponding subsystem, which

can be performed locally to maintain modularity. This constitutes the second-level

control of the robotic system.

The next modularity level is (3) the complete robot system itself (which can

in turn build teams or swarms with other robots). Regarding the processing

architectures, it can be observed that even in robots that consist of indepen-

dent modules, the distributed computing located in the modules are usually con-

nected to a central host that is responsible for overall control. Different de-

vices can be used to implement a distributed robotic control system, e.g., mi-

crocontrollers as in ECCE [Jäntsch et al., 2010] or FPGA/processor combinations

as in the ROBONAUT [Ambrose et al., 2000]/ROBONAUT 2 [Diftler et al., 2011] and

VALKYRIE [Radford et al., 2015] robots or CHARLIE [Kuehn et al., 2014], MAN-

TIS [Bartsch et al., 2016] and RECUPERA [Kirchner et al., 2016].

Actuator

Computing

node

Network

connection
(a) Centralized (b) Central host

 + joint modules
(c) Central host

+ submechanism modules

Figure 2.5: Different types of centralized and modular processing/control architec-
tures.
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2.2.2 Software

Software is important for modular robots in especially two aspects: (1) during the

design phase for simulation and design optimization, and (2) during the runtime/ap-

plication phase.

It is widely acknowledged that the construction of a multi-DOF robot is a highly

challenging task. Hence, to simplify this design process, reusable modules can be

used. This leads to the development of tools like H-ROS [Zhang et al., 2012] and

HRIM [Zamalloa et al., 2018]. Especially for modular series-parallel hybrid robots

like the systems introduced in Sec. 2.1, the use of appropriate design and mod-

elling software is important (see Sec. 2.3.1). For modular robots, frameworks like

D-Rock [D-RoCK, 2018] can be used, which provide tools for a model-based robot de-

velopment process. For the remainder of this section, however, we will focus on the

software frameworks that are used during the runtime/application phase.

In modular robots with distributed control, it is important to enable differ-

ent components to exchange data in order to synchronize the control of sev-

eral joints. This is especially important for modular robots that contain PKMs

(see Sec. 2.3.4). In this case, the overall operation of the robot is distributed

across multiple processors to maintain modularity and, hence, several actuators

have to be coordinated. Accordingly, some sort of communication middleware is

required [Mohamed et al., 2009, Elkady and Sobh, 2012]. The middleware should

provide a coherent interface to the different hardware components and provide

mechanisms of data transfer. Many different robot middleware frameworks are

available for the research community, the most popular examples probably the

Robot Operating System (ROS) [Quigley et al., 2009] or Yet Another Robot Platform

(YARP) [Metta et al., 2006]. Each framework has specific advantages and core ap-

plication areas (e.g., perception, manipulation, locomotion for YARP, and navigation,

planning for ROS [Aragão et al., 2016]).

All of these frameworks support some kind of modularity. In ROS, for example,

the functionality is implemented inside so-called nodes. Each node runs inside a

different process, the communication between nodes is mediated by an anonymous

publish-subscribe middleware. However, for modular hybrid robotic systems, ROS

has a number of shortcomings. ROS, for instance, has neither real time capabilities

nor is it possible to use ROS on small bare metal systems like microcontrollers in

actuator modules (see Sec. 2.2.1.2). Finally, ROS does not support fieldbus or em-

bedded communication systems like Ethercat or even CAN directly. Hence, it is not

possible to, e.g., instantiate ROS nodes that run on actuator modules to control a

specific robot joint directly or even build a complete system out of them. Similar lim-

itations are prevalent in most other robot frameworks: it is possible to build modular
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distributed systems on a software level, but not on a bare-metal hardware level.

Synchronization of different actuators and, hence, realtime capabilities, are

of high importance for parallel and hybrid systems. A limited support

of these capabilities are offered by the realtime variant of Orocos, Orocos

RT [Bruyninckx, 2001], [Bruyninckx et al., 2003] and, hence, the derived Robot Con-

struction Kit (RoCK) [Joyeux, 2010]. However, similar to ROS, these frameworks do

not support low-level systems.

As a consequence, one aim of recent developments is to include bare-metal

controllers and support field-busses. Following this approach will also en-

hance the mechanism-level modularity in series-parallel hybrid robots, since in

this case multiple joints need to be controlled in combination (see Sec. 2.2.1.2).

Examples where this design principle has been used are the computation of

the inverse kinematics of a Stewart platform representing the spine on a

softcore CPU in CHARLIE [Kuehn et al., 2014]) to satisfy constraints regard-

ing size and power consumption which was built using NDLCom to com-

municate between the controllers [Zenzes et al., 2016]. Another recent exam-

ple is Finroc [Reichardt et al., 2012], which has been used to, e.g., implement

a distributed controller for a series-parallel hybrid leg with redundant actua-

tion [Reichardt et al., 2017].

Nevertheless, with increasing requirements and the need to use

small embedded systems, new robot software frameworks like ROS

2 [Open Source Robotics Foundation (OSRF), 2016], are being developed. They sup-

port technologies like Protocol Buffers [Google, 2017], ZeroMQ [iMatix, 2017] and the

Data Distribution Service (DDS) [Pardo-Castellote, 2003, Schlesselman et al., 2004]

and might satisfy the constraints of mechanism-level modularity in future appli-

cations. Although ROS 2 uses the DDS, which does not result in a performance

benefit of ROS 2 over the plain TCP or UDP used in ROS [Maruyama et al., 2016],

it supports realtime requirements and guarantees different Quality of Service (QoS)

levels.

Another important development that has to be mentioned for completeness is the

OPC Unified Architecture (UA), which is an industrial machine-to-machine commu-

nication protocol [Mahnke et al., 2009]. It not only provides mechanisms to transfer,

but also semantically annotates the data. However, until now, OPC UA is mainly

used in industrial robotics but rarely in research.

One important point to notice is the communication overhead that results from

a decentralized approach. Clearly, if software modules are distributed across differ-

ent hardware modules, the time to transfer data between central controller and leaf

modules must be considered. As discussed in Sec. 2.2.1.2, many different fieldbus

or custom systems [Zenzes et al., 2016, Zhang et al., 2012] are used in robotics. They
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can help to optimize the system regarding throughput, realtime requirements and

QoS level on the physical and data link layers and are required to fulfill these re-

quirements on the higher layers. Hence, the choice of appropriate communication

hardware is essential to build distributed control systems.

2.3 Modeling and Control

Multi-body kinematics and dynamics has been an area of extensive research dur-

ing the past decades. While the term kinematics encompasses problems of position,

velocity and acceleration analysis, the term dynamics refers to problems associated

with the study of forces and torques and their effect on motion of multi-body systems.

Kinematics and dynamics essentially forms the basis of behaviour modeling and con-

trol of any robotic system. The usage of parallel submechanisms in a robot’s design

introduces a new level of complexity to their description, kinematics, dynamics and

control. In this subsection, we discuss these domain specific difficulties and present

some practical approaches used in controlling series-parallel hybrid robots.

2.3.1 Modeling

For describing serial robots, Denavit–Hartenberg (DH) parame-

ters [Hartenberg and Scheunemann, 1955], and their modifications

[Khalil and Dombre, 2002b], have become the de-facto standard: they specify

each coordinate transformation by only four parameters instead of six parameters,

due to the particular placement of local coordinate systems at specific locations.

Since the placement of these coordinate systems requires manual effort, work has

been invested to extract the DH parameters automatically from computer aided

design (CAD) models of the serial manipulators [Rajeevlochana et al., 2012]. In

case of tree type robots and robots with closed loops, the traditional notion of DH

parameters cannot be used and hence various extensions have been proposed in the

literature [Khalil and Kleinfinger, 1986]. A comparison of various robot parameter-

ization techniques with the Sheth-Uicker parameters can, for example, be found

in [Bongardt, 2013]. Due to the dependence of the frame placement on the link

geometries, the modeling becomes unintuitive in particular for complex link shapes

(for example in exoskeletons or human-machine interfaces). For these reasons,

standard open source robot description formats, such as URDF1 (ROS), COLLADA2

(OpenRAVE), or SDF3 (Gazebo), do not rely on DH parameters (or extensions) for

1http://wiki.ros.org/urdf/XML
2https://www.khronos.org/collada/
3http://sdformat.org/
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representing the coordinate transforms and, instead, store the required transforma-

tions by six parameters. These coordinate transforms requested by these description

formats can be automatically extracted from CAD environments by programs such

as CAD-2-SIM [Bongardt, 2011] and SolidWorks to URDF Exporter4. Even with

the presence of such tools, it can be very time consuming to create complete robot

description models for series-parallel hybrid robots because most formats do not

allow the possibility of a modular description. Further, URDF does not allow for

proper definition of closed loops, that often leads to complicated work-arounds when

used for description of contemporary, complex robots. Other formats, such as SDF,

allow the definition of parallel linkages, but do not further provide the functionality

to explicitly define a spanning tree of a looped graph, necessary for a standardized

tree representation of a model.

2.3.2 Kinematics

Kinematics is often regarded as the study of geometry of motion. Direct or inverse

geometric problems generally result in a set of non-linear algebraic equations re-

gardless of the method of problem formulation. For serial robots, inverse geomet-

ric problem and for parallel robots, forward geometric problem are easy to formu-

late but difficult to solve. The three most useful solution techniques to deal with

such problems are polynomial continuation, Gröbner bases, and elimination method

[Nielsen and Roth, 1999]. J. P. Merlet in [Merlet, 1999] presented a list of open prob-

lems for parallel robots which include forward kinematics, workspace and singularity

analysis, singularity free trajectory planning, optimal design etc. A rigorous kine-

matic analysis of generic series-parallel hybrid robots is also an open problem be-

cause they carry kinematic complexity of both serial and parallel topologies. It is still

quite appropriate to quote Nielsen and Roth [Nielsen and Roth, 1999] in this con-

text: “Yet, a lot remains to be done before the subject of kinematic position analysis

in robotics can be considered closed. Large structural classes, such as hybrid series

and in-parallel systems, are just beginning to be treated in a systematic manner.

Mainly, such studies are still done on a case-by-case basis, without a general theory

and framework.” An example of such an analysis of 3-RPS-3-SPR type series-parallel

hybrid manipulator can be found in [Nayak et al., 2018].

Nevertheless, a Jacobian based numerical solution to the geometric problems

in singularity free regions is usually possible, which forms the basis of several

multibody simulation software. Also, developments in the field of modern kinemat-

ics [McCarthy, 2013] such as screw theory and computational algebraic geometry has

helped researchers a great deal to study specific families of parallel or series-parallel

4http://wiki.ros.org/sw_urdf_exporter
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hybrid mechanisms. Also, it is important to note that comprehensive kinematic anal-

ysis of all the mechanisms listed in Table 2.1 and Table 2.2 is readily available in the

literature.

2.3.3 Dynamics

Notable works in the field of robot dynamics include Newton–Euler

[Featherstone, 2008], [Khalil and Dombre, 2002b], and Lagrangian

[Khalil and Dombre, 2002b] formulations, the Decoupled Natural Orthogo-

nal Compliment (DeNOC) formulation [Rao et al., 2006], and Kane’s method

[Lesser, 1992],[Buffinton, 2005]. Traditionally, the equations of motion were de-

scribed using 3D vectors – which quickly yields a large amount of equations for

systems of connected bodies [Luh JS, 1980]. To address this issue, alternative

compact and user-friendly formulations have been developed based on screw theory

[Featherstone, 2008],[Jain, 2011b] and Lie group theory [Müller, 2017],[Müller, 2018]

which can easily be transformed into program code for modern computers.

Robots containing closed loops are subjected to additional geometric loop closure

constraints which are difficult to resolve at position level and hence most multi-body

dynamics software frameworks try to resolve them at velocity and acceleration lev-

els and arrive at position constraints numerically. The Rigid Body Dynamics Li-

brary (RBDL) [Felis, 2017] and OpenSim [Delp et al., 2007] are some examples of open

source libraries that implement such algorithms and import robot descriptions using

various robot description formats. Table 2.3 presents a survey on multi-body soft-

ware that can deal with kinematic and dynamic analysis of robots with closed loops.

Another issue with series-parallel robots is the considerably large number of their

spanning tree DOFs. Let n be the number of DOFs of the spanning tree representing

a series-parallel hybrid robot, m be the total mobility of the robot, p be the number

of actuators in the system and c be the number of independent closed loops. RH5

humanoid which only contains relatively simple parallel mechanism modules (with

less than 3 DOF) has 32 DOF (m = p = 32), c = 15 independent closed loops and

n = 76 DOF in its spanning tree. For a complicated hybrid robot such as Recupera-

Reha exoskeleton, the robot has m = p = 30, c = 29 and n = 128. Hence, it can

be very challenging to solve the full dynamic model of such systems in real time. In

most practical applications reported in literature, full dynamic model of the series-

parallel hybrid robots is not exploited [Hopkins et al., 2015], [Schütz et al., 2017],

[Nejadfard et al., 2018].
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Library Developer /

Institution

Language /

Platform

Licens-

ing

Supported

Mechanisms

Robot

Descrip-

tion

Robot Parame-

terization

Algorithm

/ Approach

ADAMS MSC ADAMS Cross Commer-
cial

Everything CAD Proprietary Proprietary

CATIA /
DELMIA

Dassault
Systems

Windows Commer-
cial

Everything CAD Proprietary Proprietary

GEAR Junggon Kim,
RI CMU

C++/Cross Open
Source

Serial, Tree
type, Closed
loop

C++ file Featherstone RNEA

Neweul-m2 Univ of
Stuttgart

MAT-
LAB/Win-
dows

Partners
only

Serial,
parallel, tree

.m file Proprietary NE

OpenSY-
MORO

Prof. Khalil,
IRCCYN

Python /
Linux

Open
Source

Serial, Tree
type, Closed
loop

PAR file,
MDH
input in
GUI

Khalil-
Kleinfinger

NE,
Lagrangian

Pinnochio Nicolas
Mansard,
LAAS-CNRS

C++/Python /
Linux

Open
Source

Serial, Tree
type

URD-
F/Lua

Featherstone Feather-
stone

PyMbs TU Dresden Python/Linux Open
Source

Serial,
certain closed
loops

Python
script

Proprietary NE

RBDL M Felis, Univ.
of Heidelberg

C++/Linux Open
Source

Serial, Tree
type

URD-
F/Lua

Featherstone RNEA

OpenSIM NCSRR,
Stanford
University

C++/Linux Open
Source

Everything URDF Rodriguez and
Jain

RNEA

REDYSIM Mechatronics
Lab, IIT
Delhi

MATLAB /
Windows

Protected
Freeware

Serial, Tree
type, Closed
loop

.m file Khalil-
Kleinfinger

DeNOC

RobCoGen IIT, Genoa C++/Linux Open
Source

Serial, Tree
type Kinematics-

DSL

Featherstone Feather-
stone

Simmechan-
ics

MathWorks MATLAB /
Cross

Commer-
cial

Everything CAD Proprietary Proprietary

V-Rep Coppelia
Robotics

C++/Cross Dual
Licensing

Serial, Tree
type, Parallel

CAD Proprietary Vortex/NE

Table 2.3: Comparision of different robot modeling tools
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2.3.4 Control

As previously stated, parallel robots can provide higher stiffness, speed and accu-

racy as their serial counterparts. However, oftentimes those theoretical capabili-

ties are not easy to achieve in practical applications due to different error sources.

While higher speeds have been vastly shown in parallel systems and high ac-

curacies in many of them, a broad sense of higher accuracy and stiffness con-

trol capabilities are more difficult to be generically achieved in practical applica-

tions [Paccot et al., 2009, Abdellatif and Heimann, 2010]. One reason is that accu-

racy is affected by different sources: on the one side, parallel systems might re-

quire more joints than a serial one for the same task, and thus the kinematics er-

rors due to assembly inaccuracies or simplified kinematics might negatively affect

the final system’s accuracy. On the other side, the stiffness control is more complex

since it requires of a workspace analysis to locate optimal areas for higher stiffness

(some areas are of very low stiffness) [Merlet, 2000]. Both accuracy and stiffness

control are additionally affected by the larger amount of singularities present in par-

allel robots and which need to be removed, basically by highly-redundant actuation

[Cheng et al., 2003][Liu et al., 2001][Muller, 2005]. Fortunately, many of those issues

can be solved by using more complete and efficient real-time kinematics and dynam-

ics models (instead of simplified ones), and by proper experimental identification of

the parameters of those models (to deal, for instance, with unmodelled inaccuracies).

Having achieved that by using more accurate real-time models, hybrid systems can

deliver high performances in a broader spectrum than those of only serial or parallel

nature.

Notwithstanding, more complex control strategies can also significantly con-

tribute to having better dynamic performance, i.e. closer performance to the expected

theoretical one. However, historically the same classical control strategies used in se-

rial robots have been reused for parallel robots and there is relatively few specific lit-

erature on control of parallel devices [Ghorbel et al., 2000] in comparison with their

serial counterparts. The approaches followed basically fall into two categories: (a)

the model-free control schemes such as PID control [Khosravi and Taghirad, 2014,

Su et al., 2004], fuzzy control [Zi et al., 2008], use neural networks to learn dynam-

ics without a priori knowledge of the system [Mirza et al., 2017] or based on force

feedback such as in the seminal work in [Merlet, 1988], and (b) model-based control

schemes such optimal control [Liu et al., 2001] or the use of machine learning meth-

ods [Abdellatif and Heimann, 2010]. The use of same control methods as in serial

robots leads to some limitations inherent to the nature of those methods. For in-

stance, in serial robots it is a de facto standard to use joint space control, which is

not the most suitable strategy for parallel robots and, consequently, not for hybrid
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systems. A parallel robot is described by its end-effector pose rather than by joint

configuration as in serial systems. For that reason, Cartesian (or task) space control

is more suitable for complex hybrid mechanisms, especially multipurpose systems

which use redundancy to perform a number of tasks simultaneously. However, some

task controllers will likely need information from the position in abstract joint space

(ref. to Fig 2.6), which for parallel systems is much more complex problem, usu-

ally solved numerically. The fact that forward kinematics is often not of closed form

means that a certain joint configuration can lead to different end-effector poses.

Additionally, in rigid serial robots the assumption is that each actuator (abstract

joint as in Fig. 2.6) can be considered almost dynamically decoupled from the others

ones (especially a good assumption in actuators with high gear ratios) and thus, typ-

ically a linear PID controller will be used at each axis. The assumption does not hold

true for lightweight serial robots moving at high speeds because the nonlinear dy-

namics cannot be properly compensated. Parallel robots would suffer the same issues,

as they are highly nonlinear and highly-coupled systems by nature. Fortunately,

model-based control approaches such as computed-torque control [Shang et al., 2012]

can alleviate some of those problems and compensate nonlinear dynamics, provided,

once more, that there is an accurate robot model. Some other techniques such as

robust control [Shang and Cong, 2014] can also be used with simplified dynamics or

any kind of nonlinear controllers [Su et al., 2004][Shang et al., 2010]. In any case, for

parallel systems the optimal strategy would be to work in Cartesian space, although

that would mean to face the problem of directly measuring the end-effector pose, since

using numerical estimation and forward kinematics to compute the end-effector pose

could degrade again the dynamic performance of the robot.

2.3.5 Adopted Practices

Series-parallel hybrid robots are highly complex mechatronic systems and generic

treatment of such robots remains an open problem. Hence, there is always a trade-off

between modeling depth, accuracy and computational efficiency. However, modular-

ity in robot design allows for certain abstractions which simplifies their modeling and

control. Such abstractions are shown in Fig. 2.6. While Fig. 2.6(a) captures the true

complexity of the robot, due to absence of generic methods to model and control such

systems, three different abstractions are adopted to simplify the modeling and con-

trol. In the following, we discuss the practices used in design, modeling and control

of series-parallel hybrid robots.

• Design: It is common practice to avoid any switch of assembly mode 5

in the design of parallel submechanism modules for hybrid robots. It is
5Assembly modes are different solutions to forward kinematics problem.
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Figure 2.6: Different abstractions used for modeling and control of hybrid robots

achieved by choosing appropriate design parameters and physically restricting

the movement of the joints in the parallel submechanism module. This en-

sures a unique forward kinematics solution for any given actuator input which

makes the behaviour of submechanism modules similar to serially connected

joints and greatly simplifies the modeling and control of such systems. How-

ever, it comes at a cost of workspace restriction as certain kind of singular-

ities can be crossed using appropriate trajectory planning in case of parallel

robots [Pagis et al., 2015].

• Kinematics: Forward and inverse kinematics of the submechanism module

is usually solved to provide a bi-directional map between actuation space and

abstract joint space (see Fig. 2.6(b) & (c)). Forward and inverse kinematics

of parallel submechanism modules can be solved on local controllers either

analytically or in resource-constrained systems with the help of Look Up Ta-

bles (LUTs). Analytical solutions are preferred when embedded hardware in-

cludes a microcontroller with a Floating Point Unit (FPU) (e.g. parallel joints in

THOR [Hopkins et al., 2015]) or in cases when parallel submechanism modules

bear more than two DOF (e.g. 6 DOF spine joint in Charlie [Kuehn et al., 2014]).

As an alternative, LUTs can be used for systems without FPUs or FPGA-based

local controllers (e.g. 1 or 2 DOF parallel joints in MANTIS [Bartsch et al., 2016]

and 2 DOF ankle in Charlie [Kuehn et al., 2014]). Once a mapping is available,

the robot can be treated purely as a serial or tree type structure for which for-
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ward and inverse kinematics problems are easy to solve on the main controller

(see Fig. 2.6(d)). Many series-parallel hybrid robots such as SherpaTT, MANTIS

and Charlie are kinematically controlled and compliance is realized only with

the help of force/torque measurements. Further, it is not common practice to

compute the full kinematic state of the spanning tree (see Fig. 2.6(a)) since such

calculations can be computationally expensive.

• Dynamics: As pointed out before, the computation of full inverse dynamic

model for hybrid robots can be computationally very expensive due to the

large size of their spanning trees and the large number of loop closure con-

straints to be resolved. The moving parts inside a parallel submechanism mod-

ule may have relatively small contribution to the overall dynamics of the sys-

tem which is essentially due to dynamics of link segments, and joint friction

etc [Buschmann et al., 2013]. Hence, an inverse dynamic model in abstract

joint space is often combined with an inverse static model in actuation space

to compute the actuator forces [Hopkins et al., 2015], [Vonwirth, 2017]. This

approach is used in torque controlled series-parallel hybrid humanoids such as

THOR, Valkyrie, Lola etc. To the best knowledge of the author, the tradeoff be-

tween the complete dynamic model and simplified dynamic model has not been

reported in the literature.

2.4 Conclusion

This chapter presents the state of the art in design and control of series-parallel hy-

brid robots. Despite their kinematic complexity, such designs are becoming increas-

ingly popular due to the mechanical advantage. Overall, one could conclude that

by adopting certain practices in design, modeling and control, it is possible to use

such designs in various robotics applications. Modularity in kinematics and dynam-

ics algorithms and their distributed implementation can make it easy to deal with

high complexity of series-parallel hybrid robots. However, there is a lack of general

framework for analysing and modeling such systems. This is addressed in the later

chapters of this thesis.
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Chapter 3

Modern Approaches in

Geometric Analysis

This chapter builds the fabric of the Geometric Analysis part of the thesis. It starts

with a small description on the historical background in the study of mechanisms

(based on [Selig, 2005]) and then lays down the fundamental problems that one comes

across in the geometric analyses of the robotic mechanisms (Section 3.2). Subse-

quently, two modern approaches namely screw theory (Section 3.4) and algebraic

geometry (Section 3.3) are introduced and how they lead to the local and global anal-

yses of these systems are described. Further, the advantages and disadvantages of

these methods are highlighted. Lastly, a simple example of a slider crank mechanism

is provided in Section 3.5 and these approaches are applied in its study.

3.1 Historical Interplay between Mathematics and

Robotics

Modern industrial manipulators have a history of a little more than half-century

but their ancestors which are mechanisms and linkages have existed for millennia.

The human ability to lift heavy loads with the help of cranes or other lifting devices

has been a key ingredient in the advancement of human civilization. These mecha-

nisms consist of rigid links and are connected by various kinematic joints to transfer

the motion and forces from one part to another. A geometric intuition is required

to build such devices and hence it has caught the attention of various mathemati-

cians, in particular, geometers in the last few centuries. In 1875, Alfred Bray Kempe,

an amateur British mathematician, proved that all algebraic curves can be traced

by linkages [Kempe, 1875]. Later, Koenigs proved a similar theorem for curves in
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space1. At around this time, many mathematicians were already interested in the

theory of mechanisms – Chebychev, Schönflies and Darboux, to name a few. The

most intensively studied mechanism has been the four bar linkage till this date. This

device is ubiquitous in mechanical engineering, as it is an extraordinary design ele-

ment. Some questions concerning the geometrical capabilities of this mechanism still

remain unanswered [Selig, 2005].

Mathematicians were also interested in more general problems. In 1829, French

mathematician Évariste Galois laid the foundation of group theory by studying the

roots of a polynomial and characterizing the polynomial equations that are solvable

by radicals in terms of properties of the permutation group of their roots. For exam-

ple, he was able to explain why it is not possible to solve quintic polynomials with

simple algebraic operations (addition, subtraction, multiplication and division) and

application of radicals (square roots, cube roots, etc). Felix Klein, a German mathe-

matician, developed his Erlangen program in 1872 which cemented the relationship

between geometry and group theoretic ideas. Almost simultaneously, a Norwegian

mathematician named Sophus Lie, developed the theory of continuous groups. In

1884, Clifford developed geometric algebras, modeled on Hamilton’s quaternions;

he was able to include translations as well as rotations. Around the turn of the

20th century, Ball developed Screw theory, which dealt with infinitesimal rigid body

motions and was mainly used to look at problems concerning statics and dynam-

ics [Ball, 1876]. A little later, Eduard Study looked at the geometry of the set of all

finite rigid body motions. His work relied heavily on Clifford’s dual quaternions.

After the first world war, mathematicians seem to have turned away from the

study of mechanisms. Mechanical engineers also neglected mechanisms during

this period. The first digitally operated and programmable robot, called Unimate,

was invented by George Devol in 1954 and laid the foundations of the modern

robotics industry. The first industrial robot was installed by General Motors in

1961. In 1968, Kawasaki bought a licence from Unimation to manufacture robots

in Japan. In 1979, SCARA (selective compliance assembly robot arm) was intro-

duced in Japan for assembly of printed circuit boards. All these developments caused

a renewed interest of mechanisms community in the study and design of mecha-

nisms and robots. In that vein, K.H. Hunt mastered screw theory for the analy-

sis of spatial mechanisms [Davidson and Hunt, 2004] and Roger Brockett introduced

the product of exponentials formula using matrix exponential mapping which gives

the connection between a matrix Lie algebra se(3) and the corresponding Lie group

SE(3) [Brockett, 1984] (see Appendix A and Section B.3 of Appendix B for an ab-

stract understanding of Lie groups and Lie algebra). Due to the advances in the field

1A modern treatment can be found in [Li et al., 2018]
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of numerical algebraic geometry and the advent of powerful computational algebra

software, the algebraic description of the constraint equations became equally viable

and their solution provided some deep insights into the global kinematic behavior of

the mechanisms (for e.g. 6R serial chain and Stewart Gough platform). Moreover,

electrical engineers became interested in the problem of controlling robots and com-

puter scientists saw robots as vehicles for testing their ideas on artificial intelligence.

Loosely speaking, robots and mechanisms differ in the sense that the former are

designed as general purpose machines with many degrees of freedom and the lat-

ter are designed for particular functionality and hence only a few, normally just one

degree of freedom. From a mathematical perspective, the analyses of mechanisms

and robots are the same to all intents and purposes. In the following section, we

discuss the key terms and fundamental problems that one comes across in the geo-

metric analyses of the robotic mechanisms. Later, we look at these problems through

the eyes of screw theory and algebraic geometry and highlight how these approaches

from modern kinematics help in a better understanding of those problems.

3.2 Problem Description

A robot is mechanically constructed using a set of links and joints. These joints con-

strain the kinematic motion between these links. The robot might be subjected to

additional constraints from its environment or high level task specification. Thus, to

analyze a robot one must study how different rigid bodies behave under a set of kine-

matic constraints. Fig. 3.1 provides a classification of kinematic constraints that typ-

ically occur in robotics. The first distinction is made between equality and inequality

constraints. The former arise from a permanent physical contact between two bodies

and the latter arise from situations where two bodies are allowed to make a contact

and separate. Example of inequality constraints include phenomena such as collision,

bouncing and loss of contact. The equality constraints (also called as Pfannian con-

straints) could be further divided into holonomic and non-holonomic constraints. The

former are the constraints on the position variables and typically arise from sliding

contact while the latter are constraints on the velocity variables and typically occur

in rolling contact. At velocity and acceleration levels, these constraints are the same

but the non-holonomic constraints can not be integrated i.e. they are not a derivative

of any function. An immediate consequence of this is that a system subjected to non-

holonomic constraints has more positional degrees of freedom than velocity degrees

of freedom. The final distinction is done between sceleronomic constraint, which is a

function of position variables only, and rheonomic constraints which is also a function

of time. In the scope of this thesis, we focus on the analysis of series-parallel hybrid

robots, and hence, will restrict our attention to scleronomic constraints.
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kinematic 

constraints

holonomic

inequalityequality

scleronomic rheonomic

e.g. collision, bouncing, loss of contact

non-holonomic

non-integrable, arises from rolling contact mobile robots

integrable, arises from sliding contact

loop closure constraints

parallel mechanisms

Figure 3.1: Classification of kinematic constraints in multi-body systems based on
[Featherstone, 2008]

Perhaps, one of the most fundamental questions one may ask is, where is the

robot? The answer is completely given by the robot’s configuration which is defined

in the following.

Definition 5 (Configuration & c-space) The configuration q of a robot is complete

specification of position of every point on the robot. The number of real-valued coor-

dinates n required to represent the configuration is the degrees of freedom of a robot.

The space containing all the possible configurations of the robot is called configuration

space (c-space) denoted by Q [Lynch and Park, 2017].

Since, the configuration space contains the full description of the mechanism, un-

derstanding its shape can provide deep insights into the geometric behaviour of a

robot. The shape of the c-space is described using the c-space topology which is a

fundamental property of space itself and is independent of the choice of coordinates

in the space. For example, the c-space of a single DOF prismatic joint is isomor-

phic to R1. Similarly, the c-space of a single DOF revolute joint is a unit circle S1 as

the self-connectedness of the rotational movement can not be captured by R1. The

c-space of a serial robotic system can usually be obtained by taking a cartesian prod-

uct of c-spaces of individual joints. For example, the c-spaces of a rotating sliding

knob and a 2R planar robot arm are a cylinder R1 × S1 and a two dimensional torus

T2 = S1 × S1 respectively. More examples can be found in Fig. 3.2. The c-space of
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a n DOF robot with nr revolute joints and np prismatic joints can be expressed as

Vn = Tnr × Rnp . The configuration of a parallel robot is admissible if and only if it

satisfies the geometric loop closure constraints. Let us define an implicit loop closure

function φ : Vn 7→ Rr | φ(q) = 0 where r is the number of independent loop closure

constraints acting on the system. Then the configuration space of the parallel robot,

being the set of all admissible configurations, is

V := {q ∈ Vn | φ(q) = 0}
V = φ−1(0)

(3.1)

The c-space V is a real variety in Vn and locally (close to a regular configuration q)

system topology sample representation

x̂

ŷ
(x, y)

point on a plane E
2

R
2

longitude

latitude
90◦

−90◦
−180◦ 180◦

spherical pendulum S2 [−180◦, 180◦)× [−90◦, 90◦]

0
0

2π

2π θ1

θ2

2R robot arm T 2=S1
×S1 [0, 2π)× [0, 2π)

θ

x̂
0

2π
......

rotating sliding knob E
1
× S1

R
1
× [0, 2π)

Figure 3.2: Four topologically different c-spaces and example coordinate representa-
tions [Lynch and Park, 2017]

a smooth manifold [Müller, 2013]. V comprises several connected smooth manifolds

(subspaces like smooth curves or surfaces) that are separated by singular points,

indicating non-smoothness of V at these points. The mobility of a parallel robot hence
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depends on the c-space topology. The local DOF of the robot is given by the local

dimension of the variety dimqV . The general mobility of a parallel robot is given by

m = n− r and can be estimated by Kutzbach-Gruebler’s criteria:

ds(M) = s(n−m− 1) + f = s(−c) + f , (3.2)

where

• s – motion parameter (= 3 for planar and spherical mechanisms, = 6 for spatial

mechanisms)

• n – Number of links in the mechanism

• m – Total number of joints

• c – Number of independent closed loops

• f – sum of DOF of each joint.

Practically, one is often interested in only knowing the position of the robot’s end-

effector and whether it is able to perform the required task. The output motion pro-

duced by a robot’s end-effector can be described in subspace of SE(3) and can be

parameterized by appropriate choice of coordinates. For e.g. the end effector config-

uration of a spatial 6R serial manipulator can be described by a homogenous trans-

formation matrix P E ∈ SE(3). The output mapping fO : Vn 7→ SE(3) yields the end

effector configuration P E = fO(q) as a function of joint space configuration q.

Definition 6 (Workspace) The workspace W is a set of all the configurations that

the end-effector can reach.

W := {fO(q)∀q ∈ V } ⊂ SE(3) (3.3)

The workspace is usually determined by the robot’s structure and chosen end-effector

but independently of the task.

Definition 7 (Task space) The task space T ⊂ SE(3) is a space in which the robot’s

task can be naturally expressed. The task space is defined by the nature of the task

independently of the robot.

The robot is called task-redundant if dimT < dimW and T ⊆ W, and task-deficient

ifW ⊂ T . It must be noted that the task space, the robot’s workspace and its c-space

are different from each other. A point in the task space might not be feasible in the

workspace of the robot. When feasible in the workspace, it may correspond to more

than one robot configuration meaning that the point is not a complete specification of

robot’s configuration.
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The robot’s motion is determined by the motion of its actuators - the mechanical

input. The relation between the actuator input and robot’s motion is expressed by

an input mapping fI : Vn 7→ U that assigns any feasible robot configuration to the

admissible input. This relation may not be unique as there may be different inputs

corresponding to the same configuration of the robot. If there are p actuators in the

robot, U is p-dimensional.

Definition 8 (Actuation space) The actuation space U is the set of all admissible

actuator configurations in a robotic system. The actuation space is also dependent on

robot’s structure.

U := {fI(q)∀q ∈ V } ⊂ Vn (3.4)

For a fixed base serial mechanism, the actuation space is the same as configuration

space i.e. p = m = n. However, in a parallel architecture, the actuation space is

only a subspace of Vn i.e. p < n. The robot is said to be fully actuated when p = m,

redundantly actuated when p > m.

Configuration space

Actuation space Workspace

Figure 3.3: Scheme of different mappings and spaces in robotics

Fig. 3.3 shows the different mappings and spaces that we commonly encounter in

robotics. It is clear that c-space is the central object geometrically representing the

robot. The input and output mappings yields the input i.e. actuator configuration and

output i.e. end effector’s configuration, respectively, corresponding to a given robot

configuration. These mappings are not one to one for parallel robot in general and for

redundant parallel mechanisms in particular. The notion of different spaces, input

and output mappings above provides us a good abstract understanding of robot’s

motion. However, in practice, it is easier to work with direct mappings between

the input and output spaces hiding the complete internal state of the robot. In the

following, we introduce the notion of direct and inverse kinematic mappings.

Definition 9 (Direct Kinematic Mapping) The direct kinematic mapping yields

the end-effector configuration P E ∈ W from the actuator configuration u ∈ U of the

robot.
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P E = fF K(u) (3.5)

Generally, it is very straight-forward to solve this problem for a serial robot and the

mapping is one to one in nature. For parallel architectures, this problem is very

difficult to solve and often many solutions to the forward kinematic problem exist

corresponding to an actuator configuration.

Definition 10 (Inverse Kinematic Mapping) The inverse kinematic mapping

yields the actuator configuration u ∈ U from the end-effector configuration P E ∈ W of

the robot.

u = fIK(P E) (3.6)

On the contrary, it is easy to solve the inverse kinematic problem for a parallel robot

and difficult to solve it in case of serial architectures.

There are essentially two approaches that differ in the way the kinematics is

modeled: one uses joint angles and displacements, and the other uses an algebraic

parameterization of the motion of the links, such as dual quaternions or Study pa-

rameters. In the first case, the c-space V is an analytic variety, and in the latter it is

an algebraic variety which are defined as the following:

• Analytic Variety is defined locally as the set of common zeros of finitely many

analytic functions. An analytic function is a function that is locally given by a

convergent power series.

• Algebraic Variety is defined as the set of solutions of a system of polynomial

equations. A polynomial is an expression consisting of variables and coeffi-

cients, that involves only the operations of addition, subtraction, multiplication,

and non-negative integer exponents of variables.

In the next two sections, we will discuss the general tools for algebraic (Section 3.3)

and analytic (Section 3.4) formulations and an example demonstrating the use of the

two methods is provided later in Section 3.5.

3.3 Algebraic Geometry

The configuration space of a large class of mechanisms can be defined using polyno-

mial equations. At the core of it, this is possible due to two main reasons: 1) rigid

body transformations are algebraic, 2) all lower pair joints except for helical joint

are algebraic in nature [Wampler and Sommese, 2013]. An introduction to algebraic

geometry can be found in the Appendix C. Two important tools for formulating alge-

braic constraint equations for any mechanism are 1) Study’s kinematic mapping and

its variants, 2) tangent half angle substitution which are described in the following.
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3.3.1 Study’s Kinematic Mapping

Study’s Kinematic Mapping maps every displacement in SE(3) to a point in a 7-

dimensional projective space P7 [Husty and Schröcker, 2013, Husty et al., 2007]. If

the homogeneous coordinate vector of x is [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]T , the kine-

matic pre-image of x is the displacement T ∈ SE(3) described by the transformation

matrix:

T =
1

∆




∆ 0 0 0

p x0
2 + x1

2 − x2
2 − x3

2 −2x0x3 + 2x1x2 2x0x2 + 2x1x3

q 2x0x3 + 2x1x2 x0
2 − x1

2 + x2
2 − x3

2 −2x0x1 + 2x3x2

r −2x0x2 + 2x1x3 2x0x1 + 2x3x2 x0
2 − x1

2 − x2
2 + x3

2




∆ = x0
2 + x1

2 + x2
2 + x3

2

p = −2x0y1 + 2x1y0 − 2x2y3 + 2x3y2

q = −2x0y2 + 2x1y3 + 2x2y0 − 2x3y1

r = −2x0y3 − 2x1y2 + 2x2y1 + 2x3y0 .

(3.7)

The parameters xi, yi, i ∈ {0, ..., 3} are called as the Study’s parameters. An Eu-

clidean transformation can be represented by a point p ∈ P7 if and only if the follow-

ing equations are satisfied:

g1 := x0y0 + x1y1 + x2y2 + x3y3 = 0 (3.8)

g2 := x0
2 + x1

2 + x2
2 + x3

2 − 1 = 0 (3.9)

All the points that satisfy the Equation (3.8) belong to the 6-dimensional Study

quadric, S2
6 . Equation (3.9) ensures that the points do not lie on the exceptional

generator, x0 = x1 = x2 = x3 = 0. The points on S2
6 are called kinematic im-

age points of the corresponding displacement, and the seven-dimensional projec-

tive space is called kinematic image space. Its variants for describing rigid body

displacement in the planar motion group SE(2) (also known as Blaschke map-

ping [Bottema and Roth, 1990]), 3 dimensional rotational motion group SO(3) also

exist. Rigid body displacement in SO(2) can be described using complex numbers.

3.3.2 Tangent Half-Angle Substitution

While setting up the constraint equations, one typically encounters trignometric

terms, typically due to the motion of revolute joints, which can be made algebraic

using the tangent half-angle substitutions or Weierstrass substitution. For any point

(cos θ, sin θ) on the unit circle S1, draw a line passing through it and the point (−1, 0).

This point crosses the y-axis at some point y = t. Using simple geometry, it is trivial
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to show that t = tan(θ/2) (see Fig. 3.4). The equation for the drawn line is y = (1+x)t.

The equation for the intersection of the line and circle is then a quadratic equation

involving t. The two solutions to this equation are (−1, 0) and (cos θ, sin θ). This allows

us to write the latter as rational functions of t as shown below.

sin(θ) =
2t

1 + t2
, cos(θ) =

1− t2
1 + t2

, tan(θ) =
2t

1− t2 (3.10)

Figure 3.4: Geometric proof of tangent half-angle substitution

3.3.3 Towards Global Kinematics

Analytic descriptions of kinematic chains lead to parametric and implicit represen-

tations. These are easy to set up but difficult to solve. Very often only a single nu-

merical solution is obtained. Complete analysis and synthesis needs all solutions. An

algebraic description of constraint equations allows the use of powerful methods and

algorithms from algebraic geometry. An important first task is to find the simplest

algebraic constraint equations that describe the chains. There exists always a best-

adapted coordinate system for a mechanism or at least for one kinematic chain in a

more complicated mechanism. When a kinematic chain is represented in its “best”-

adapted coordinate system, then it is called canonical chain. Geometric and algebraic

preprocessing is needed before elimination, Gröbner basis computation or numerical

solution process starts. Algebraic constraint equations yield answers to the overall

behavior of a kinematic chain which provides insights into global kinematics of the

mechanism [Husty, 2017b]. Solutions to the inverse kinematics of a general 6R serial

chain robot [Raghavan and Roth, 1993] and to the direct kinematics of the general

Stewart-Gough platform [Husty, 1996], which yields polynomials of degree 16 and

degree 40, respectively, are major advances in the last century. The disadvantage of
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this approach is that such an analysis is not always straight forward and the involved

algorithms are NP-hard.

3.4 Screw Theory

Screw theory has proven to be a powerful mathematical tool for the local analysis of

complex mechanisms and robots. It provides a quick and efficient way to describe the

configuration of a system at any given instant. There are two core reasons behind it:

1) the rigid body transformations can be analytically described in screw coordinates

using exponential mapping, 2) most kinematic joints can be described as a combi-

nation of 1-DOF screw joints. An introduction to screw theory can be found in the

Appendix D.

3.4.1 Matrix Exponential and Matrix Logarithm Maps

Any rigid body configuration can be achieved by starting from a fixed reference frame

and integrating a twist for a specified time. Such a motion resembles the motion

of a screw, rotating about and translating along the same fixed screw axis. The

observation that all the configurations can be achieved a screw motion motivates

a six parameter representation of the configuration called the exponential coordi-

nates [Lynch and Park, 2017].

Definition 11 (Matrix Exponential) Let S = (ω,v) denote the screw coordinates.

The matrix exponential is defined as exp : [S]θ ∈ se(3) → T ∈ SE(3). If ‖ω‖ = 1 then

for any distance θ ∈ R traveled along the screw axis or any angle θ ∈ R rotated about

the screw axis,

T = exp [S]θ =

[
exp [ω]θ (Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2)v

0 1

]
∈ SE(3) (3.11)

where,

exp [ω]θ = I + sin θ[ω] + (1− cos θ)[ω]2) ∈ SO(3) . (3.12)

If ‖ω‖ = 0 and ‖v‖ = 1, then

T = exp [S]θ =

[
I vθ

0 1

]
∈ SE(3) . (3.13)

On the contrary, given an arbitrary pose (R,p) ∈ SE(3), one can always find a screw

axis S = (ω,v) and a scalar θ representing it. The matrix [S]θ is called as the matrix

logarithm of the pose (R,p).
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Definition 12 (Matrix Logarithm) The matrix logarithm is defined as log : T ∈
SE(3)→ [S]θ ∈ se(3). If

T = exp [S]θ =

[
R p

0 1

]
(3.14)

then, the matrix

[S]θ =

[
[ω]θ vθ

0 0

]
(3.15)

is the matrix logarithm of T = (R,p).

The algorithm to compute the matrix logarithm can be found

in [Lynch and Park, 2017] and is skipped here for brevity. The exponential mapping

is a key ingredient in the product of exponentials (POE) formula [Brockett, 1984]

which can be used to compute the forward kinematics of serial kinematic chains or

to set up geometric loop closure constraint equations for parallel mechanisms. The

exponential mapping is analytic i.e. the function is given by a convergent power

series. The variety thus obtained from loop closure constraints determined using

POE formula is also analytic in nature. Another advantage here is that the use of the

exponential mapping in terms of screw coordinates gives rise to explicit closed-form

formulae for its derivatives.

3.4.2 Screw Representation of Joint Motion

Lower kinematic pairs with one DOF allow the interconnected bodies to perform

screw motions between each other with a certain pitch h. Revolute joints can be

modeled with zero pitch screws h = 0 and prismatic joints are modeled with infinite

pitch screws h =∞. If S denotes the unit screw axis, then for different 1 DOF lower

kinematic pairs, S is given by:

Srevolute =

[
ŝ

0

]
Sscrew =

[
ŝ

hŝ

]
Sprismatic =

[
0

ŝ

]
(3.16)

where ŝ denotes the unit vector along the joint axis resolved in the joint frame.

3.4.3 Towards Local Analysis

One of the biggest advantages of using methods from screw theory is that it allows an

easy set up of implicit constraint equations. Further, the derivatives of these equa-

tions can be derived in closed form. If a feasible configuration of the mechanism Vq is

known, an exhaustive local analysis of the c-space geometry as well as finite curves

passing through this point can be performed. It provides a powerful setting for study-

ing the mechanism behavior and classification of its singularities [Müller, 2019]. A
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SherpaTT rover

Inner and Outer Leg Joints

RH5 Humanoid

Hip3 and Knee Joints

Multi-legged robot MANTIS

Hip and Torso Joints

Figure 3.5: Revolute joint abstractions with Lambda mechanism in robots at DFKI-
RIC

disadvantage of this approach is that the mobility and singularity analysis requires

a prior knowledge of the actual solution set V . This disadvantage can be leveraged

by an algebraic parameterization of the constraint equations after geometric prepro-

cessing and the use of powerful tools from computational algebraic geometry to solve

them.

3.5 Example: Lambda mechanism

A Lambda mechanism is basically a planar mechanism with triangular geometry as

shown in Fig. 3.6. Body B1 forms a one-link arm, while B2 and B3 are the cylinder

and piston, respectively, of a linear actuator. Joints 1, 2 and 3 participate in the

kinematic loop, with joint 3 being the actuated prismatic joint. This section presents

the study of this 1-RRPR mechanism which has been used for the abstraction of a

revolute joint in various robot designs (see Fig. 3.5 for its applications in robots at

DFKI-RIC).

3.5.1 Mobility Analysis

The general mobility of this mechanism can be calculated with the help of Kutzbach-

Grübler criteria, see Equation 3.2. Since it is a planar mechanism, s = 3. Hence, the

mobility of this mechanism is ds(M) = 3(4− 4− 1) + 4 = 1.
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Figure 3.6: Lambda mechanism and its triangular geometry

(a) Intersection of analytic surfaces given by
Equation 3.17 and Equation 3.18

(b) Intersection of cylinder (Equation 3.20a)
and double cone (Equation 3.20b)

Figure 3.7: C-space of lambda mechanism

3.5.2 Geometric Analysis

In the following, we will perform the geometric analysis of this mechanism using

both the approaches described previously in this chapter. First, we develop an ana-

lytic formulation using joint angles and displacements, and then develop an algebraic

formulation using the polynomial description of the geometric constraint equations.

We set the link parameters as l1 = l2 = 1 and hence the corresponding geometry is

that of an equilateral triangle.
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3.5.2.1 Analytic Formulation

The displacement of joints J1 and J2 can be parameterized using angles θ1 and θ2 and

the movement of the slider can be parameterized with linear displacement variable

d. These are measured as absolute coordinates in the reference frame defined in

Fig. 3.6. Hence, the c-space of this mechanism can be described using the choice of

coordinates (θ1, θ2, d) and is an analytic variety in V n = T2 × R1. Using the law of

cosine in trigonometry, one can establish the constraint equation for this mechanism:

d2 = l21 + l22 − 2l1l2 cos θ1 (3.17)

To calculate the passive joint angle (θ2), one can use the formula below:

d cos θ2 = l2 cos θ1 − l1 (3.18)

Equation 3.17 and Equation 3.18 are analytic surfaces and their intersection is an

analytic variety as shown in Fig. 3.7a. However, it is to be noted that d should always

be greater than or equal to 0 and hence, the part of the curve where d is negative

should be disregarded. The final analytic variety of this mechanism is shown in

Fig. 3.8a. It can be noticed that when θ1 = 0, then d = 0 and θ2 is undefined and

hence, represents a c-space singularity.

From an input-output viewpoint, d is the input variable and θ1 is the output vari-

able. It immediately follows that Equation 3.17 also provides an explicit closed form

solution to the inverse geometric (or kinematic) problem. Rearranging the Equa-

tion 3.17, a closed form solution to the direct geometric (or kinematic) problem can

be derived. There are two solutions to the forward geometric problem as shown in

Equation 3.19.

θ1 = arccos
l21 + l22 − d2

2l1l2

θ1 = atan2(± sin θ1, cos θ1)

(3.19)

3.5.2.2 Algebraic Formulation

Since, it is a planar mechanism, one could formulate the constraint equations in the

form of a set of polynomials by choosing an algebraic parameterization of the links

in the XY plane. To this end, let (x = l2 cos θ1, l2 sin θ1) denote the coordinates of

the crank link B1 and (l1, 0) denote the coordinates of the point on the ground where
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(a) Analytic variety

(1,0,0)

(b) Algebraic variety

Figure 3.8: C-space of lambda mechanism with d ≥ 0

cylinder B2 is attached. The loop constraint equations are given as the following:

x2 + y2 = l22 (3.20a)

(x− l1)2 + y2 = d2 (3.20b)

In this case the c-space coordinates are (x, y, d) ∈ R3 and any feasible values of

these coordinates satisfying Equation 3.20 fully describe the mechanism. The first

constraint equation represents the surface of a cylinder (Equation 3.20a) while the

second equation represents a double cone (Equation 3.20b). The c-space is in this

case is the set of all points lying on the intersection of these two surfaces which

looks like a bent infinity shaped curve (or lemniscate curve) in 3-space of c-space

coordinates. However, it should be noted that d ≥ 0 so the part of the curve where d is

negative should be disregarded. The algebraic variety representing the c-space of the

mechanism is shown in Fig. 3.8b. A cusp can be noticed at the point (x, y, d) = (1, 0, 0)

which shows the singular configuration of the c-space as V is not a smooth manifold

at this point.

From an input-output viewpoint, d is the input variable and the pair (x, y) is the

output variable. In the algebraic formulation, the solution to the inverse kinemat-

ics problem can be derived by substituting Equation 3.20a in Equation 3.20b and

eliminating the variable y. The solution is unique and is given by:

(x− l1)2 + l22 − x2 = d2

d =
√
l21 + l22 − 2l1x .

(3.21)
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Similarly, the forward geometric problem can be solved by manipulating the con-

straint equations to write the variables (x, y) as a function of d. As noted earlier, it can

be noted that this problem has two solutions given algebraically by Equation 3.22.

x(d) =
l21 + l22 − d2

2l1

y(d) = ±

√√√√l22 −
(
l21 + l22 − d2

2l1

)2 (3.22)

The above equation is also a parametric equation describing the c-space variety in R3

as shown in Fig. 3.8b.

3.6 Conclusion

This chapter presents a summary of modern geometric approaches in the analysis of

robots and mechanisms. Two approaches namely, screw theory and algebraic geome-

try, are briefly discussed and their corresponding advantages in the local and global

kinematic analysis of the mechanisms are highlighted. Lastly, a simple one DOF pla-

nar mechanism which converts the linear motion of an actuator to the rotary motion

is studied with both analytic and algebraic approaches. It can be observed that for

simple cases, like that of the lambda mechanism, the two approaches are equivalent

in terms of their ease of use and the insights they provide in the mechanism analy-

sis. In the upcoming chapters, where more complex mechanisms have been studied,

we will take the geometric approach which suits better to the particular geometry or

type of the mechanism being studied.
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Chapter 4

Study of 2SPRR+1U Device for

Abstraction of Universal Joint

This chapter presents the study of the novel 2SPRR+1U mechanism and its existing

variant 2SPU+1U mechanism which has been used for the abstraction of a univer-

sal joint in various robot designs (see Fig. 4.1). The chapter is organized as follows:

Section 4.1 presents the motivation for the mechanism’s design and highlights its

novelty. Section 4.2 presents the manipulator’s architecture and constraint equa-

tions. Section 4.3 presents the solutions to the direct and inverse kinematic problems

by utilizing tools from computational algebraic geometry. Section 4.4 presents the

workspace characterisation, description of its singularity curves and performance

analysis and Section 4.6 concludes this chapter. The content of this chapter is based

on [Kumar et al., 2018c].

AUV Leng, Europa Explorer (EurEx)

Thurster Steering Device (2SPU+1U)

RH5 Humanoid

Ankle (2SPRR+1U)

Wrist + Torso (2SPU+1U)

Multi-legged robot MANTIS

Ankle (2SPU+1U)

Figure 4.1: Universal joint abstractions in robots at DFKI-RIC
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Figure 4.2: CAD prototype of Ankle
joint Figure 4.3: Scheme of the mechanism

4.1 Design Motivation

Fig. 4.2 shows the novel two degrees of freedom orientational parallel mechanism

of type 2SPRR+1U which is used as an ankle joint in the RH5 humanoid robot re-

cently developed at DFKI-RIC. The kinematic actuation principle of this mechanism

comprises of a motion constraint generator leg with a universal joint (U) and two

auxiliary actuation legs of type SPRR i.e. they containt a spherical (S), prismatic

(P) and two revolute (RR) joints in series as shown in Fig. 4.3. It is well known

that during walking, the torque required for the pitch movement is larger than the

torque required for the roll movements [Lohmeier et al., 2006]. When the two motors

are actuated in the same direction, the mechanism produces a pitch only movement

demonstrating good torque transmission characteristics. It has been shown in biome-

chanics studies that during the ankle pitch movement of human gait, a peak torque

between 105 Nm and 120 Nm is required when flexion/extension angle is between

−6◦ and −12◦[Zoss et al., 2006]. To reflect this in the ankle design, the foot attach-

ment points of the two linear actuators may be displaced along the z-axis by 30 mm.

Utilizing a common universal joint at the offset points, as in the case of 2SPU+1U

mechanism, reduces the workspace of the roll movement. Instead, two skew revolute

joints, with axes parallel to the axes of universal joint on constraint generator leg,

connected by an intermediate offset link are used to provide the desired torque char-

acteristics in the pitch movement with minimal influences on the motion range of roll

movement.
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4.2 Architecture and Constraint Equations

The mobility of a mechanism (M) can be calculated with the help of Kutzbach-

Grübler criteria as follows: ds(M) = s(n−m−1)+f = s(−c)+f ,where n is number of

links in the mechanism 3+3+2 = 8, m is total number of joints 4+4+1 = 9, f is total

dof of joints 2 + 6 + 6 = 14, and s is the motion parameter. Since, it is a spatial mech-

anism, s = 6. Hence, the mobility can be calculated as ds(M) = 6(8− 9− 1) + 14 = 2.

The manipulator architecture and geometry is shown in Fig. 4.4. Let us define a

set of three points: shank point (si), foot attachment point (f i) and the offset point

(ki) on the two auxiliary actuation legs of the mechanism. The base frame O is at-

tached to the shank link and is coincident with the end effector (EE) frameE attached

to the foot link in zero configuration. The intermediate offset link f iki rotates about

the x-axis (denoted as n̂) of the frame defined at f i, thus point ki moves on a circle of

radius r equal to the length of the link, ‖f i − ki‖. The length of the linear actuators

(di) is the norm of the vector (ki − si). We also define a vector δi := (si − f i).

The constraint equations of the manipulator are the following:

d2
i = ‖ki − si‖2 = ‖pi − si‖2 + ‖ki − pi‖2 , i ∈ {1, 2} (4.1)

We can rewrite Equation 4.1 purely as a function of (si, n̂,f i).

d2
i = ‖n̂ · δi‖2 + (‖f i − pi‖ − r)2

d2
i = ‖n̂ · δi‖2 + (

√
‖δi‖2 − ‖n̂ · δi‖2 − r)2

d2
i = ‖n̂ · δi‖2 + (‖n̂× δi‖ − r)2

(4.2)

For the purpose of visualization or computing passive joint angles, it is necessary

to compute the point ki which is given by Equation 4.3.

ki = f i + r
δi − (n̂ · δi)n̂

‖δi − (n̂ · δi)n̂‖
(4.3)

The orientation of the moving platform is parameterized by roll (θ, around X

axis) and pitch (φ, around Y axis) angles such that ORE = Rot(X, θ) · Rot(Y, φ). The

revolute joint axis vector (n̂) and the foot attachment point (f i) are expressed in

global coordinate frame using n̂ = ORE · n̂E and f i = ORE · fE
i respectively where

n̂E and fE
i denote the revolute joint axis and foot attachment point vector in EE

frame.
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Figure 4.4: Geometry of the 2 dof ankle mechanism (RGB colours denote XYZ axes)

4.3 Solving Forward and Inverse Kinematics

Algebraic geometry techniques have proven to be useful in solving the forward kine-

matics of parallel manipulators but they require the constraint equations to be alge-

braic. Tangent half angle substitutions might leave the constraint equations unde-

fined for π orientations. Hence, in order to have an algebraic description of the mech-

anism’s constraint equations, cosines and sines are replaced by cos(θ) = x, sin(θ) = y,

cos(φ) = u and sin(φ) = v in ORE though it comes at a cost of adding two more equa-

tions to the ideal set. To this end, rearranging Eq. (4.2) and squaring to avoid the

square root term ‖n̂× δi‖ leads to four algebraic constraint equations:

g1 := (d2
1 − ‖n̂ · δ1‖2 − ‖n̂× δ1‖2 − r2)2 − 4 ‖n̂× δ1‖2 r2 = 0 (4.4a)

g2 := (d2
2 − ‖n̂ · δ2‖2 − ‖n̂× δ2‖2 − r2)2 − 4 ‖n̂× δ2‖2 r2 = 0 (4.4b)

g3 := x2 + y2 − 1 = 0 (4.4c)

g4 := u2 + v2 − 1 = 0 (4.4d)

After substituting the geometric dimensions provided in Table 4.1, the constraint

equations are only a function of variables x, y, u, v, d1 and d2. g1 and g2 are 16 degree

polynomials and are quite long to be shown here.

The solution to inverse kinematics problem (IKP) of the manipulator is straight-

forward and unique for a given orientation of the moving platform as the joint vari-

ables di can be easily calculated from Eq. (4.2). It is noteworthy that when the roll

angle is zero, Eq. (4.2) yields d1 = d2.

The direct kinematics problem (DKP) aims to find the variables x, y, u and v when
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i si fE
i n̂E ‖f iki‖

1 (−22.30, 25, 291.27)T (−70, 40, 0)T (1, 0, 0)T 30
2 (−22.30,−25, 291.27)T (−70,−40, 0)T (1, 0, 0)T 30

Table 4.1: Geometric dimensions (in mm) of the ankle mechanism

Number of solutions 0 2 4 6 8

Number of poses (/2601) 124 268 2146 63 0

Percentage 4.77 10.30 82.51 2.42 0

Table 4.2: Percentage of real solutions to direct kinematics

the prismatic joint lengths are specified. In search of maximum number of solutions

to DKP (assembly modes), an ideal of the constraint polynomials gi is defined: I =

〈g1, g2, g3, g4〉 | I ⊆ k[u, v, x, y]. Finding the Groebner basis with a pure lexicographic

ordering of the orientation parameters in any order leads to a univariate polynomial

of degree 32. Since squaring two of the four constraint equations quadruples the

number of solutions, the number of solutions must be quartered. Hence, the upper

limit to DKP solutions of the manipulator under study is eight. To investigate the

number of real solutions, RootFinding[Isolate] function of MapleTMis used. The

algorithm behind this function finds out the rational univariate representation of the

set of polynomials and isolates the real roots of these univariate polynomials based

on Descartes’ rule of sign and the bisection strategy in a unified framework. The

variables d1 and d2 are varied from 221 mm to 331 mm (physical motion range of

linear actuators) with an increment of 6 mm and the percentage of the number of

real DKP solutions is listed in Table 4.2. It is evident that the maximum number of

real solutions for the considered set of prismatic joint lengths is six. Figure 4.5 shows

six such assembly modes when d1 = 221 mm and d2 = 228.3 mm. It is speculated that

a different choice of design parameters might lead to eight real solutions to DKP. In

the physical construction of the ankle joint, passive joint limits are chosen such that

there exists a unique solution to forward kinematics for a given input of actuator

lengths in their feasible motion range (for instance Fig. 4.5e).

4.4 Workspace, Singularity and Performance Analysis

4.4.1 Configuration Space and Workspace

To demonstrate the suitability of the novel 2-SPRR+1U mechanism as a humanoid

ankle joint, it is important to compute and characterize its feasible workspace in

orientation and configuration domains. The feasible configuration space is calcu-



64 Chapter 4. Study of 2SPRR+1U Device for Abstraction of Universal Joint

X

Y

Z

(a)
θ = 172.32◦

φ = −92.94◦

X

Y

Z

(b)
θ = 172.33◦

φ = −78.30◦

X

Y

Z

(c) θ = 175.32◦

φ = −116.30◦

X

Y

Z

(d)
θ = 175.30◦

φ = −54.91◦

X

Y

Z

(e)
θ = 5.03◦

φ = 39.28◦

X

Y

Z

(f)
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Figure 4.5: Assembly modes for d1 = 221 mm and d2 = 228.3 mm

lated by varying the orientation variables describing foot rotation, roll (θ) and pitch

(φ) angles, in the range [−π, π]. Then the physical limits of the linear actuators

(di ∈ [221, 331]mm) are imposed to compute the workspace of the mechanism under ac-

tuator constraints. The resulting configuration space and orientation workspace are

shown in Fig. 4.6. It is possible to take into account physical limits of passive joints

in the mechanism to further compute the physically realizable workspace which is

indicated with a closed curve in the figure. The final range of motion (ROM) of the

proposed ankle mechanism is more than that of an average human and is presented

in Table 4.3 (compare with [Zoss et al., 2006]). Hence, the available range of motion

(ROM) in the humanoid ankle is between −57◦ and 57◦ for the roll angle (φ) and

between −51.5◦ and 45◦ for the pitch angle (θ).

4.4.2 Singularity Analysis

The ankle mechanism under study does not have any limb singularities since the

auxiliary actuation legs do not generate any constraints on the moving platform.

Nonetheless, the actuation scheme results in the so called actuation singularities

that can be determined through the kinematic Jacobian matrix of the manipulator

obtained by the partial differentiation of the constraint polynomials in Eq. (4.4) with
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Figure 4.6: Configuration space and orientation workspace under actuator physical
limits
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Figure 4.7: Singularity curve
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Figure 4.8: Inverse of condition num-
ber

respect to the orientation parameters:

J =




∂g1

∂θ

∂g1

∂φ
∂g2

∂θ

∂g2

∂φ


 (4.5)

The configurations for which the determinant of the Jacobian matrix J vanishes

are called actuation singularities. The determinant of J depends only on θ and φ.

An implicit plot of the equation det(J) = 0 in terms of the orientation variables θ

and φ is shown in Fig. 4.7 which shows the singularity curves in the mechanism’s

workspace. Also, it can be observed that there exist four singularities each for pure

roll (φ = 0) and pure pitch (θ = 0) movements. Fig. 4.9 shows the singular poses for

the pure roll and pure pitch movements which are closest to the zero configuration of

the mechanism.
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Figure 4.9: Singularity configurations for pure roll (θ) and pure pitch (φ) movements

Range (min. to max.) Position Max. abs. force Max. abs. velocity

Ankle pitch −51.5◦ to 45◦ 43.8 N m to 110.1 N m 61 ◦ s−1 to 154◦ s−1

Ankle roll −57◦ to 57◦ 30.6 N m to 57 N m 118 ◦ s−1 to 222◦ s−1

Linear actuator 221 mm to 331 mm 754 N 81mm s−1

Table 4.3: Ankle joint specification (total weight of lower leg = 3.2 kg, weight of one
actuator = 0.44 kg)

4.4.3 Performance Analysis

The quality of velocity or force transmission of a parallel manipulator can be

measured by plotting the inverse of condition number of the kinematic Jacobian

matrix(J) over the manipulator’s workspace. The inverse of condition number of

the Jacobian is calculated with c(J) = 1
‖J‖‖J−1‖ where ‖·‖ represents the Euclidean

norm of the matrix. The inverse of the condition number is plotted over the feasible

orientation workspace of the ankle as shown in Fig. 4.8. From Fig. 4.8, it is evident

that the kinematic Jacobian matrix is well-conditioned in the feasible orientation

workspace of the ankle mechanism.

4.4.4 Maximum Velocity and Force Transmission

For practical purposes, it is crucial to calculate the maximum absolute velocity and

torque available at the EE, from the maximum force and velocity that can be de-

livered by the actuators. These are computed with the help of kinematic Jacobian
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matrix and actuator specification (see Table 4.3).

4.4.4.1 Velocity Transmission Analysis

The velocity transmission of a parallel mechanism is given by:

ẋ = Jq̇ (4.6)

where q̇ is the vector containing joint velocities (q̇ =
[
ḋ1 ḋ2

]
) and ẋ is the vec-

tor containing task space velocities (ẋ =
[
θ̇ φ̇

]
). This expression can be used to

compute maximum velocity in task space from maximum input velocity in actuation

space.

Pure Pitch Movement It is trivial to compute the pure pitch velocity, as we know

that for pure pitch movement (θ = 0 and θ̇ = 0), the movement required in the linear

actuators is identical i.e. d1 = d2 and ḋ1 = ḋ2. To compute the maximum pitch

velocity, we vary the pitch angle φ in [−π, π] in the following formula:

ẋmax = J(0, φ)q̇max (4.7)

where q̇max =
[
ḋmax ḋmax

]
. The maximum speed of the linear actuators i.e. ḋmax

can be found in Table 4.3. Fig. 4.10 shows the pitch velocity component of ẋmax in

complete and feasible working range of the mechanism. The discontinuities in the

curve in Fig. 4.10a show the singular points. Obviously, the roll velocity component

is zero and hence not shown in the plots. Fig. 4.10b shows the singularity free pitch

velocity transmission curve in physically realizable workspace of the mechanism.
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Figure 4.10: Velocity transmission in pure pitch movement
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Pure Roll Movement For pure roll movement (φ = 0 and φ̇ = 0), such an analysis

is not so straightforward because an explicit relation between d1 and d2 is not known.

However, the ratio of ḋ1 and ḋ2 can be computed with the help of inverse kinematic

Jacobian matrix using the fact that φ = 0 for the pure roll movement:

q̇ = J−1(θ, 0)ẋ
[
ḋ1

ḋ2

]
=

[
a11 a12

a21 a22

] [
θ̇

0

]

ḋ1

ḋ2

=
a11

a21

(4.8)

where a11, a12, a21, a22 are elements of the inverse kinematic Jacobian and are func-

tions of output variables (θ, φ). In Equation 4.8, one has the freedom to provide maxi-

mum velocity to one of the actuator and calculate the maximum possible speed in the

other actuator. For example, if the second actuator is chosen to work at maximum

speed i.e. ḋ2 = ḋmax, then the first actuator speed can be calculated as ḋ1 = a11
a21
ḋmax.

Once the two actuator speeds are known, one can substitute them in Equation 4.7 to

compute the maximum roll velocity. Fig. 4.11 shows the roll and pitch velocity compo-

nents of ẋmax in complete and feasible working range of the mechanism. The two set

of curves in Fig. 4.11a show which actuator was chosen to operate at the maximum

speed. The discontinuities in the roll curves show the four singular points. As one

can see, the pitch velocity component is zero for a pure roll movement. Fig. 4.11b

shows the maximum roll velocity in the feasible working range of the mechanism.
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Figure 4.11: Velocity transmission in pure roll movement

In both cases, it can be noticed that the maximum ouput velocity is not constant

and depends on the configuration of the mechanism. The range of the maximum

output velocity has been documented in Table 4.3.
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4.4.4.2 Force Transmission Analysis

The force transmission of a parallel mechanism is given by:

f = J−T τ (4.9)

where τ is the vector containing joint forces (τ =
[
f1 f2

]
) and f is the vector

containing task space moments (f =
[
τroll τpitch

]
). This expression can be used

to compute maximum torques in task space from maximum input forces in actuation

space.

Pure Pitch Movement It is trivial to compute the pure pitch torque, as we know

that for pure pitch movement (θ = 0), the movement required in the linear actuators

is identical i.e. f1 = f2. To compute the maximum pitch moment, we vary the pitch

angle φ in [−π, π] in the following formula:

fmax = J−T τ max (4.10)

where ~τmax =
[
fmax fmax

]
Fig. 4.12a and Fig. 4.12b show the pure pitch velocity

transmission in complete and feasible working range of the mechanism respectively.

The points where the pure pitch moment becomes zero are the actuation singularities.

It can also be noticed that the maximum pitch torque of 110 N m is available when the

pitch angle is between −6◦ and −12◦ which is the main motivation during the design

process.
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Pure Roll Movement For pure roll movement (φ = 0), again such an analysis is

not so straightforward. However, the ratio of f1 and f2 can be computed with the help

of forward kinematic Jacobian matrix using the fact that τpitch = 0 for the pure roll

movement.
τ = JT (θ, 0)f

[
f1

f2

]
=

[
b11 b12

b21 b22

] [
τroll

0

]

f1

f2
=
b11

b21

(4.11)

In Equation 4.11, one has the freedom to provide maximum force to one of the actu-

ator and calculate the maximum possible force in the other actuator. For example,

if the second actuator is chosen to work at maximum force i.e. f2 = fmax, then the

first actuator force can be calculated as f1 = b11
b21
fmax. Once the two actuator forces

are known, one can substitute them in Equation 4.10 to compute the maximum roll

moment. Fig. 4.13 shows the roll and pitch moment components of τ max in complete

and feasible working range of the mechanism. The two set of curves in Fig. 4.13a

and Fig. 4.13b show which actuator was chosen to operate at the maximum force.

The points where roll moment drops to zero are the singular points. As one can see,

the pitch moment component is zero for a pure roll movement. Fig. 4.13b shows the

maximum roll moment in the feasible working range of the mechanism.
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Figure 4.13: Force transmission in pure roll movement

Again, in both cases, it can be noticed that the maximum output force is not con-

stant and depends on the configuration of the mechanism. The range of the maxi-

mum output force for pure pitch and pure roll movements has been documented in

Table 4.3. The proposed ankle design provides good force and velocity transmission

along pure pitch and roll movements which are highly desired in modern humanoids.
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Figure 4.14: Manipulator architecture
of 2SPU+1U ankle mechanism

i si fE
i

1



−22.30

25
291.27






−70
40
0




2



−22.30
−25

291.27






−70
−40

0




Table 4.4: Geometric dimensions (in
mm) of the 2SPU+1U ankle mecha-
nism

4.4.5 Comparison Between 2SPRR+1U and 2SPU+1U Designs

2SPU+1U mechanism is a special case of 2SPRR+1U mechanism with intersect-

ing revolute joint axes. The manipulator architecture applied to an ankle design

is shown in Fig. 4.14. The analysis presented in this chapter can be easily applied

to 2SPU+1U mechanism by substituting r = 0. To make a comparison between the

2SPRR+1U and 2SPU+1U designs, we perform the kinematic analysis of 2SPU+1U

mechanism based on the design parameters provided in Table 4.4. Same attach-

ment points are used for this ankle design to compare against the ankle based on

2SPRR+1U architecture (compare with Table 4.1). For example, Fig. 4.15 shows the

configuration space and orientation workspace of this mechanism. In comparison

to the workspace of 2SPRR+1U mechanism as shown in Fig. 4.6, it can be noticed

that 2SPU+1U mechanism has a poor orientation workspace especially for pure roll

movements. Hence, the 2SPRR+1U architecture is the preferred solution for the an-

kle design since it provides the ideal force transmission without compromising on the

ankle workspace. Fig. 4.16 shows the singularity curve and inverse of cond(J) over

workspace for 2SPU+1U mechanism.
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Figure 4.15: Configuration space and orientation workspace for ankle design based
on 2SPU+1U mechanism
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Figure 4.16: Singularity curve and inverse of condition number over workspace for
ankle design based on 2SPU+1U mechanism

4.5 Application in Ankle, Wrist and Torso Design of RH5

Humanoid

The 2SPRR+1U mechanism and its derivative 2SPU+1U mechanism has been used

as a 2 DOF joint module in the design of RH5 humanoid (see Fig. 4.1). In particular,

they have been used to construct the ankle, torso and wrist joints in the humanoid.

In this section, the kinematic analysis performed above is applied to an optimized

ankle, torso and wrist designs for the humanoid robot.

4.5.1 Ankle Design

Despite good kinematic performance of the 2SPRR+1U topology, it was realised that

a poor choice of linear actuators led to insufficient velocity and moment available at

the ankle joint. Hence, the design was upgraded with new faster and stronger linear
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Range (min) Range (max) Max. abs. torque Max. abs. velocity

Ankle pitch -45◦ 45◦ 130 N m 176◦ s−1

Ankle roll -19.5◦ 19.5◦ 40 N m 120◦ s−1

Table 4.5: TORO ankle joint specification [Englsberger et al., 2014]

Figure 4.17: Ankle joint specification from different robots [Stasse et al., 2017]

actuators. The attachment points and the geometric dimensions didn’t change during

the design upgrade. Table 4.6 presents the joint specification for the upgraded ver-

sion of ankle joint in RH5 humanoid. Since, there is no change in geometric dimen-

sions, the configuration space and workspace of the mechanism remains the same as

Fig. 4.6. Moreover, the singularity curve and conditioning of the workspace is also

not affected (same as Fig. 4.7 and Fig. 4.8).

Comparision with other humanoid ankle designs TORO is a torque controlled

humanoid developed by DLR [Englsberger et al., 2014]. The pitch actuator (ILM85

weighing 2.062kg) is placed closer to the knee joint with the help of a parallel 4 bar

mechanism. The roll actuator (ILM50 weighing 0.832kg) is then connected in series

with the pitch guiding mechanism. The velocity and torque specification of the TORO

ankle is listed in Table 4.5. In comparison to TORO ankle, the ankle joint presented

in this paper provides better range of motion and force/velocity transmission capabil-

ities while promising a light weight design and low leg inertia. The total weight of

lower leg of RH5 humanoid is 3.6kg including the foot unit, all the sensors, and elec-

tronics while the lower leg in TORO weighs 7.648kg. The actuator only weight of our

mechanism is only 1.22kg while the actuator only weight of TORO ankle is 2.894kg.

The new specification outperforms TORO ankle in every aspect and the data is com-

parable to the most dynamic humanoid ATLAS from Boston Dynamics (Fig. 4.17).

4.5.2 Torso Design

A variant of 2SPRR+1U linkage with r = 0 has been used to construct the torso joint

in RH5 humanoid. Its CAD rendering is shown in Fig. 4.18. The physical dimensions

of the 2SPU+1U mechanism applied to a torso joint is provided in Table 4.7 based on
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Range (min. to max.) Position Max. abs. force Max. abs. velocity

Ankle pitch −51.5◦ to 45◦ 121 N m to 304 N m 200 ◦ s−1 to 502◦ s−1

Ankle roll −57◦ to 57◦ 84 N m to 158 N m 386 ◦ s−1 to 726◦ s−1

Linear actuator 221 mm to 331 mm 2000 N 265mm s−1

Table 4.6: RH5 Ankle v2.0 joint specification (total weight of lower leg = 3.6 kg, weight
of one actuator = 0.610 kg)

Figure 4.18: CAD prototype of Torso
joint
(Credits: Heiner Peters, DFKI GmbH)

Figure 4.19: CAD prototype of Wrist
joint
(Credits: Heiner Peters, DFKI GmbH)

i si fE
i

1 (−80.49, 20,−210)T (−91.22, 76.81, 23)T

2 (−80.49,−20,−210)T (−91.22,−76.81, 23)T

Table 4.7: Geometric dimensions (in mm) of the torso mechanism

Range (min. to max.) Position Max. abs. force Max. abs. velocity

Torso pitch −25◦ to 29◦ 380 N m to 493 N m 184 ◦ s−1 to 238◦ s−1

Torso roll −36◦ to 36◦ 285 N m to 386 N m 208 ◦ s−1 to 400◦ s−1

Linear actuator 195 mm to 284 mm 2716 N 291mm s−1

Table 4.8: RH5 torso joint specification

Fig. 4.20. Fig. 4.21 shows the configuration space and workspace of the torso taking

into account the physical limits of the actuators. Fig. 4.22 shows the singularity curve

and inverse of cond(J) over workspace for 2SPU+1U mechanism. Table 4.8 presents

the overall joint specification of the torso joint in RH5 humanoid.
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Figure 4.20: Geometric dimensions of RH5 torso joint
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Figure 4.21: Configuration space and orientation workspace for 2SPU+1U mecha-
nism applied to RH5 torso

4.5.3 Wrist Design

The same variant has also been used to construct the wrist joint in RH5 humanoid

(see Fig. 4.19 for its CAD rendering). The physical dimensions of the 2SPU+1U mech-

anism applied to a wrist joint is provided in Table 4.9 based on Fig. 4.23. Fig. 4.24

shows the configuration space and workspace of the torso taking into account the

physical limits of the actuators. Fig. 4.25 shows the singularity curve and inverse of

cond(J) over workspace for 2SPU+1U mechanism. Table 4.10 presents the overall

joint specification of the wrist joint in RH5 humanoid.
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Figure 4.22: Singularity curve and inverse of condition number over workspace for
2SPU+1U mechanism applied to RH5 torso joint

Figure 4.23: Geometric dimensions of RH5 wrist joint

i si fE
i

1 (16,−32,−261.60)T (36,−35, 5)T

2 (−16,−32,−261.60)T (−36,−35, 5)T

Table 4.9: Geometric dimensions of the wrist mechanism
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Figure 4.24: Configuration space and orientation workspace for 2SPU+1U mecha-
nism applied to RH5 wrist
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Figure 4.25: Singularity curve and inverse of condition number over workspace for
2SPU+1U mechanism applied to RH5 wrist joint

Range (min. to max.) Position Max. abs. force Max. abs. velocity

Wrist pitch −46.8◦ to 46.8◦ 24 N m to 35 N m 7 ◦ s−1 to 14◦ s−1

Wrist roll −39.6◦ to 57.6◦ 22 N m to 35 N m 8 ◦ s−1 to 13◦ s−1

Linear actuator 235 mm to 290 mm 495 N 5mm s−1

Table 4.10: RH5 wrist joint specification

4.6 Conclusion

This chapter presents a comprehensive kinematic analysis of a novel 2SPRR+1U par-

allel mechanism for application as an abstraction to universal joint with two degrees

of freedom. Using tools from computational algebraic geometry, an upper bound

to the number of solutions to the direct kinematics problem and the real assem-

bly modes have been studied. Inverse kinematics is used to study the mechanism’s
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workspace, compute the singularity curves and quality of velocity and force trans-

mission. The analysis presented in this work can be easily applied to 2SPU+1U

mechanism by substituting r = 0. From the study, it is clear that these architectures

are highly suitable to be used as two DOF universal joint modules for constructing

ankle, torso and wrist subsystems of a humanoid robot. The work presented in this

chapter can be used to derive the loop closure function (which will be introduced in

Section 7.1.3 of Chapter 7) of the mechanism which will be integrated in the HyRo-

Dyn software framework (described in Section 8.4.1 of Chapter 8) as a standalone

submechanism library.
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Chapter 5

Study of 3R-[2SS] Device for

Abstraction of Spherical Joint

This chapter presents the study of the novel 3R-[2SS] mechanism also called as AC-

TIVE ANKLE which has been used for the abstraction of a spherical joint in the design

of Recupera Reha exoskeleton (see Fig. 5.1). The chapter is organized as follows: In

Section 5.2, the design and the construction of the ACTIVE ANKLE are reflected in

comparison to the state-of-the-art and its general mobility is determined. In Sec-

tion 5.4, the inverse kinematic problems and solution methods suitable for its kine-

matic control are presented. In Section 5.5, a forward kinematic analysis based on

the tools from computational algebraic geometry is presented which provides some

global insights into mechanism’s geometry. The Section 5.6 presents the control of

the ACTIVE ANKLE in comparison to the range of motion of the human ankle. Fi-

nally, conclusions are drawn in Section 5.7. The content of this chapter is based on

[Kumar et al., 2018a] and [Kumar et al., 2018b].

Recupera Exoskeleton

Hip joints

Ankle joints

Figure 5.1: Spherical joint abstraction in RECUPERA exoskeleton at DFKI-RIC
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5.1 Introduction

If the location of the end-effector of a PM remains constant, the device is called a

spherical parallel manipulator (SPM). The AGILE EYE [Gosselin et al., 1996] and

its improved variant AGILE WRIST [Niyetkaliyev and Shintemirov, 2014] are promi-

nent examples of SPMs with three degrees of freedom (DOF). The joint axes of this

class of spherical manipulators are required to intersect in a single point. How-

ever, due to machining and assembling errors, it is difficult to achieve an accu-

rate intersection of all joint axes [Gallardo-Alvarado, 2016]. Misalignments may

lead to undesirable reaction forces in the structure, and hence to a reduced service

life of the mechanism or sometimes makes the complete system difficult to assem-

ble [Vischer and Clavel, 2000]. Moreover, the use of C-shaped links in the system

prevents the design from being used in high payload applications. Due to the kine-

matic layout that requires an exact intersection of all rotation axes, a high-precision

manufacturing is indispensable for these SPMs [Al-Widyan et al., 2011]. The AR-

GOS mechanism, an SPM with three DOF, was developed by Vischer and Clavel

[Vischer and Clavel, 2000] to overcome these shortcomings. Their 3[R [RR/SS]S ]-

design consists of three identical legs containing a revolute joint at the base whose

axis is pointing to a virtual rotation center.

A novel, almost-spherical parallel manipulator (ASPM) ACTIVE ANKLE (Fig. 1.3a)

has recently been introduced in [Simnofske, 2015] and [Simnofske et al., 2016]. Due

to its unique, simple and compact 3[R 2 [SS]] design, the constraint of moving the end-

effector about an exact center (of rotation) in case of spherical parallel manipulators

(SPM) is relaxed to almost spherical motions that includes a shift of the end effector

about a tolerated, very small domain. Due to the presence of a closed loop in each

leg, the mechanism offers high stiffness and orientation accuracy. The mechanism

features a low link diversity and its simple, robust and modular design makes it

highly suitable for many applications. While the primary application of the ACTIVE

ANKLE is an active ankle joint in an exoskeleton or a humanoid, it could also be

integrated as a submechanism into a regional manipulator for obtaining precise six

DOF motions if the constrained translations of the ASPM are compensated by the

previous joints of the overall device.

5.2 Mechanism’s Design Description

5.2.1 Type Synthesis

The geometric type of the spatial almost-spherical parallel mechanism ACTIVE AN-

KLE are set into context in Table 5.1 and Table 5.2. The various possible leg config-
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Figure 5.2: Sketch of the ACTIVE ANKLE [Simnofske, 2015] including (1) base, (2)
rotative actuator, (3) crank, (4 & 6) ball and socket joints, (5) rod, (7) end-effector.

urations can be derived using the Kutzbach-Gruebler formula. Table 5.1 describes

the possibilities by using the relation between the desired degree of freedom of the

parallel manipulator d, the numberof kinematic chains k, and the sum of the joint

DOF ofeach chain f . Each kinematic leg can be realized by a serial arrangement of

links and joints or with closed loops. The latter comes with an inherent advantage of

increased stiffness. For example, in the famous DELTA robot which has 3 DOF, each

of its three legs is realized by a closed parallelogram (4S) mechanism which makes

it a stiff positioning system. This is an inspiration for finding a novel parallel ma-

nipulator which can produce spherical movements while still keeping the topological

arrangement of DELTA robot. With a homogeneous distribution of five DOF to all

three legs (Table 5.1), the type of the ACTIVE ANKLE matches those of the DELTA

robot. The topological setup of both mechanisms also equals on the level of each of

the three identical legs. Both consist of one rotative actuator in series with one closed

loop with four spherical joints (Fig. 5.3). For these reasons, the ACTIVE ANKLE can

be classified as the (almost) rotative counterpart of the DELTA robot. In comparison

to the DELTA robot, which provides a stiff positioning functionality, the ACTIVE AN-

KLE provides a stiff orientating feature, due to the employment of parallel structures

within the three kinematic chains.

5.2.2 Design and Construction

The mechanical layout of ACTIVE ANKLE is modular and depicted in Fig. 5.2: the

device features three rotative actuators fixed to the base. Each of the three motors

drives a spatial quadrilateral consisting of a symmetric crank, two rods, and a line

segment on the mobile platform. The three line segments mutually intersect orthog-

onally and together form a spatial cross on the end-effector link. The total weight of
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Figure 5.3: Link graph of the parallel manipulator ACTIVE ANKLE, including n = 11
links and m = 15 joints.

the mechanism including the three actuators is 1.8 Kg. With regard to the electron-

ics, the device features three actuator modules which include a brushless DC motor

coupled with harmonic gear drives (nominal torque 28 Nm, weight 0.392 Kg), FPGA

based control, and power electronics. Each actuator module is capable of a cascaded

position, velocity, and current based torque control [Simnofske et al., 2016]. The pre-

sented prototype of this mechanism is designed to carry static loads upto 30 Kg in the

zero configuration.

5.2.3 Topology and General Mobility

The topology of the mechanism is equivalent to DELTA robot as depicted in Fig. 5.3.

The n = 11 links Li are enumerated as L01, L12, L13, L14, L23, L32, L33, L43, L52, L53,

and L63. The m=15 joints Ji,j are distinguished using double indices, as indicated in

Fig. 5.3. The number of independent loops of the ACTIVE ANKLE is computed with

c = m−n+1 = 15−11+1 = 5. The general mobility of the mechanism can be estimated

by means of the Kutzbach-Grübler formula: ds(M) = s(n −m − 1) + f = s(−c) + f ,

where the total number of freedoms f =
∑

ij fij is determined by considering three

rotative joints, six spherical joints, and six universal joints, which results in f =

3 · 1 + 6 · 3 + 6 · 2 = 3 + 18 + 12 = 33. Since the device is almost spherical, the motion

parameter s = 6 (spatial) and s = 3 (spherical). Hence, the mobility of the device can

be computed as: ds(M) = 6 · (11− 15− 1) + 33 = 3 .
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Table 5.1: Overview of spatial parallel manipulators with general mobility d with
distributions of degrees of freedom to k kinematic chains (legs), in accordance to
[Frindt, 2001].

d = 2 d = 3 d = 4 d = 5 d = 6

k = 2

k = 3 –

k = 4 – –

k = 5 – – –

k = 6 – – – –

Table 5.2: Examples of mechanisms with respect to type and mobility. *Watt’s and
Chebyshev’s linkages are almost prismatic [Kempe, 1877].

Mechanism type General mobility d

Motion Group Dim. 1 3 6

Position P 2 2 Peaucellier–Lipkin* – –

Flat P 2R 3 Planar 4R Planar Stewart –

Spherical R3 3 Spherical 4R Agile Eye, Argos –

Position P 3 3 Sarrus Delta robot –

Spatial P 3R3 6 Bennett 4R Active Ankle Stewart

5.2.4 Design Features

The mechanism’s homogeneous and simple design leads to a low link diversity, per-

mits a low-cost construction, and provides robustness against production inaccura-

cies. A crucial feature of the mechanism’s design is the stress distribution among the

structure. The six rods that transmit the forces from the cranks to the platform are

only loaded with forces along their axes due to the spherical joints attached to them.

Moreover, any force applied along the direction of its platform’s torsional axis can be

supported without an active torque in the motors.

A multibody dynamics simulation analysis and a subsequent FEM analysis have

been performed to check the deformation of the critical parts as rods and cranks un-

der desired loads (Fig. 5.4). A force corresponding to the weight of the exoskeleton is

applied to the end effector and the forces in the spherical joints are measured. In the
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Figure 5.4: FEM analysis of the ACTIVE ANKLE.

zero configuration, this force – equivalent to 350 N perpendicular to the end effector’s

top plate – leads to a reaction force of approximately 100N in each spherical joint. The

selected ball and socket joints are designed for a maximum axial tensile force of 600N

in housing axis and a pivot angle of maximum of ±25◦. The same magnitude of force

occurs in the rods and this force has been found to be less than the buckling force of

the rods (i.e. 2120N). Thus, it is ensured that the mechanism resists from buckling in

all possible configurations [Simnofske et al., 2016].

5.2.5 Design Comparison

In this section, the design of the almost-spherical mechanism Active Ankle is ana-

lyzed from a principal and from an application-motivated point of view: First, its

design is compared to that of spherical mechanisms, and second, its design is set into

contrast with devices intended to interoperate with the human ankle.

Spherical Mechanisms. In Table 5.3, the almost-spherical ACTIVE ANKLE is

briefly compared to a set of (purely) spherical devices.1 The RRR chain and the

Cardan mechanism [Temple, 1988] with three intersecting axes represent the most

simple spherical devices: due to their serial construction, they lack the stiffness that

is offered by their parallel counterparts. AGILE EYE and its variants are Spheri-

cal Parallel Manipulators (SPM) which offer high speeds for low payloads. Due to

their design, they require high manufacturing and assembly accuracies. The de-

sign of the Asymmetrical Spherical Parallel Manipulator ASYSPM [Wu et al., 2015]

1The presented comparison is an outline of a more detailed argumentation [Simnofske et al., 2016].
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Mechanism Ref. Links n Joints m Loops c

RRR / Cardan [Temple, 1988] 4 3 (6) 0 (3)
Agile Eye / Wrist [Gosselin et al., 1996] 8 9 2

AsySPM [Wu et al., 2015] 11 13 3
CamSPM3 [Villgrattner et al., 2011] 8 10 4

Hexasphere [Valasek et al., 2010] 14 19 6

Active Ankle [Simnofske, 2015] 11 15 5

Table 5.3: A comparison of mechanisms, in terms of their members, links n, joints m,
and number of independent loops c = m−n+ 1; quoted from [Simnofske et al., 2016].

involves the use of large number of different parts due to its asymmetrical leg con-

figuration. In comparison to the Active Ankle, the 3-SPS manipulator (CAMSPM3

in Table 5.3) [Villgrattner et al., 2011] follows a complementary actuation approach:

prismatic, instead of revolute joints are employed to actuate the platform. The HEXA-

SPHERE [Valasek et al., 2010] is a redundant SPM that features six motors to achieve

the three rotative degrees of freedom of the platform.

Ankle Exoskeletons The ACTIVE ANKLE is priorly designed to work as an ac-

tive interface to three DOF human joints. Its application at the hip and the an-

kle joints within the novel full body RECUPERA exoskeleton [Kirchner et al., 2016,

Kumar et al., 2019b]. While the exoskeleton is primarily designed for upper body re-

habilitation 2 , the main purpose of the legs is to transfer the load of the upper body

exoskeleton system to the ground and provide some mobility features (e.g. sitting,

standing, walking etc.) to the human subject: the RECUPERA legs and the integrated

ACTIVE ANKLE instances are considered as load transfer devices according to the

classification by Herr.3 In contrast to the similar load carrying exoskeleton BLEEX

[Zoss et al., 2006] which only features four active DOF per leg, the RECUPERA ex-

oskeleton provides seven active DOF in each leg, due to the role of ACTIVE ANKLE

as a modular spherical unit. The hydraulically-damped ankle-foot orthosis by Ya-

mamoto et al. [Yamamoto et al., 2005] and the knee-ankle-foot exoskeleton KAFO

driven by artificial pneumatic muscles [Sawicki and Ferris, 2009] both only provide a

single DOF at the ankle joint of the human.

2The exoskeleton designs for upper body rehabilitation are usually attached to a fixed base (e.g.
ARMIN [Nef et al., 2009], Recupera wheelchair system [Kumar et al., 2017b]) or to the patient’s torso
(e.g. RUPERT[Huang et al., 2016]) which either reduces the mobility of patients or forces the patient to
carry the weight of the exoskeleton which might be difficult for weaker stroke patients. A more detailed
survey of exoskeletons for upper body rehabilitation can be found in [Gopura et al., 2011]

3Herr [Herr, 2009] distinguishes parallel-limb exoskeletons according to their function, ‘load transfer
to the ground’, ‘torque and work augmentation’, and ‘increase human endurance’. Active devices are
named ‘exoskeletons’, passive devices are named ‘orthoses’.
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Figure 5.5: A posture of the ACTIVE ANKLE corresponding to the configuration q =
(qx, qy, qz) ≈ (−25◦, 0◦, 0◦). The design parameters are d = r = 35 mm and l = 100 mm.

5.3 Mechanism Architecture and Constraint Equations

In this section, the parameterizations of the end effector and crank points are pre-

sented and the constraint equations of the mechanism are derived. The six points

(e1, . . . ,e6) on the end effector lie on a sphere with radius d. The points ci and cj

rotate around bij in circles of radius r for ij ∈ { 12, 34, 56
}
. The length of the six rods

is denoted by l. The global frame O is coincident with the end effector position e when

the mechanism is in its zero-configuration (Fig. 5.2). The unit vectors ŝ, n̂ and â are

vectors along the xE, yE and zE axes respectively expressed in the global frame O.

End effector points The points ei, i ∈
{

1, .., 6
}

are rigidly attached to the end-

effector. Fig. 5.5 shows that the pair of points (e1, e2) lies on a line L12 = (e, n̂) along

unit vector n̂ passing through point e. Similarly, the pairs (e3, e4) and (e5, e6) lie on

lines L34 = (e, â) and L56 = (e, ŝ) respectively. The coordinates of these points in
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terms of end effector position (e) and orientation (ŝ, n̂, â) are expressed as:

e1 = e + dn̂ e2 = e− dn̂

e3 = e + dâ e4 = e− dâ

e5 = e + dŝ e6 = e− dŝ

(5.1)

The position vectors of six end effector points are stored column-wise in matrix E =

(e1 . . . e6). The parameterization of six end effector points using the end effector pose

is implemented in the method Calculate End-effector Points (CEP) (Algorithm 5).

Crank points The crank points ci, i ∈
{

1, .., 6
}

are allowed to move on the circles

defined by the motion of three actuators. The pair of points (ci, cj) lie diametrically

opposite to each other on a circle of radius r with center bij , ij ∈ { 12, 34, 56
}
. The po-

sition vector of six crank points are parameterized using input joint angles (qx, qy, qz)

with the set of equations

c1(qx) = b12 + c12(qx) c2(qx) = b12 − c12(qx)

c3(qy) = b34 + c34(qy) c4(qy) = b34 − c34(qy)

c5(qz) = b56 + c56(qz) c6(qz) = b56 − c56(qz) .

(5.2)

In Equation 5.2, centers (b12, b34, b56) lie on (yz, zx, xy) planes at a distance of l units

along (z, x, y) axes respectively. The general points (c12, c34, c56) on these circles are

described as

b12 = lk̂ , c12(qx) = r cos(qx)ĵ + r sin(qx)k̂

b34 = l̂i , c34(qy) = r cos(qy)k̂ + r sin(qy )̂i

b56 = lĵ , c56(qz) = r cos(qz )̂i + r sin(qz)ĵ .

The position vectors of six crank points are stored column-wise in matrix C =

(c1 . . . c6). The parameterization of six crank points using the input joint angles is

implemented in the method Calculate Crank Points (CCP) (Algorithm 6).

Kinematic constraint equations The length of the line segment joining the

crank points (ci) to the end effector points (ei) equals the rod length l.

‖ei − ci‖ = l , i ∈ { 1, .., 6
}

(5.3)
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Type Well-determined Over-determined

Direction Name In Eqs Out Name In Eqs Out

Inverse
RIKP RE

67−→ (q, e)
IKP (RE , e) 67−→ q

IKP⋆ (RE , e)
37−→ q

Forward
FKP q

67−→ (RE , e)
TFKP (q,RE) 67−→ e

TFKP⋆ (q,RE)
37−→ e

Table 5.4: Overview of problem characteristics, dim(RE) = 3, dim(e) = 3, dim(q) = 3.
⋆ denotes the relaxed problem.

Substituting Equation 5.1 and Equation 5.2 in Equation 5.3, and squaring both sides,

the six distance constraints equations are derived:

(ex + dnx)2 + (ey + dny − r cos(qx))2 + (ez + dnz − l − r sin(qx))2 = l2 (5.4)

(ex − dnx)2 + (ey − dny + r cos(qx))2 + (ez − dnz − l + r sin(qx))2 = l2 (5.5)

(ex + dax − l − r sin(qy))2 + (ey + day)2 + (ez + daz − r cos(qy))2 = l2 (5.6)

(ex − dax − l + r sin(qy))2 + (ey − day)2 + (ez − daz + r cos(qy))2 = l2 (5.7)

(ex + dsx − r cos(qz))2 + (ey + dsy − l − r sin(qz))2 + (ez + dsz)2 = l2 (5.8)

(ex − dsx + r cos(qz))2 + (ey − dsy − l + r sin(qz))2 + (ez − dsz)2 = l2 (5.9)

Problem Overview In Table 5.4, an overview of the nature of kinematics problems

is presented based on the dimensionality of the input and output variables and the

number of constraint equations. With regard to the dimensionality of the unknown

variables and number of equations, it can be noticed that the inverse kinematics

problem (IKP) for this mechanism is over-determined while the forward kinematics

problem (FKP) is well determined. From the point of view of kinematic control, in-

verse kinematics problem in its original form is not relevant due to almost spherical

nature of this mechanism. It is intended to be used as a spherical device, and hence

this demands the solution to a rotative inverse kinematics problem (RIKP) which in-
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Algorithm 1 Inverse kinematic model (IKM)

(in) Target pose Pe

(out) Joint configuration (qx, qy, qz)

1: function IKM(Pe)
2: (e1, . . . ,e6)← CEP(Pe) ⊲ Platform coords
3: for ij ∈ { 12, 34, 56

}
do

4: pi+, pi−← S(ei, di) ∩ C(bij ,
c
2 , ẑij) ⊲ Sphere-circle intersections for i

5: pj+, pj−← S(ej , dj) ∩ C(bij ,
c
2 , ẑij) ⊲ Sphere-circle intersections for

j
6: I ← {

pi+,pi−

}
, J ← {

pj+,pj−

}

7: p+,p−← argmax
pi∈I,pj ∈J

(
(pi−bij) · (bij−pj)

)
⊲ Operator : a 7→ â = a

‖a‖

8: rij ← p+ − p− ⊲ Antipodes
9: dij ← c

(0)
i − c

(0)
j ⊲ Zero Posture

10: qx, qy, qz ← ∠(d12, r12),∠(d34, r34),∠(d56, r56)
11: return (qx, qy, qz)

volves finding a joint configuration from a given platform orientation in SO(3) instead

of a given platform pose in SE(3). This problem is again well-determined.

5.4 Inverse Kinematics

In this section, the inverse and rotational inverse kinematics problems are presented

along with their solution methods.

5.4.1 Inverse Kinematics

Problem 1 (Inverse Kinematics) The Inverse Kinematics Problem ( IKP) is defined

as the problem of finding the input joint angles needed to achieve a specific pose of the

end effector [Khalil and Dombre, 2002a], formally,

[qx, qy, qz] = IKP(P E), P E ∈ SE(3) ,

where P E is the homogeneous transformation matrix of the end effector E with respect

to the global frame O and [qx, qy, qz] are the active revloute joint angles.

P E =




sx nx ax ex

sy ny ay ey

sz nz az ez

0 0 0 1



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Algorithm 2 Matrix minor (MINOR)

(in) Matrix A ∈ Rm×n, row indices R =
(r1, r2, . . . , rp), column indices C =
(c1, c2, . . . , cq), x ∈ { 0, 1

}

(out) Determinant of the submatrix
A[R][C] ∈ Rp×q

1: function MINOR(A, R, C, x)
2: if x = 0 then ⊲ Index handling
3: do ri ← ri + 1 for ri ∈ R
4: do cj ← cj + 1 for cj ∈ C
5: A[R][C] ← EXTRACT(A, R, C) ⊲

Submatrix
6: m← det(A[R][C]) ⊲ Minor
7: return m

Algorithm 3 Submatrix extraction
(EXTRACT)

(in) Matrix A ∈ Rm×n, row indices R =
(r1, r2, . . . , rp) with 1 ≤ ri ≤ m for
1 ≤ i ≤ p, and column indices C =
(c1, c2, . . . , cq) with 1 ≤ rj ≤ n for
1 ≤ j ≤ q

(out) Submatrix A[R][C] ∈ Rp×q extracted
by R and C

1: function EXTRACT(A, R, C)
2: R← ( êm

r1
êm

r2
. . . êm

rp
)T ⊲

R ∈ Rp×m

3: C ← ( ên
c1

ên
c2
. . . ên

cq
) ⊲

C ∈ Rn×q

4: A[R][C] ← RAC

5: return A[R][C]

As noted in Table 5.4, in context of the IKP, the system of non-linear equations is

overdetermined as the number of unknowns (three) is less than the number of equa-

tions (six).

The method IKM in Algorithm 1 provides an analytical solution method to IKP.

The computation of the intersections of sphere and circle in Line 4 and Line 5 of

Algorithm 1 can be conducted by means of the intersection method SPHINT (Algo-

rithm 4) for three spheres.4 In Line 7, a pair of antipodal points is selected from

the set of four intersection points by maximizing the cosine similarity between two

normalized difference vectors. The line segment between the selected two points rep-

resents the current alignment of the rod. The angle between the current alignment

and the zero reference alignment (Line 9) of one rod yields the angle of one input

joint, determined in Line 10 of Algorithm 1.

Since the IKM solution depends on the knowledge of the end effector shift

(ex, ey, ez), it is not sufficient for achieving a kinematic control of the mechanism in

spherical task space SO(3). Therefore it is required to calculate the input joint angles

only from the desired orientation of the end effector.

4For a given a circle C(mC , rC , n̂C) with midpoint mC , radius rC , and unit normal n̂C , two substitut-
ing spheres SA(mA, rA) and SB(mB, rB) are given by the midpoints mA, mB = mC ± 4

3
rCn̂C and the

radii rA = rB = 5
3
rC .
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(a) Physical setup of the AC-
TIVE ANKLE.

(b) Relaxed structure for IKM⋆

(Algorithm 7).
(c) Relaxed structure for
TFKM⋆ (Algorithm 8).

Figure 5.6: The mechanism ACTIVE ANKLE and relaxed variants featuring addi-
tional freedoms (virtual prismatic joints).

Algorithm 4 Intersection of three spheres (SPHINT)

(in) Spheres; midpoints m1, m2, m3 and radii r1, r2, r3

(out) Intersection; points p+ and p−, with
∥∥p+ − si

∥∥ = ri and
∥∥p− − si

∥∥ = ri

for i ∈ { 1, 2, 3
}
, or empty set

1: function SPHINT(m1, m2, m3, r1, r2, r3)

2: R1 ← r2
1, R2 ← r2

2, R3 ← r2
3

3: Q←




0 1 1 1 1

1 0 Q(m1,m2) Q(m1,m3) R1

1 Q(m2,m1) 0 Q(m2,m3) R2

1 Q(m3,m1) Q(m3,m2) 0 R3

1 R1 R2 R3 0




4: D(1234) ← 1
8 det(Q) ⊲ CM determinant

5: if D(1234) < 0 then ⊲ Empty intersection

6: return ∅
7: D(123)←−1

4 MINOR(Q, (0, 1, 2, 3), (0, 1, 2, 3), 0)

8: D(123;124)←−1
4 MINOR(Q, (0, 1, 2, 3), (0, 1, 2, 4), 0)

9: D(123;134)←−1
4 MINOR(Q, (0, 1, 2, 3), (0, 1, 3, 4), 0)

10: v1 ←m2 −m1

11: v2 ←m3 −m1

12: v0 ← −D(123;134)v1 +D(123;124)v2

13: v∆ ←
√
D(1234)(v1 × v2)

14: p+ ←m1 + 1
D(123)

(v0 + v∆)

15: p− ←m1 + 1
D(123)

(v0 − v∆)

16: return p+,p−
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Algorithm 5 Calculation of effector
points (CEP)

(in) Homogeneous transformation of
end effector P E

(out) End effector point matrix E

1: function CEP(P E)

2:

[
ŝ n̂ â e

0 0 0 1

]
← P E ⊲

Extraction
3: e1 ← e + dn̂, e2 ← e− dn̂

4: e3 ← e + dâ, e4 ← e− dâ

5: e5 ← e + dŝ, e6 ← e− dŝ

6: E ← (ei : 1 ≤ i ≤ 6)
7: return E

Algorithm 6 Calculation of crank points
(CCP)

(in) Input joint angles [qx, qy, qz]
(out) Crank point matrix C

1: function CCP(qx, qy, qz)
2: c1 ← (0 , r cos qx , l + r sin qx)T

3: c2 ← (0 ,−r cos qx , l − r sin qx)T

4: c3 ← (l + r sin qy , 0 , r cos qy)T

5: c4 ← (l − r sin qy , 0 ,−r cos qy)T

6: c5 ← (r cos qz , l + r sin qz , 0)T

7: c6 ← (−r cos qz , l − r sin qz , 0)T

8: C ← (ci : 1 ≤ i ≤ 6)
9: return C

5.4.2 Rotative Inverse Kinematic Model

Problem 2 (Rotative Inverse Kinematics) The Rotative Inverse Kinematic Prob-

lem (RIKP) is defined as the problem of finding the input joint angles needed to achieve

a desired orientation of the end effector without having the knowledge of end effector

position, formally,

[qx, qy, qz, ex, ey, ez] = RIKP(RE), RE ∈ SO(3) ,

where, RE is the rotation matrix of the end effector w.r.t the global frame, [qx, qy, qz]

and [ex, ey, ez] are the active revolute joint angles and end effector shift respectively.

In this case, the system of nonlinear equations Eqs. 5.4–5.9 is well determined as the

number of unknowns is equal to the number of equations. To the best knowledge of

the authors, it is not possible to derive a closed form solution to this problem due to

coupled nature of the constraint equations. Instead of employing standard nonlinear

solvers, a novel tailored and efficient algorithm is presented which is suitable for real

time control of this mechanism. Its core idea is to decompose the overall equation sys-

tem into two different equation sets and orthogonally iterate between their solutions

to achieve the required overall solution with a desired accuracy. For concrete expla-

nation, two subproblems related to the geometry of ACTIVE ANKLE are presented,

namely, the Relaxed Inverse Kinematic Problem (IKP⋆) and the Relaxed Translative

Forward Kinematic Problem (TFKP⋆). Based on their analytical solutions, the solu-

tion to the rotational inverse kinematic problem is presented.
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5.4.2.1 Relaxed Inverse Kinematic Model

Since the nature of inverse kinematic problem is overdetermined (see Table 5.4), the

two rod equations in each leg are subtracted to obtain a well determined system of leg

equations. Problem 1 is relaxed in the sense that it ensures le1c1 = le2c2 , le3c3 = le4c4 ,

le5c5 = le6c6 and not leici
= l, i ∈ { 1, .., 6

}
. A geometric interpretation of this relaxation

is shown in Fig. 5.6b: the rods can be interpreted as virtual prismatic joints which

change their lengths in pair in each leg.

Three leg equations Subtracting Equation 5.5 from Equation 5.4, Equation 5.7

from Equation 5.6, Equation 5.9 from Equation 5.8, the three leg equations are de-

rived.

rey cos qx + r(ez − l) sin qx + d(lnz − e · n) = 0

rez cos qy + r(ex − l) sin qy + d(lax − e · a) = 0

rex cos qz + r(ey − l) sin qz + d(lsy − e · s) = 0

(5.10)

The three leg equations, with the leg index j ∈ {1, 2, 3}, are of the form:

Ej cos(qj) + Fj sin(qj) +Gj = 0 (5.11)

Relaxed IKP Solution Using the tangent half angle substitution,

tj = tan(
qj

2
), cos(qj) =

1− t2j
1 + t2j

, sin(qj) =
2tj

1 + t2j
,

a quadratic equation in t is obtained

(Gj − Ej)t2j + 2Fjtj + (Gj + Ej) = 0 . (5.12)

The two solutions of the above quadratic equation is given by:

tj1,2 =
−Fj ±

√
E2

j + F 2
j −G2

j

Gj − Ej

qj+ , qj− = 2 atan2(−Fj ±Hj , Gj − Ej)

(5.13)

where Hj =
√
E2

j + F 2
j −G2

j . The expressions for Ej , Fj and Gj for the three legs are

given in Table 5.5.

The absolute minimum of the two solutions is chosen so that the mechanism stays

close to the zero configuration and respects the physical constraints imposed by either

link intersection or limits of passive spherical joints. The solution is implemented in
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Table 5.5: Parameters for IKM⋆ solution

Leg Index (j) Ej Fj Gj

j = 1 rey r(ez − l) d(lnz − e · n)

j = 2 rez r(ex − l) d(lax − e · a)

j = 3 rex r(ey − l) d(lsy − e · s)

Algorithm 7 Relaxed inverse kinematic model (IKM⋆)

(in) Homogeneous transformation of end effector P E

(out) Input joint angles [qx, qy, qz]

1: function IKM⋆(P E)
2: for j ∈ (1, 2, 3) do

3: Hj ←
√
E2

j + F 2
j −G2

j ⊲ Table 5.5
4: qj+ , qj− ← 2 atan2(−Fj ±Hj , Gj − Ej)
5: qj+ ← atan2(sin qj+ , cos qj+) ⊲ Wrap to ±π
6: qj− ← atan2(sin qj− , cos qj−) ⊲ Wrap to ±π
7: qj ← min(

∣∣qj+

∣∣ ,
∣∣qj−

∣∣)
8: [qx, qy, qz]← (qj : 1 ≤ j ≤ 3)
9: return [qx, qy, qz]

the method IKM⋆ in Algorithm 7.

5.4.2.2 Relaxed Translative Forward Kinematic Model

Translative Forward Kinematic Problem (TFKP) is defined as the problem of finding

the end effector shift from the input joint configuration and desired orientation of the

end effector, formally,

e = TFKP(qx, qy, qz,RE) . (5.14)

The solution to this problem provides the parasitic motion of the end effector. As

noted in Table 5.4, this problem is an over-determined problem as the number of

unknowns are three while the number of constraint equations equals to six. Each

rod length constraint Eqs. 5.4–5.9 represents the equation of a sphere where the end

effector point [ex, ey, ez] moves on its surface. They represent the system of equa-

tions of six spheres and the end effector of ACTIVE ANKLE must lie at their intersec-

tion point. However, while solving the IKM⋆ it is already ensured that the two rod

lengths forming a leg should be the same. So, end effector coordinates can be com-

puted by solving the three rod equations including one from each leg which makes

the problem well-determined. The problem is relaxed in the sense that it ensures

either le1c1 = le3c3 = le5c5 = l or le2c2 = le4c4 = le6c6 = l and not leici
= l, i ∈ { 1, .., 6

}
.
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Algorithm 8 Relaxed translative forward kinematic model
(TFKM⋆)

(in) Input joint angles [qx, qy, qz] and rotation matrix RE

(out) End effector position e

1: function TFKM⋆(qx, qy, qz,RE)
2: (r1, r2, r3)← l
3: s1 ← (−dnx, r cos qx − dny, l − dnz + r sin qx)T

4: s2 ← (l − dax + r sin qy,−day, r cos qy − daz)T

5: s3 ← (r cos qz − dsx, l − dsy + r sin qz,−dsz)T

6: e+, e− ← SPHINT(s1, s2, s3, r1, r2, r3) ⊲ Algorithm 4
7: if ‖e+‖ < d then

8: e← e+

9: else

10: e← e−

11: return e

A geometric interpretation of this relaxation is shown in Fig. 5.6c: the unchosen rods

can be interpreted as virtual prismatic joints which will adjust their lengths so that

the chosen rod length becomes equal to l after solving the problem. Overall, the six

sphere intersection problem reduces to a three sphere intersection problem.

Relaxed TFKP Solution. Three spheres intersect in maximally two points

[Thomas and Ros, 2005]. Without the loss of generality, one can choose to solve for

spheres represented by Equation 5.4, Equation 5.6 and Equation 5.8. This particular

choice of sphere centers (si) and radii ri, i ∈ {1, 2, 3} is shown in the method TFKM⋆

in Algorithm 8. The end-effector coordinates are estimated using

e+, e− = SPHINT(s1, s2, s3, r1, r2, r3) . (5.15)

The method SPHINT is specified in Algorithm 4. The solution with a norm less than

equal to d is selected to avoid the mechanism to leave its assembly. This is imple-

mented in the method TFKM⋆ in Algorithm 8.

5.4.2.3 Solution Approach

The estimated end effector coordinates are defined as ẽ = [ẽx, ẽy, ẽz]. In the sequel, the

approximate nature of a variable x is expressed by using a tilde x̃. The homogeneous

transformation matrix of the end effector w.r.t. the global frame is given by

P̃ E =

[
RE ẽ3×1

01×3 1

]
. (5.16)
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Algorithm 9 Rotative inverse kinematic model (RIKM)

(in) Desired orientation of the end effector, RE

(out) Joint angles [qx, qy, qz] and end effector shift [ex, ey, ez]

1: function RIKM(RE , ǫ)

2: P̃ E ←
[

RE 03×1

01×3 1

]
⊲ Initialization

3: while Ergd <ǫ do

4: (ẽ1 . . . ẽ6)← CEP(P̃ E) ⊲ Algorithm 5
5: [q̃x, q̃y, q̃z]← IKM⋆(P̃ E) ⊲ Algorithm 7
6: (c̃1 . . . c̃6)← CCP(q̃x, q̃y, q̃z) ⊲ Algorithm 6
7: Ergd ←

∑6
i (‖ẽi − c̃i‖ − l)2 ⊲ Rigidity error

8: ẽ← TFKM⋆(q̃x, q̃y, q̃z,RE) ⊲ Algorithm 8

9: P̃ E ←
[

RE ẽ3×1

01×3 1

]
⊲ Update

10: [qx, qy, qz]← [q̃x, q̃y, q̃z]
11: [ex, ey, ez]← [ẽx, ẽy, ẽz]
12: return [qx, qy, qz, ex, ey, ez]

With an estimated homogeneous transformation matrix (P̃ E), the estimated posi-

tions of the six end effector points stored in matrix Ẽ are calculated with the help of

Algorithm 5 as

Ẽ = CEP(P̃ E) . (5.17)

The IKM⋆ solution as presented in Section 5.4.2.1 is used to calculate the esti-

mated input joint angles q̃ = [q̃x, q̃y, q̃z] required to achieve the estimated end effector

position and desired orientation. It must be recalled that for the derivation of three

leg equations Equation 5.10, the two distance constraint equations of each rod con-

stituting a leg are subtracted from each other and hence forcing the two virtual rod

lengths of each leg to be equal. Thus, any approximate solution to the inverse kine-

matic model comes at a cost of incorrect leg lengths.

[q̃x, q̃y, q̃z] = IKM⋆(P̃ E) (5.18)

The estimated input joint angles are now used to estimate the position of six crank

points using Algorithm 6.

C̃ = CCP(q̃x, q̃y, q̃z) (5.19)

The estimated position vectors of the six end effector points (ẽi) and the six crank

points (c̃i) are extracted from end effector points matrix Ẽ Equation 5.17 and crank

points matrix C̃ Equation 5.19 respectively. The length of six virtual rods are calcu-
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Figure 5.7: Normal work-
ing mode, active joint angles:
(qx, qy, qz) ≈ (0.0872, 0.1748, 0.2614)
and end effector shift: (ex, ey, ez) ≈
(0.0127, 0.1515, 0.3807)

Figure 5.8: Upside – down work-
ing mode, active joint angles:
(qx, qy, qz) ≈ (0.4566, 0.2377, 0.4663)
and end effector shift: (ex, ey, ez) ≈
(65.6274, 65.9876, 66.7599)

Figure 5.9: Comparison of number of it-
erations for convergence amongst differ-
ent RIKM solution strategies.

Figure 5.10: Comparison of CPU
time for convergence amongst different
RIKM solution strategies

lated from ẽi and c̃i using:

‖ẽi − c̃i‖ = l̃i , i ∈ {1, ..., 6} (5.20)

A least square error function to minimize the change in virtual rod lengths is

defined as follows:5

Ergd(ẽi, c̃i) =
6∑

i=1

(l̃i − l)2 (5.21)

To minimize the least squared error, the new end effector coordinates (ẽ =

[ẽx, ẽy, ẽz]) are estimated. Solving for the new end effector position in each iteration

is equivalent to solving the relaxed forward kinematic model in translative domain

5For improving computational efficiency, the error function can also be chosen to minimize the change
in three instead of six rod lengths: the solution of IKM⋆ already ensures that the two rod lengths equal
in each leg.
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(see Section 5.4.2.2). The solution ensures that the leg lengths become equal to l.
ẽ = TFKM⋆(q̃x, q̃y, q̃z,RE) (5.22)

The two solutions in TFKM⋆ lead to two distinct solutions for the RIKM, out of which

we are primarily interested in the solution with norm less than d. Each estimation of

the end effector position using the method TFKM⋆ minimizes the least squared error

function in the next iteration. Hence, the estimated end effector coordinates are

substituted back into the Equation 5.16 and the subsequent calculations are iterated

until the Ergd(ẽi, c̃i) < ǫ is achieved. The overall rotational inverse kinematic model is

implemented in the method RIKM (Algorithm 9). It must be noted that ẽ is initialized

as 0 at the beginning of the algorithm (Line 2) but this choice does not affect the

convergence of the algorithm.6 The two almost spherical working modes (solutions

to the RIKM) for an axis u ≈ (0.2127, 0.5344, 0.8180)T and angle φ ≈ 0.3140 are shown

in Fig. 5.7 and Fig. 5.8. The numerical convergence towards normal working mode is

depicted in Table 5.6.

Iteration 0 1 2

qx 0.0872 0.0872 0.0872

qy 0.1745 0.1748 0.1748

qz 0.2612 0.2613 0.2614

ex 0.0 0.0071 0.0127

ey 0.0 0.1499 0.1515

ez 0.0 0.3678 0.3807

Ergd 0.3370 4.1210−04 4.2910−07

Table 5.6: A numerical example showing the convergence of RIKM for an axis u ≈
(0.2127, 0.5344, 0.8180)T and an angle φ ≈ 0.3140.

Benchmarking and Convergence. The solution strategy presented above to

solve RIKP is compared with some standard non-linear solvers like Levenberg-

Marquardt (LM) and Trust Region Dog Leg (TRDL) implemented in fsolve function of

MATLAB as well as constrained optimisation solver using Active Set algorithm im-

plemented in MATLAB function called fmincon. A total of 1000 random orientation

samples are chosen from the physically feasible workspace of the mechanism and are

provided as the input to this problem. RIKM solver demonstrates robust convergence

inside the physically feasible workspace of the mechanism. The number of iterations

6Instead the convergence to the correct physical configuration is guaranteed by selecting the appro-
priate intersection point within TFKM⋆.
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d̃ t̃q̃ R

1

2

3

4

Figure 5.11: Computation scheme of the rotational inverse method RIKM. The matrix
of workspace variables is the end-effector pose P̃ E

∼= (R, t̃). The vector of configura-
tion variables q̃ is given by (qx, qy, qz). The vector of design variables, denoted by d̃,
includes the vector l̃ that is checked for constraint violation in the abortion criterion
of RIKM in Algorithm 9. The computation in RIKM consists of the steps (1) IKM⋆, (2)
CEP, (3) CCP, and (4) TFKM⋆.

for convergence and the CPU time7 of RIKM are recorded for benchmarking its effi-

ciency in comparison to standard solvers for a tolerance of ǫ = 1.e−06 mm (See Fig. 5.9

and Fig. 5.10). Error bars used in the two figures are asymmetric and represent min.-

max. and average values. With average iterations for convergence equals to 3.42 and

CPU time equals to 2.58 milli-seconds, it was found that RIKM performed 21 times

faster than TRDL based solver. Hence, it is the most suitable method to achieve a

kinematic control on the ACTIVE ANKLE as described in Section 5.6.

Discussion. The computation scheme of the novel RIKM algorithm – that solves the

problem of coupled motion kinematics in context of the ACTIVE ANKLE efficiently –

is displayed in diagram in Fig. 5.11. From that scheme, it can be observed that the

auxiliary variables l̃ – that reflect violations of structural (rigidity) constraints – can

be interpreted as virtual joints. The method RIKM ensures that at termination af-

ter a few iterations (see Table 5.6), the values of l̃ equal zero. From the viewpoint

of kinematic synthesis, this consideration opens a perspective for extending the AC-

TIVE ANKLE from an almost spherical design to a fully-controllable six-DOF mech-

anism that, in particular, could also act as a perfect spherical mechanism (compare

[Luzi et al., 2018]).

5.5 Forward Kinematics

Problem 3 (Forward Kinematics) The forward kinematic problem (FKP) of the

ACTIVE ANKLE is to compute a pose of the end effector PE for given joint angles

(qx, qy, qz), as

PE = FKP(qx, qy, qz) . (5.23)

7Intel Core i7 CPU 950 @ 3.07GHz x 8PC, 6GB RAM
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As noted in Table 5.4, this problem is a well determined problem as the number of un-

knowns i.e. six parameters identifying the EE pose equals the number of constraint

equations of the mechanism. While the inverse kinematic problem IKP (Problem 1) is

solved analytically (Section 5.4.1) and the rotative inverse kinematics problem RIKP

(Problem 2) is solved with the help of a novel iterative method, the forward kinemat-

ics Problem 3 is solved with the tools from computational algebraic geometry which

leads to some global insights into mechanism’s geometry for e.g. maximum bound

on the number of solutions to the forward kinematic problem, real assembly modes

of this mechanism and if all these assembly modes are almost spherical in nature.

This requires the conversion of constraint equations into a purely algebraic form.

One of the important tools to do this task is to exploit Study’s kinematic mapping

introduced in Section 3.3.1 which maps every displacement in SE(3) to a point in

a 7-dimensional projective space P7 [Husty and Schröcker, 2013, Husty et al., 2007].

Here, a slightly modified version of this mapping is used:

P E =




1 0 0 0

ex x0
2 + x1

2 − x2
2 − x3

2 −2x0x3 + 2x1x2 2x0x2 + 2x1x3

ey 2x0x3 + 2x1x2 x0
2 − x1

2 + x2
2 − x3

2 −2x0x1 + 2x3x2

ez −2x0x2 + 2x1x3 2x0x1 + 2x3x2 x0
2 − x1

2 − x2
2 + x3

2




(5.24)

where, ex, ey and ez represent the position of the end effector center in the global

frame instead of a position quaternion. Hence, there is no need to consider the equa-

tion of Study quadric in this analysis. However, the parameters xi (i = 0, ..., 3) which

constitute the orientation quaternion should satisfy:

g1 := x0
2 + x1

2 + x2
2 + x3

2 − 1 = 0 (5.25)

The constraint equations of this mechanism (Equation 5.4–Equation 5.9) derived pre-

viously in Section 5.3 are written in terms of direction cosine vectors (s,n,a) and the

vector of the EE position (ex, ey, ez). Hence, the expressions for the direction cosine

vectors are extracted from Equation 5.24 as:

ŝ = [sx, sy, sz]T =
[
x0

2 + x1
2 − x2

2 − x3
2, 2x0x3 + 2x1x2,−2x0x2 + 2x1x3

]

n̂ = [nx, ny, nz]T =
[
−2x0x3 + 2x1x2, x0

2 − x1
2 + x2

2 − x3
2, 2x0x1 + 2x3x2

]

â = [ax, ay, az]T =
[
2x0x2 + 2x1x3,−2x0x1 + 2x3x2, x0

2 − x1
2 − x2

2 + x3
2
]

(5.26)

and substituted in the constraint equations (Equation 5.4–Equation 5.9) in order to

exploit the above kinematic mapping. The six constraint equations after simplifica-
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tions along with orientation quaternion normalization equation (g1 = 0) form an ideal

I = 〈g1, g2, g3, g4, g5, g6, g7〉, where:

g1 := x0
2 + x1

2 + x2
2 + x3

2 − 1 = 0 (5.27)

g2 := (−4ezr + 4lr) sin qx − 4r cos qxey − 8exd(x0x3 − x1x2)

+ 4eyd(x2
0 − x2

1 + x2
2 − x2

3) + 8ezd(x0x1 + x2x3)− 8dl(x0x1 + x2x3) = 0 (5.28)

g3 := (−4eyr + 4lr) sin(qz)− 4r cos(qz)ex − 8ezd(x0x2 − x1x3)

+ 4exd(x2
0 + x2

1 − x2
2 − x2

3) + 8eyd(x0x3 + x1x2)− 8dl(x0x3 + x1x2) = 0 (5.29)

g4 := (−4exr + 4lr) sin(qy)− 4r cos(qy)ez − 8eyd(x0x1 − x2x3)

+ 4ezd(x2
0 − x2

1 − x2
2 + x2

3) + 8exd(x0x2 + x1x3)− 8dl(x0x2 − x1x3) = 0 (5.30)

g5 := (−8drx0x1 − 8drx2x3) sin(qx) + 2e2
x + 2e2

y + 2e2
z − 4ezl + 2d2 + 2r2

+ (−4drx2
0 + 4drx2

1 − 4drx2
2 + 4drx2

3) cos(qx) = 0 (5.31)

g6 := (−8drx0x3 − 8drx1x2) sin(qz) + 2e2
x + 2e2

y + 2e2
z − 4eyl + 2d2 + 2r2

+ (−4drx2
0 − 4drx2

1 + 4drx2
2 + 4drx2

3) cos(qz) = 0 (5.32)

g7 := (−8drx0x2 − 8drx1x3) sin(qy) + 2e2
x + 2e2

y + 2e2
z − 4exl + 2d2 + 2r2

+ (−4drx2
0 + 4drx2

1 + 4drx2
2 − 4drx2

3) cos(qy) = 0 (5.33)

The sine and cosine in Eq. (5.28) to (5.33) are replaced with the tangent half-

angle expressions: sin(qi) = 2ti

1+t2
i

cos(qi) =
1−t2

i

1+t2
i

where, ti = tan( qi

2 ), i = x, y, z.

To this end, tx, ty and tz are the inputs and x0, x1, x2, x3, ex, ey and ez are the outputs

to be solved for in the seven equations gi = 0, i = 1..7. The design parameters are

substituted as l = 10 cm, d = r = 3.5 cm.

5.5.1 Rational Univariate Representation of DGP Solution

A Gröbner basis of the ideal I = 〈g1, g2, g3, g4, g5, g6, g7〉 is calculated over the field

K[x0, x1, x2, x3, ex, ey, ez]. It was possible to compute the Gröbner basis only after sub-

stituting certain values to the inputs qx, qy and qz and to the design parameters l = 10

cm, r = d = 3.5 cm. For the lexicographic ordering x0 <lex {Ej , xi} and xi <lex {Ej , x0}
(i = 1, 2, 3; j = x, y, z), the univariate polynomial in x0 turned out to be of degree 28

and 75, respectively which should be halved (due to half-angle substitution) to find

unique solutions due to Eq. (5.25). For Ej <lex xi (i = 0, 1, 2, 3; j = x, y, z), this num-

ber was 40. Hence, a bound on the maximum number of solutions can be found as

max{28/2, 75/2, 40}. Thus, the active ankle can have a maximum of 40 direct kine-

matic solutions.
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No. ex (cm) ey (cm) ez (cm) ax ay az θ (deg)

1 1.69 1.69 1.69 -0.57 -0.57 -0.57 159.1◦

2 4.93 4.93 4.93 -0.57 -0.57 -0.57 148.7◦

3 0.06 0.06 0.06 -0.57 -0.57 -0.57 44.3◦

4 6.6 6.6 6.6 -0.57 -0.57 -0.57 23.6◦

5 0.69 2.12 2.59 -0.28 0.12 -0.94 139.4◦

6 2.12 2.59 0.69 0.12 -0.94 -0.28 139.4◦

7 2.6 0.69 2.12 0.94 0.28 -0.12 139.4◦

8 1.82 3.47 3.78 -0.16 0.32 -0.93 157◦

9 3.78 1.82 3.47 0.93 0.16 -0.32 157◦

10 3.47 3.78 1.82 0.32 -0.93 -0.16 157◦

11 0.63 0.89 1.43 -0.57 0.22 -0.78 107.3◦

12 0.89 1.43 0.63 0.22 -0.78 -0.57 107.3◦

13 1.43 0.63 0.89 0.78 0.57 -0.22 107.3◦

14 5.16 5.88 5.37 0.52 0.06 -0.84 86.1◦

15 5.88 5.37 5.16 -0.06 0.84 -0.52 86.1◦

16 5.37 5.16 5.88 0.84 -0.52 -0.06 86.1◦

Table 5.7: Overview of 16 solutions for the DGP with qx = qy = qz = 30◦.

5.5.2 Finding Real Solutions

For tx = ty = tz = tan(30◦

2 ), the RootFinding[Isolate] function of Maple is used to

find out all the real solutions for the set of constraint equations. The algorithm be-

hind this function finds out the rational univariate representation of the set of polyno-

mials and isolates the real roots of these univariate polynomials based on Descartes’

rule of sign and the bisection strategy in a unified framework [Rouillier, 2004].

A total of 32 direct kinematic solutions are obtained for qx = qy = qz = 30◦. Due

to Eq. (5.25), this number is to be halved to discard similar solutions. Thus, there

are 16 unique assembly modes for the given input. For each assembly mode, the

end effector position (ex, ey, ez) and the axis-angle representation (ax, ay, az, θ) are ex-

pressed as follows: ax = x1√
1−x2

0

, ay = x2√
1−x2

0

, az = x3√
1−x2

0

, θ = 2 cos−1(x0). The

configuration of these assembly modes is listed in Table 5.7.

Among them, No. 3 and 4 are shown in Figures 5.12 and 5.13. The points cor-

responding to the position vector ci can move on the circumference of those circles

drawn. The points ei form a spatial cross, the center of which represents the end ef-

fector (shown as black sphere). No. 1 – 4 show the assembly modes where ex = ey = ez

and ax = ay = az. Since, qx = qy = qz, the other assembly modes are observed in

triplets with the same axis angle θ and permuted values of (ex, ey, ez) and (ax, ay, az).

Four such triplets are observed in solutions 5 to 7, 8 to 10, 11 to 13 and 14 to 16 in

Table 5.7. This pattern may not be visible when ti 6= tj ∀i, j = x, y, z. In addition,

this method is used to record the percentage of number of real solutions to DGP by

varying qx, qy and qz from −3 radians to 3 radians with an increment of 0.6 radians

[Merlet, 2006]. This partitions the configuration space into 1331 permutations of in-
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Figure 5.12: Assembly Mode 3 (refer
to Table 5.7)
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Figure 5.13: Assembly Mode 4 (refer
to Table 5.7)

Real solutions 0 2 4 6 8 10 12 14 16 ∑
Complex solutions 40 38 36 34 32 30 28 26 24

Number of poses 258 324 222 222 233 35 24 12 1 1331
Fraction of poses 19.38 24.34 16.68 16.68 17.5 2.63 1.80 0.90 0.08 100%

Table 5.8: Overview of the solvability for q = (qx, qy, qz)T ∈ S3 with discretization
S = (−3.0,−2.4, . . . , 2.4, 3.0) with cardinality |S| = 11 and |S3| = 1331.

put angles and the results are shown in Table 5.8. It may be noted that the number

of real solutions for any configuration can only be an even number due to an even

upper bound on the total number of solutions.

5.5.3 Torsional Motion Analysis

The torsional motion of this manipulator is of practical interest because it corre-

sponds to the adduction-abduction movement when employed as an ankle joint.

The torsional motion can be characterized by substituting ex = ey = ez = E and

tx = ty = tz = t in seven constraint equations. The Gröbner basis for the ideal I, now

defined over a reduced field K[x0, x1, x2, x3, E], is calculated with pure lexicographic

order E <lex x3 <lex x2 <lex x1 <lex x0 using Maple software. This yields a Gröbner

basis consisting of five polynomials, out of which the first one is an input (t) – output
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(E) agnostic description of the mechanism.

G1 := (9t8 + 36t6 + 54t4 + 36t2 + 9)E4 + (−1347t8 − 441t7 − 4359t6 − 1029t5

− 5877t4 − 735t3 − 4065t2 − 147t− 1200)E3 + (74251t8 + 14700t7

+ 142899t6 + 44296t5 + 139207t4 + 54096t3 + 98701t2 + 24500t+ 47350)E2

+ (−1710100t8 + 980000t7 + 220500t6 + 19600t5 + 1239700t4 − 19600t3

+ 739900t2 − 980000t− 490000)E + 12005000t8 − 24010000t7 − 12005000t6

+ 48020000t5 − 12005000t4 − 24010000t3 + 12005000t2 = 0

(5.34)

It shows that a maximum of four assembly modes and a maximum of eight working

modes (solutions to the inverse geometric problem) are possible on the subvariety

defined by ex = ey = ez. The implicit plot of Eq. (5.34) after substituting t = tan(q/2)

is shown in Figure 5.14 for E = 0, ..., 7cm and q = qx = qy = qz = −180◦, ..., 180◦. For

a value of q = qx = qy = qz = 30◦, four values of E observed in this figure match

with the values noted in Table 5.7. From Figure 5.14, one could also note that the

assembly modes shown in Figures 5.12 and 5.13 were actually the almost-spherical

assembly modes for this mechanism because in these assembly modes the change in

end effector’s position is minimal.

The second equation of Gröbner’s basis in E, t and x0 is found out to be:

G2 :=
(
9 t4 + 18 t2 + 9

)
E2 +

(
−600 t4 − 294 t3 − 906 t2 − 600

)
E

+
(
9800 t4 − 9800

)
x0

2 + 4900 t4 − 14700 t2 + 9800 = 0
(5.35)

Eliminating E from Eq. (5.34) and (5.35) and substituting t = tan(q/2) and x0 =

cos(θ/2) results in an implicit equation in terms of the axis angle θ (representing the

rotational workspace) and the actuated variable q. Figure 5.15 shows the implicit

plot of q vs. θ for θ = −180◦, ..., 180◦ and q = qx = qy = qz = −180◦, ..., 180◦.

A Jacobian matrix J of dimension 5×5 is calculated by partially differentiating the

constraint polynomials with respect to the variables of the considered field. When the

determinant of this Jacobian vanishes, the mechanism reaches a singularity. Consid-

ering the Gröbner basis equations and det(J) = 0, other variables are eliminated to

obtain the Eq. (5.36) only in terms of tx = ty = tz = t = tan(q/2).

det(J) := (t− 1)(t+ 1)(t2 + 1)(2601t12 − 408t11 − 55370t10 + 54732t9

+ 240101t8 − 491700t7 + 771464t6 − 925624t5 + 751804t4

− 497200t3 + 259600t2 − 80000t+ 10000) = 0

(5.36)

Solving for t and hence q results in six unique solutions which are noticeable as cusps

in Figures 5.14 and 5.15. For instance, q = 90◦ is one of the singularities when E
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Figure 5.16: Integration of ACTIVE

ANKLE as a foot unit of an exoskele-
ton, with motors, sensors, and elec-
tronics.

Figure 5.17: Illustration of the three
primary rotations of the human ankle
joint.

reaches a value of 6.6 cm. Since, other values of E are indeed possible for an input

angle of 90◦, it is important to mention the magnitude of the pair {E, q} or {θ, q} while

representing these singularities.

5.6 ROM Analysis and Control of Active Ankle

ACTIVE ANKLE is used as a 3 DOF active spherical module at hip and ankle joints

in the RECUPERA full body exoskeleton, as shown in Fig. 5.1. This section presents

its range of motion (ROM) analysis and the experimental results of its kinematic

control based on the Rotative Inverse Kinematic Model (RIKM) from Section 5.4.2.

For brevity, the results are only reported for its application as an ankle joint.
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Figure 5.18: Active Joint
angles during dorsiflexion
– plantarflexion motion.
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Figure 5.19: Active joint
angles during the eversion
– inversion motion.
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Figure 5.20: Active joint
angles during the adduc-
tion – abduction motion.
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Figure 5.21: End effector
shift during the dorsiflex-
ion – plantarflexion mo-
tion.
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Figure 5.22: End effector
shift during the eversion –
inversion motion.
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Figure 5.23: End effector
shift during the adduction
– abduction motion.
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Figure 5.24: Trajectory
tracking during dorsi-
flexion – plantarflexion
motion.
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Figure 5.25: Trajectory
tracking during the ever-
sion – inversion motion.
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Figure 5.26: Trajectory
tracking during the adduc-
tion – abduction motion.

5.6.1 Range of motion analysis

The three primary motions available at the human ankle (dorsiflexion–plantarflexion

φα, eversion–inversion φβ, and adduction–abduction φγ) are shown in Fig. 5.17. Their
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overall ranges of motion are shown in Table 5.9. During most activities of daily living,

only a partial ROM is required: walking on an even surface (10◦− 15◦ plantar flexion

and 10◦ dorsiflexion), walking upstairs (37◦ total ROM), walking downstairs (56◦ total

ROM) [Stauffer et al., 1977].

To demonstrate the suitability of ACTIVE ANKLE mechanism for human ankle

related applications (see Fig. 5.16), these movements have been performed on this

mechanism using RIKM and its ROM has been evaluated. The ROM offered by the

ACTIVE ANKLE is subjected to the physical motion limits of the ball and socket joints.

For the presented prototype in Fig. 1.3a, the ball and socket joints used have a motion

range of ±25◦. Thus, the maximum possible motion range for the three rotative joints

(J01,12, J01,32, and J01,52) lays between −25◦ and +25◦. The three task space trajectories

in angle-axis representation, where ω represent the angular speed and t is the time,

are selected.

uα = (+1,−1,−1)T , φα = 28.65◦ sin(ωt) + 8.65◦

uβ = (+1,+1,−1)T , φβ = 25.00◦ sin(ωt) + 10.0◦

uγ = (+1,+1,+1)T , φγ = 33.59◦ sin(ωt) + 3.44◦

The input joint angles needed to perform these motions are plotted against the

task space angles (φα, φβ, φγ) in Fig. 5.18–5.20. The end effector shift encountered

while performing these motions have been shown in Fig. 5.21–5.23. In all cases, it

can be observed that the shifts are less than 1 mm in magnitude and hence practi-

cally insignificant. The available ROM constrained by the physical limits of the ball

and socket joints are shown against the human ankle ROM in Table 5.9. It is evi-

dent that the presented design can fullfil the range of motion required for most day

to day activities. These results show the suitability of ACTIVE ANKLE in full body

exoskeletons, ankle rehabilitation devices, and humanoid robots.

Table 5.9: Comparison of primary motion ranges, dorsiflexion – plantarflexion (DF–
PF), eversion–inversion (EV–IV), and adduction–abduction (AD–AB), at human and
ACTIVE ANKLE.

Motion type
Human Ankle ACTIVE ANKLE

min. max. abs. min. max. abs.

DF – PF −20◦ 50◦ 70◦ −19.83◦ 37.23◦ 57.06◦

EV – IV −15◦ 35◦ 50◦ −15.00◦ 35.00◦ 50.00◦

AD – AB −30◦ 45◦ 75◦ −29.20◦ 36.96◦ 66.16◦
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5.6.2 Kinematic Control Experiments

The Rotative Inverse Kinematic Model (RIKM) has been implemented within the real

time Robot Construction Kit (RoCK) [Joyeux and Albiez, 2011] to achieve a kinematic

control of the ACTIVE ANKLE. For a tolerance of ǫ = 1.e−06 mm, the algorithm con-

verges in four to six iterations, can be implemented with a control loop frequency

of 1 kHz, and is thus suitable for most applications from a control perspective. The

kinematic control of ACTIVE ANKLE is implemented on a mid-level control PC com-

municating with the FPGA electronics of the actuators which implement low level

cascaded position, velocity, and torque controllers. These low level controllers en-

sure safety limits at position, velocity and current levels in any selected control mode

[Bargsten and de Gea Fernandez, 2015].

To demonstrate the performance of the kinematic control, the following three

task space trajectories corresponding to dorsiflexion–plantarflexion φα, eversion–

inversion φβ, and adduction–abduction φγ movements are selected:

uα = (+1,−1,−1)T , φα = 17.19◦ sin(ωt) + 5.19◦

uβ = (+1,+1,−1)T , φβ = 18.69◦ sin(ωt) + 7.44◦

uγ = (+1,+1,+1)T , φγ = 25.19◦ sin(ωt) + 2.58◦

The tracking during the three aforementioned trajectories is shown in Fig. 5.24–

5.26 where (q̃x, q̃y, q̃z) are the desired input trajectories to the joints and (qx, qy, qz)

demonstrate the real joint states. The maximum absolute errors between desired and

real joint trajectories of the three actuators, calculated as qe = max (| q̃x−qx |, | q̃y−qy |
, | q̃z−qz |), during the dorsiflexion–plantarflexion, eversion–inversion and adduction–

abduction movements are 0.61◦, 0.79◦, and 0.23◦, respectively. The maximum of the

mean absolute errors of the three actuators during the three movements are 0.37◦,

0.47◦, and 0.09◦, respectively. These figures demonstrates the robustness of the low

level controller.

5.7 Conclusion

This chapter presents a thorough study of the ACTIVE ANKLE, a novel parallel ma-

nipulator with mobility three that moves in an almost spherical manner. The type

synthesis, mobility analysis and design considerations are presented, unveiling its

distinctive features and its suitability as a spherical joint module in various applica-

tions. Then, a thorough inverse kinematics analysis is performed where an analytical

solution to the full inverse kinematic problem is derived. Also, it is identified that the

inverse kinematic problem is not sufficient for its kinematic control due to the almost
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spherical nature of the device. Subsequently, a rotative inverse kinematic problem

is solved with a novel tailored iterative technique which exploits the geometric prop-

erties of this mechanism. The solution to the rotative inverse kinematic problem

enables the kinematic control of this mechanism in its spherical task space. Further,

it presents some global insights into the geometry of the ACTIVE ANKLE mechanism

through its forward kinematic analysis using tools from computational algebraic ge-

ometry. It is established that the upper bound to the number of unique solutions to

forward kinematic problem is 40 which supports our observation that once the actu-

ator angles are fixed in the three legs, ACTIVE ANKLE behaves as a special instance

of 6 − 6 Stewart platform. In practice, a maximum of 16 real solutions of the for-

ward kinematic problem were found. In addition, the results of the torsional motion

analysis which is of practical interest is presented and torsional singularities of the

mechanism are highlighted. Moreover, the assembly modes where the mechanism

behaves as an almost-spherical device are identified. Lastly, the kinematic control

of ACTIVE ANKLE is presented with a comparison of its motion range to that of a

human ankle joint. The work presented in this chapter can be used to derive the

loop closure function (which will be introduced in Section 7.1.3 of Chapter 7) of the

mechanism which will be integrated in the HyRoDyn software framework (described

in Section 8.4.1 of Chapter 8) as a standalone submechanism library.
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Chapter 6

Screw Theory and Lie Group

Methods for Tree Systems

This chapter provides the preliminaries for the Kinematics and Dynamics part of the

thesis by visiting the screw theory and Lie group methods for modeling the kinemat-

ics and dynamics of tree type systems. The content presented here is largely based

on [Müller, 2017, Müller, 2018, Lynch and Park, 2017, Featherstone, 2008] and is in-

cluded for the completeness of the thesis. The reader with some background in this

area may consider skipping this chapter. It starts with graph based topological de-

scription of tree type robotic systems in Section 6.1 and then in Section 6.2 presents

the recursive relations for computing the kinematics of different bodies in the system.

Section 6.3 presents the equations of motion for describing the dynamics of a single

rigid body. Section 6.4 presents the recursive Newton Euler algorithm for computing

the spatial velocities and wrenches for the robot in order to provide the solution to

the inverse dynamics problem. Section 6.5 presents the equations of motion in closed

form.

6.1 Graph Based Topological Description

The first step in developing the equations of motion is to start with a system

model which describes the existence of various components and how they are con-

nected. This is also referred to as topological description of the multi-body system.

The topology of a system is best described with the help of graphs [Jain, 2011a,

Featherstone, 2008, Müller, 2018]. The topological or connectivity graph G has the

following properties:

1. The nodes represent bodies and the edges represent joints.

2. The graph is directed i.e. edge is directed from the parent node to its child.
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3. The graph is connected i.e. a path exists between any two nodes.

4. Exactly one body represents fixed body which is also known as the root link or

base.

Graphs can be used to describe the kinematic topology of any kind of mechanical

system including free-floating systems, closed loop mechanisms etc. However, when

there is no closed loop in the system, the graph becomes a tree T i.e. there exists only

one path between any two nodes in the graph.

6.1.1 Numbering Scheme for Topological Graphs

A convenient way to identify bodies and joints in the topological graph is to number

them. A well-suited numbering scheme suitable for multi-body dynamics algorithms

based on [Featherstone, 2008] called the regular numbering is presented here. Ac-

cording to this scheme, the bodies are numbered from 0 to NB and the joints from 1

to NJ , and respecting the following rules:

1. Choose a spanning tree T .

2. Number 0 is assigned to the fixed root link.

3. Number the remaining nodes from 1 to NB in any order such that each node has

a higher number than its parent in T .

4. Number the edges in T from 1 to NB such that the edge i connects between node

i and its parent.

5. Number all the remaining edges from NB + 1 to NJ in any order.

6. Each body gets the same number as its node, each joint gets the same number

as its edge.

This scheme is only unique for a serial kinematic chain, in all other cases, it is non-

unique. Fig. 6.1 shows the examples of regular numbering scheme applied to a serial

and tree type mechanism. It is clear from Fig. 6.1a that the numbering scheme is

unique. However, it can be noticed in Fig. 6.1b that the numbering scheme is non-

unique at the branching i.e. both left and right branches could have started from 2

(in the figure it is the left branch).

6.1.2 Representation of Topological Graphs

It is useful to derive a certain representation for topological graphs which can provide

information about connectivity in the graph. One of the simplest way to this is to
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Figure 6.1: Examples for regular numbering scheme

Table 6.1: Examples for topological graph representation and its properties

Property Serial mechanism in Fig. 6.1a Tree mechanism in Fig. 6.1b
p {0, 1, 2} {0, 1, 2, 3, 1, 5, 6}
s {1, 2, 3} {1, 2, 3, 4, 5, 6, 7}
λ {0, 1, 2} {0, 1, 2, 3, 1, 5, 6}
µ {{1}, {2}, {3}} {{1}, {2, 5}, {3}, {4},

{}, {6}, {7}, {}}
κ {{1}, {1, 2}, {1, 2, 3}} {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4},

{1, 5}, {1, 5, 6}, {1, 5, 6, 7}}

record the predecessor and successor body numbers in a pair of arrays p and s such

that their elements p(i) and s(i) are the predecessor and successor body numbers of

joint i. Together, p and s provide a complete description of the topological graph, from

which many other useful quantities can be calculated.

• Parent array λ identifies the parent of each body in the spanning tree. Accord-

ing to rule 3 and 4 of the regular number scheme, the tree joint i connects the

two bodies i and λ(i) such that λ(i) < i, so

λ(i) = min(p(i), s(i)) , 1 ≤ i ≤ NB . (6.1)

• Child array µ identifies the children of each body in the spanning tree.

• Support array κ: For any body i except base, κ(i) is the set of all tree joints

between body i and base.

Table 6.1 shows the representation of topological graphs and their properties for the

serial and tree type mechanism examples introduced in Fig. 6.1a and Fig. 6.1b.
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6.2 Recursive Kinematics Computation

This section presents the formulation for the computation of position, velocity and

acceleration of different bodies in a kinematic chain from its topological descrip-

tion. These formulations are based on screw theory which provides the geometric

setting and Lie group theory which forms the analytic foundation (as argued in Sec-

tion 3.4) for an overall intuitiave and efficient modeling of rigid body mechanisms.

A first mathematical introduction to Lie groups and screw theory can be found in

Appendix A and Appendix D respectively. To keep the description simple, we will

restrict our attention to unbranched kinematic chains or serial robots.

Notation In this thesis, bold letters denote vectors and matrices. However, in the

remainder of this chapter, whenever there is a chance of ambiguity, [] denotes the

matrix form of the variable. For example, a screw represented by S = [ω,v]T ∈ R6,

when represented as an element of se(3) is given by:

[S] =

[
[ω] v

0 0

]
(6.2)

as introduced earlier in Equation 3.15. In above equation, again the angular velocity

vector ω ∈ R3 when represented as an element of so(3) is given by:

[ω] =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (6.3)

6.2.1 Position of a Kinematic Chain

The matrix exponential mapping, defined as exp : [S]q ∈ se(3) → T ∈ SE(3), can

be used to compute the configuration of a rigid body T from the description of its

screw axis S and screw coordinate q (see Definition 11). The forward kinematics

of a kinematic chain can be computed recursively exploiting the matrix exponential

mapping using the product of exponential (POE) formula. The key concept behind it

is to regard each joint as applying screw motion to all the outward links.

Definition 13 (Product of Exponentials) Given the zero configuration of the end-

effector of the kinematic chain 0T n(0) ∈ SE(3) in base frame, its forward kinematics

q ∈ Q 7→ 0T n(q) ∈ SE(3) can be computed using the product of exponentials

formula as:

0T n(q) = exp([S1]q1) exp([S2]q2) . . . exp([Sn]qn)0T n(0) (6.4)
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where Si represents the screw coordinates of the ith joint expressed in the base frame

(also known as spatial representation) and qi is the respective joint displacement rela-

tive to the zero configuration.

The POE formula is not minimal i.e. it requires 6n scalars to describe n screw axes

in addition to n joint coordinate values. However, the advantage of this formula is

that it does not require the definition of any link frames unlike the Denavit Harten-

berg convention and geometric data can be extracted easily from any CAD software.

Further, it is very simple to compute the inverse of the homogenous transformation

matrix1 representing the end effector transformation using:

0T −1
n (q) = 0T −1

n (0) exp(−[Sn]qn) . . . exp(−[S2]q2) exp(−[S1]q1) . (6.5)

Figure 6.2: Screw description for an unbranched kinematic chain

Example 1 Consider the unbranched kinematic chain shown in Fig. 6.2. The zero

pose configuration of the end effector in the base frame is given by:

0T 4(0) =




1 0 0 (L1 + L2 + L3)

0 1 0 0

0 0 1 0

0 0 0 1



. (6.6)

1Recall that the inverse of the matrix exponential function is given by (exp(Aθ))−1 = exp(−Aθ)
where A ∈ Rn×n.
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Using Equation 3.15, the screw axes in matrix screw representation [S] ∈ se(3) are

given by:

[S1] =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



, [S2] =




0 −1 0 0

1 0 0 −L1

0 0 0 0

0 0 0 0



, [S3] =




0 −1 0 0

1 0 0 −(L1 + L2)

0 0 0 0

0 0 0 0



.

(6.7)

The forward kinematics of the mechanism is then given by

0T 4(q) = exp([S1]θ1) exp([S2]θ2) exp([S3]θ3)0T 4(0) . (6.8)

For q = [π/4, π/4,−π/2], the forward kinematics of the robot is given by X = [x, y, φ] =

[L1/
√

2 + L3, L1/
√

2 + L2, 0] which represents the right configuration of Fig. 6.2.

6.2.2 Velocity of a Kinematic Chain

The POE formula2 (Equation 6.4) used to describe the position of a kinematic chain

can be differentiated with respect to time to establish a relationship between joint ve-

locity q̇ and end-effector’s spatial twist V . The subscript and superscript are dropped

in Equation 6.4 to simplify the notation.

T (q) = exp([S1]q1) exp([S2]q2) . . . exp([Sn]qn)T (0)

Ṫ =

(
d(exp([S1]q1))

dt
exp([S2]q2) . . . exp([Sn]qn)T (0)

)
+

(
exp([S1]q1)

d(exp([S2]q2))

dt
. . . exp([Sn]qn)T (0)

)
+ . . .

The spatial twist V is given by [V ] = Ṫ T −1 ∈ se(3). Using Equation 6.5, one could

compute the spatial twist [V ] as:

[V ] = exp([S1]q1)[S1] exp(−[S1]q1)q̇1+

exp([S1]q1) exp([S2]q2)[S2] exp(−[S2]q2) exp(−[S1]q1)q̇2+

exp([S1]q1) exp([S2]q2) exp([S3]q3)[S3] exp(−[S3]q3) exp(−[S2]q2) exp(−[S1]q1)q̇2 + . . .

The above can be expressed in vector form V ∈ R6 with the help of adjoint mapping:

V = Adexp([S1]q1)(S1)
︸ ︷︷ ︸

J1

q̇1 + Adexp([S1]q1) exp([S2]q2)(S2)
︸ ︷︷ ︸

J2

q̇2 + . . . (6.9)

2Recall that the derivative of a matrix exponential function is given by d(exp(Aθ))
dt

= A exp(Aθ)θ̇ =

exp(Aθ)Aθ̇ where A ∈ Rn×n is a constant matrix and θ(t) is a scalar function of t.
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where J i = AdT i
(Si) with T i = exp([S1]q1) . . . exp([Si]qi) is the instantaneous screw

coordinate vector of the ith joint 3. It can be observed that the above twist is a sum of

n spatial twists and can be written in the following matrix form:

V = [J1 J2 . . . Jn]




q̇1

q̇2

...

q̇n




= J(q)q̇ (6.10)

where J is the spatial Jacobian of the kinematic chain with dimension n× 6.

Recursive Nature Inspecting Equation 6.10, the velocity of any body i in the kine-

matic chain can be expressed in the following summand form.

V i =
∑

j≤i

AdT i
(Si)q̇i (6.11)

This also reveals the recursive nature of the velocity computation i.e. the velocity of

any body i can be expressed as a sum of the velocity of previous body i−1 and velocity

across the joint q̇i.

V i = V i−1 + AdT i
(Si)q̇i (6.12)

The recursive nature of Equation 6.12 is also exploited in the dynamics algorithms.

Geometric Construction The spatial twist of the end effector can be geometri-

cally constructed using the instantaneous screw coordinates expressed in the base

frame. It is to be noted that they are configuration dependent i.e. a function of q and

equal to the Si only in the zero configuration.

V n =

[
ŝ1

so1 × ŝ1 + h1ŝ1

]
q̇1 +

[
ŝ2

so2 × ŝ2 + h2ŝ2

]
q̇2 + . . .+

[
ŝn

son × ŝn + hnŝn

]
q̇n (6.13)

Example 1 (Continued) Consider the unbranched kinematic chain shown in

Fig. 6.2 again. The spatial Jacobian of the kinematic chain in the zero configuration

3An equivalent formula for computing instantaneous screw coordinates is

J i =

{
S1 : i = 1
AdT i−1

(Si) : i ≥ 2

which arises when we use d(exp(Aθ))
dt

= A exp(Aθ)θ̇ instead of exp(Aθ)Aθ̇. For details, see the derivation
in [Lynch and Park, 2017, Murray et al., 1994]
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Table 6.2: Instantaneous Screw Description S(q)
c1 = cos q1 , s1 = sin q1 , c12 = cos(q1 + q2) , s12 = sin(q1 + q2)

Joint (i) soi si Si =

[
ŝi

soi × ŝi + hiŝi

]

1 [0, 0, 0]T [0, 0, 0]T [0, 0, 1, 0, 0, 0]T

2 [L1c1s1, 0]T [0, 0, 0]T [0, 0, 1, L1s1,−L1c1, 0]T

3 [L1c1 + L2c12, L1s1 + L2s12, 0]T [0, 0, 0]T
[0, 0, 1, L1s1 + L2s12,
−L1c1 − L2c12, 0]T

can be built by vertical concatenation of the joint screws.

J(0) =




0 0 0

0 0 0

1 1 1

0 0 0

0 −L1 −(L1 + L2)

0 0 0




3×6

(6.14)

As noted above, the spatial Jacobian is configuration dependent i.e. the instantaneous

joint screws as a function of q needs to be derived (as opposed to zero configuration

joint screw description from Fig. 6.2). These are provided in Table 6.2. Thus, the

expression of the spatial Jacobian in any configuration q is the following.

J(q) =




0 0 0

0 0 0

1 1 1

0 L1 sin q1 L1 sin q1 + L2 sin(q1 + q2)

0 −L1 cos q1 −L1 cos q1 − L2 cos(q1 + q2)

0 0 0




3×6

(6.15)

System Level Composition The spatial twists of every body can be summarized

in overall spatial twist vector V sys = [V 1, . . . ,V n]T ∈ R6n and can be computed as

V sys = Jsysq̇ (6.16)

where Jsys ∈ R6n×n is the spatial system Jacobian. The spatial system Jacobian can

be factorized and written as

Jsys = AsysSsys (6.17)
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where Ssys = diag(S1, . . . ,Sn) is a block diagonal matrix and Asys is a lower triangu-

lar matrix with the following expressions:

Asys =




[AdT 1 ] 0 0 0

[AdT 1 ] [AdT 2 ] 0 0

[AdT 1 ] [AdT 2 ] [AdT 3 ] 0

...
...

...
...

[AdT 1 ] [AdT 2 ] [AdT 3 ] [AdT n ]




6n×6n

,Ssys =




S1 0 0 0

0 S2 0 0

0 0 S3 0

...
...

...
...

0 0 0 Sn




6n×n

(6.18)

where [AdT i
] is a 6 × 6 adjoint matrix for the screw transformation of the ith joint

(also called as Plücker transformation matrix in [Featherstone, 2008]).

6.2.3 Acceleration of a Kinematic Chain

The benefit of POE formula is not only an easy computation of the velocity of a

kinematic chain but it also facilitates the recursive computation of any higher-order

derivatives. Here, the acceleration computation of the kinematic chain will be dis-

cussed. Differentiating Equation 6.9 with respect to time, one gets:

V̇ = Adexp([S1]q1)(S1)
︸ ︷︷ ︸

J1

q̈1 +
d

dt
Adexp([S1]q1)(S1)

︸ ︷︷ ︸
d
dt

J1

q̇1+

Adexp([S1]q1) exp([S2]q2)(S2)
︸ ︷︷ ︸

J2

q̈2 +
d

dt
Adexp([S1]q1) exp([S2]q2)(S2)

︸ ︷︷ ︸
d
dt

J2

q̇2 + . . .

(6.19)

which could be written in matrix form as (also equivalent to time differentiation of

Equation 6.10):

V̇ = [J1 J2 . . . Jn]




q̈1

q̈2

...

q̈n




+

[
d

dt
J1

d

dt
J2 . . .

d

dt
Jn

]




q̇1

q̇2

...

q̇n




V̇ = Jq̈ + J̇ q̇

(6.20)

where dJ i

dt
= J̇ i is the time derivative of instantaneous screw coordinates and J̇ is the

time derivative of the Jacobian matrix of the kinematic chain. It should be recalled

that columns of J are configuration dependent and hence an implicit function of time.

Hence, it has something to do with the tangential aspect of frame transformation of
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the screw coordinates.

dJ i

dt
=

d

dt
Adexp([S1]q1) exp([S2]q2)... exp([Si]qi)(Si) (6.21)

One useful tool in deriving the expression for J̇ is Lie bracket. An abstract definition

of Lie Brackets can be found in Appendix B, Section B.3. However, in following, we

define it in the form that is relevant to formulations for rigid body kinematics.

Definition 14 (Lie Bracket) Given two twists V 1 = (ω1,v1) and V 2 = (ω2,v2), the

Lie Bracket [V 1,V 2] of V 1 and V 2 written either as [adV 1 ] V 2 in matrix form or

adV 1(V 2) in the form of a mapping, is defined as

[
[ω1] 0

[v1] [ω1]

] [
ω2

v2

]
= [adV 1 ] V 2 = adV 1(V 2) ∈ R6×6 (6.22)

where

[adV ] =

[
[ω] 0

[v] [ω]

]
(6.23)

The Lie Bracket is also called as “adjoint mapping”, “screw product” or “spatial cross

product”. The result of the Lie Bracket [V 1,V 2] in vector and matrix notations are

given by:

[V 1,V 2] =

[
ω1 × ω2

v1 × ω2 + ω1 × v2

]
∈ R6 =

[
[ω1 × ω2] v1 × ω2 + ω1 × v2

0 0

]
. (6.24)

In fact, it can be shown that the ith column of the matrix J̇ is simply given by the

expression J̇ i = [V i,J i] also sometimes written as V i×J i (in the spatial cross product

notation from [Featherstone, 2008]).

Recursive Nature Inspecting Equation 6.20, the acceleration of any body i in the

kinematic chain can be expressed in the following summand form:

V̇ i =
∑

j≤i

(J iq̈i + [V i,J i]q̇i) (6.25)

which again reveals the recursive nature of the acceleration computation i.e. the

acceleration of any body i can be expressed as a sum of the acceleration of previous

body i− 1 and acceleration across the joint q̈i.

V̇ i = V̇ i−1 + J iq̈i + [V i,J i]q̇i (6.26)
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Substituting Equation 6.12 in the above equation, and utilizing the bilinearity and

anticommutative property of Lie Brackets, one could derive a further simplified re-

cursive equation.

V̇ i = V̇ i−1 + J iq̈i + [V i−1,V i]

or V̇ i = V̇ i−1 + AdT i
(Si)q̈i + adV i−1(V i)

(6.27)

System Level Composition The spatial acceleration of every body can be sum-

marized in overall spatial acceleration vector V̇
sys

= [V̇ 1, . . . , V̇ n]T ∈ R6n and can be

computed as

V̇
sys

= Jsysq̈ + LsysbsysJsysq̇ = Jsysq̈ + LsysbsysV sys (6.28)

with bsys = diag(adV 1 ,adV 2 , . . . ,adV n) is a diagonal matrix and Lsys being the lower

triangular block unit matrix [Müller, 2018] with the following expressions:

Lsys =




I6×6 06×6 06×6 06×6

I6×6 I6×6 06×6 06×6

I6×6 I6×6 I6×6 06×6

...
...

...
...

I6×6 I6×6 I6×6 I6×6




6n×6n

, bsys =




adV 1 0 0 0

0 adV 2 0 0

0 0 adV 3 0

...
...

...
...

0 0 0 adV n




6n×6n

.

(6.29)

6.3 Dynamics of a Single Rigid Body

This section presents the Newton-Euler equations for describing the dynamics of a

single rigid body motion in SE(3). In this regard, first preliminary physical concepts

necessary to describe the dynamics of a rigid body are briefly introduced. To motivate

the advantages of the screw theory and Lie group based approach to robot dynamics,

we start with the classical formulation of dynamics of a single rigid body. Then, a

twist-wrench based formulation exploiting the Lie Group theory is presented.

6.3.1 Physical Properties of a Rigid Body

Rigid body is defined as an object in which the distance between any two given points

remains constant in time regardless of external forces exerted on it. A rigid body can

be seen as a set of point masses with fixed distances between each other. There are

three important physical properties of a rigid body that must be taken into account

to describe its dynamics.
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• Mass Mass of a physical body is the measure of its resistance to a change in

state of its motion (acceleration). If we think of a rigid body as a composition of

rigidly connected point masses, then the total mass of the rigid body is given by

m =
∑
mi where mi is the mass of ith point mass.

• Centre of mass (COM) The center of mass c of a rigid body in space is the

unique point where the weighted relative position of the distributed mass sums

to zero. Formally speaking, the center of mass is the location of a point such

that
∑
miri = 0 where ri = (xi, yi, zi) is the location of a point mass mi with

respect to the COM. It can also be interpreted as the first moment of mass.

• Moment of Inertia or Rotational Interia Moment of Inertia of a physical

body is the measure of its resistance to a change in rotational motion (angular

acceleration). It can also be interpreted as the second moment of mass and is

given by

Ib =




Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz


 =




∑
mi(y

2
i + z2

i ) −∑mixiyi −∑mixizi

−∑mixiyi

∑
mi(x

2
i + z2

i ) −∑miyizi

−∑mixizi −∑miyizi

∑
mi(x

2
i + y2

i )


 ∈ R3×3 .

(6.30)

The summations can be replaced by volume integrals over the body b using

the differential volume element dV , with point masses mi replaced by a mass

density function ρ(x, y, z). In either case of these cases, IB is symmetric and

positive-definite for any rigid body.

All of these properties are intrinsic to the rigid body itself and do not change under

the influence of external forces or time. Overall, one needs a set of 10 real valued

parameters to describe the mass-inertial properties of a rigid body.

Φ = [m, cx, cy, cz, Ixx, Iyy, Izz, Ixy, Iyz, Ixz] ∈ R10 (6.31)

6.3.2 Classical Formulation

Consider a single rigid body of mass m consisting of a number of rigidly connected

point masses mi. Assume that this body is moving with a linear velocity vb and

angular velocity ωb, and let pi(t) denote the time varying position of mi, initially

located ri in the inertial frame {b}. Then, the velocity and acceleration of any point

on this rigid body can be described as

ṗi = vb + ωb × pi

p̈i = v̇b + ω̇b × pi + ωb × (vb + ωb × pi)
(6.32)
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which can be written in the matrix form as

p̈i = v̇b + [ω̇b]ri + [ωb]vb + [ωb]
2ri . (6.33)

From Newton’s 2nd law of motion, the force acting on this point is f i = mip̈i and

implies a moment mi = ri×f i = [ri]f i. The total force acting on this body f b is given

by

f b =
∑

i

mi(v̇b + [ω̇b]ri + [ωb]vb + [ωb]
2ri) (6.34)

which can be simplified if the body frame is assumed to coincide with the COM i.e.
∑
miri = 0. The simplified expression for the total force is

f b = m(v̇b + [ω̇b]vb) . (6.35)

Similarly, the total moment acting on the body mb is given by

mb =
∑

i

mi[ri](v̇b + [ω̇b]ri + [ωb]vb + [ωb]
2ri) (6.36)

which also gets simplified due to the above assumption to

mb =

(
−
∑

i

mi[ri]
2

)
ω̇b + [ω̇b]

(
−
∑

i

mi[ri]
2

)
ωb

or mb = Ibω̇b + [ω̇b]Ibωb .

(6.37)

The above equation is also known as Euler’s equation for a rotating body. Equa-

tion 6.35 and Equation 6.37 together constitute the Newton-Euler equations of mo-

tion for the single rigid body system and look fairly simple. However, if the same

equations were expressed in any other frame, then they would be quite complicated

(for e.g. revisit Equation 6.34 and Equation 6.36). It is not hard to imagine that

this complexity manifests stronger in case of multibody dynamics where multiple

bodies are involved. The forces and moments acting on a specific link are typically

expressed in different reference frames, and these must be expressed in terms of a

common frame before they can be summed.

6.3.3 Twist-Wrench Formulation

Let us collect the angular velocity and linear velocity of the body in a body twist vector

V b = (ωb,vb) and moment and force vectors in a body wrench vector W b = (mb,f b).
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Equation 6.35 and Equation 6.37 can be collected and written in a combined form as

[
mb

f b

]
=

[
Ib 0

0 mI

] [
ω̇b

v̇b

]
+

[
[ωb] 0

0 [ωb]

] [
Ib 0

0 mI

] [
ωb

vb

]
(6.38)

where I is a 3 × 3 identity matrix. Exploiting the [v]v = v × v = 0 and [v]T = −[v]

properties of a skew-symmetric matrix, we can rewrite the above equation as:

[
mb

f b

]
=

[
Ib 0

0 mI

] [
ω̇b

v̇b

]
+

[
[ωb] [vb]

0 [ωb]

] [
Ib 0

0 mI

] [
ωb

vb

]

[
mb

f b

]

︸ ︷︷ ︸
W b

=

[
Ib 0

0 mI

]

︸ ︷︷ ︸
Mb

[
ω̇b

v̇b

]

︸ ︷︷ ︸
V̇ b

−
[
[ωb] 0

[vb] [ωb]

]T

︸ ︷︷ ︸
ad

T
V b

[
Ib 0

0 mI

]

︸ ︷︷ ︸
Mb

[
ωb

vb

]

︸ ︷︷ ︸
V b

(6.39)

where each term can be identified as a spatial quantity. It shares a peculiar resem-

blence with Equation 6.37 and could be seen as spatial version of this equation. In

particular, we discuss the following two terms:

• Spatial mass-inertia matrix of a rigid body M b ∈ R6×6 is defined as:

M b =

[
Ib 0

0 mI

]
(6.40)

and is symmetric and positive definite. Using it, the total kinetic energy of the

rigid body can be written as

K =
1

2
V T

b M bV b =
1

2
vT

b mvb +
1

2
ωT

b Ibωb ∈ R+ . (6.41)

• Spatial momentum coscrew P b = (Lb,pb)
T ∈ se∗(3) composed of the angular

momentum of the body Lb and its linear momentum pb is defined as

P b =

[
Ib 0

0 mI

] [
ωb

vb

]
= M bV b ∈ R6 . (6.42)

Using the spatial momentum in body frame, one can compute the wrench acting

on the body W b as:

W b = Ṗ b −
[
adT

V b

]
P b (6.43)

Thus, the EOM can be written in the following compact form.

W b = M bV̇ b −
[
adT

V b

]
M bV b (6.44)
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In contrast to two equations Equation 6.35 and Equation 6.37 describing the dynam-

ics of the rigid body in the classical formulation, the modern geometric approach

allows the description of the dynamics using a single compact equation like Equa-

tion 6.44. However, the bigger advantage of utilizing the Lie Group methods in build-

ing the equation of motion is the fact that unlike Equation 6.37, the dynamics of a

rigid body can always be expressed in the form of Equation 6.44 regardless of the

frame in which it is expressed.

Frame Invariance It was shown in Equation 6.41 that the spatial form can also

be used to write a compact expression for the kinetic energy. Since, the kinetic energy

of the rigid body must be indepedent of the frame of representation {a} or {b}, one can

write
K =

1

2
V T

a MaV a =
1

2
V T

b M bV b

=
1

2
V T

a

[
AdbT a

]T
M b

[
AdbT a

]
︸ ︷︷ ︸

Ma

V a
(6.45)

where the spatial mass inertia matrix in the frame {a} is related to the spatial inertia

matrix in frame {b} by the relation:

Ma = [AdaT b
]−T M b [AdaT b

]−1 . (6.46)

Spatial Representation Equation 6.44 can also be written in the spatial repre-

sentation which in fact reveals an interesting property. Using Equation 6.46, the

spatial mass-inertia matrix in the spatial representation M can be computed from

spatial mass-inertia matrix in the body frame M b as:

M = [AdT ]−T M b [AdT ]−1 (6.47)

where T denotes the homogenous transformation of the body frame with respect to

the base frame. The spatial momentum of the rigid body in the spatial representation

is defined as

P = MV = [AdT ]−T M b [AdT ]−1 V . (6.48)

Using the fact that V b = [AdT ] V and Equation 6.42, one could express the spatial

momentum in spatial representation P in terms of spatial momentum in body fixed

representation P b as:
P = [AdT ]−T M bV b

= [AdT ]−T P b .
(6.49)
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Differentiating Equation 6.48 with respect to time, one could arrive at the Newton-

Euler equation of the single rigid body dynamics in spatial representation:

W = Ṗ = MV̇ + ṀV (6.50)

which is the simplest form possible (unlike Equation 6.43) and can be achieved by

the spatial representation of the twist, wrench and momentum. The time derivative

of spatial mass-inertia matrix Ṁ can be computed using

Ṁ = −
[
adT

V

]
M −M [adV ] . (6.51)

Substituting Equation 6.51 in Equation 6.50 and using the fact that [adV ] V = 0, one

could arrive at the NE equations of motion in spatial representation.

W = MV̇ −
[
adT

V

]
MV −M [adV ] V

W = MV̇ −
[
adT

V

]
MV

(6.52)

This has exactly the same form as body frame version of EOM as shown in Equa-

tion 6.44.

6.4 Inverse Dynamics

Inverse dynamics is the problem of finding the forces required to produce a given

motion in a rigid-body system. For a serial or tree type robot, all joints are assumed

to be actuated and hence these forces can be attributed to the motor torques and

is useful in robot analysis and control. In the previous sections, it was shown how

a kinematic chain can be topolgically described using the concepts from graph the-

ory, then recursive formulations for computing the position, velocity and acceleration

kinematics were presented. Then, equations of motion for describing a single rigid

body dynamics were presented. In this section, equations of motion for a serial or

tree type system would be solved recursively exploiting the concepts presented in

previous sections. The inverse dynamics of a general kinematic tree can be obtained

in two main steps:

1. Calculate the position, velocity and acceleration state of each body in the kine-

matic tree. This is called the forward recursion.

2. Calculate the wrenches required to produce these accelerations and subse-

quently the wrenches transmitted across the joints from the wrenches acting

on the bodies. This step is called backward recursion.
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Figure 6.3: Forces acting on a body i

6.4.1 Initialization

Fig. 6.3 shows the free body diagram of a body i which is a part of the kinematic

tree. Recall that in a kinematic tree, every body has a unique parent. Revisiting

the notation introduced in Section 6.1, λ(i) denotes the parent of the body i and its

children are given by the array µ(i). Let us define a body frame {Bi} at every body

and let iSi denote the constant joint screw of joint i represented in the body frame

{Bi} given by:

iSi =

[
iŝi

isoi × iŝi + hiŝi

]
∈ R6 (6.53)

where isoi is the 3D position vector of a point on the joint axis and iŝi is the unit

direction vector of the joint axis both with respect to the body frame {Bi}. Further,

we denote the reference configuration of the body i with respect to the parent body

λ(i) in the zero configuration with the homogenous transformation matrix λ(i)Bi ∈
SE(3). This constitutes all the geometric information that is needed to compute the

kinematics of the tree and is readily available from a CAD model of the robot.

Let us define a center of mass (COM) frame of body i with {Ci} and express the

spatial mass-inertia matrix of the body with respect to this COM frame with M ci

given by:

M ci =

[
Ici 0

0 miI

]
(6.54)
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where mi ∈ R+ is the mass of the body i and Ici ∈ R3×3 is its inertia matrix expressed

in COM frame. Let biT ci = (biRci,
bicci) denote the pose of the COM frame in the body

frame for a body i. Using Equation 6.45, the spatial mass-inertia matrix of the body

in the body frame M bi can be computed as:

M bi =
[
AdbiT ci

]−T
M ci

[
AdbiT ci

]−1

=


 Ibi mi

[
bicci

]

−mi

[
bicci

]
miI




(6.55)

where Ibi = biRciIci
biRT

ci −mi

[
bicci

]2
∈ R3×3 is the inertia matrix of the body in the

body frame (a consequence of parallel axis theorem). This constitutes all the physical

information that is needed to compute the dynamics of the kinematic chain and can

be extracted from a CAD model of a robot.

6.4.2 Forward Recursion

In the forward recursion, the spatial motion state of the bodies are calculated mov-

ing forward from the base link to the tip link (i = 1, . . . , n). Denote with V i =(
ωT

i ,v
T
i

)T
∈ se (3) the twist vector of body i, and with J i the instantaneous screw

coordinate vector of joint i, both in spatial representation.

The first step is to compute the pose of the body in the base frame. This can be

done recursively thanks to the body fixed version of the POE formula.

T i = T λ(i)
λ(i)Bi exp(iSiqi) (6.56)

Next, the instantaneous screw coordinate vector J i is computed in the base frame.

J i = AdT i
(iSi) (6.57)

Then, the spatial velocity of body i is computed utilizing the spatial velocity of the

previous body and velocity of the current joint.

V i = V λ(i) + J iq̇i (6.58)

Finally, the spatial acceleration of the body is computed utilizing the spatial acceler-

ation of the previous body and the acceleration across the joint which makes use of

instantaneous screw coordinate computed in Equation 6.57 and the Lie brackets/ad-

joint mapping.

V̇ i = V̇ λ(i) + J iq̈i + adV λ(i)
V i (6.59)
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6.4.3 Backward Recursion

Once we have the spatial velocities and accelerations of all the bodies computed mov-

ing forward from base to the tip, we can calculate the joint torques or forces by moving

backwards from the tip to base link (i = n, . . . , 1). Denote with W i =
(
mT

i ,f
T
i

)T
∈

se∗ (3) the spatial wrench vector of body i.

The first step in the backward recursion is to compute the spatial mass-inertia

matrix in the base frame M i from spatial mass-inertia matrix in the body frame

M bi.

M i = [AdT i
]−T M bi [AdT i

]−1 (6.60)

The wrench acting on any single rigid body i due to its motion (V i, V̇ i) is given by

Equation 6.44. However, the total wrench acting on the body i is the sum of the

wrench transmitted through the joint, wrench applied to it through its children links

and net external wrench acting on that body resolved in the base frame.

W i =
∑

j∈µ(i)

W j + M iV̇ i − adT
V i

M iV i + W ext
i (6.61)

The final step is to compute the force/torque needed by the actuator τi from the

wrench acting on the body W i.

τi = JT
i W i (6.62)

6.4.4 Computational Complexity

The approach presented in this section is also known as the spatial version of inverse

dynamics algorithm. It has been argued in [Müller, 2018] that this version of the

algorithm has the same O(n) complexity as the inverse dynamics algorithm in body

coordinates presented in [Featherstone, 2008]. However, this version of the algorithm

is much more simpler and elegant when compared with the body coordinates version.

6.5 EOM in Closed Form

In this section it is shown how the spatial representation of the recursive Newton-

Euler algorithm for inverse dynamics presented in Section 6.4 can be organized into

a set of dynamics equations in closed form in generalized coordinates.

M(q)q̈ + C(q, q̇)q̇ + g(q) + τ ext = τ (6.63)

Here q, q̇, q̈ are (n× 1) vectors of joint position, velocity and acceleration variables of

the system, M(q) is the (n× n) generalized mass-inertia matrix, C(q, q̇) is a (n× n)
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matrix for Coriolis-centrifugal forces, g(q) is the (n× 1) vector of gravity efforts, τ ext

is the (n× 1) vector of external forces projected on the tree joints, and τ is the (n× 1)

vector of force/torque variables.

The first step in RNEA is the recursive computation of twist of each body using

Equation 6.58. Similar to Equation 6.16, this could be written in closed form as:

V sys = Jsysq̇ + V
sys
base = AsysSsysq̇ + V

sys
base (6.64)

where V
sys
base = [V base,0, . . . ,0]T ∈ R6n is the velocity of the system base.

The second step in RNEA is the recursive computation of spatial acceleration

of every body using Equation 6.59. Similar to Equation 6.28, this equation can be

written in its closed form as:

V̇
sys

= V̇
sys
base + Jsysq̈ + LsysbsysJsysq̇ = V̇

sys
base + Jsysq̈ + LsysbsysV sys (6.65)

where V̇
sys
base = [V̇ base,0, . . . ,0]T ∈ R6n is the acceleration of the system base.

The third step in RNEA is the recursive computation of wrench acting on each

body using Equation 6.61. This equation can be written in its closed form as:

W sys = M sysV̇
sys − [bsys]T M sysV sys + W

sys
ext (6.66)

where W
sys
ext = [W ext

1 ,W ext
2 , . . . ,W ext

n ]T ∈ R6n is the vector of external wrenches act-

ing on the system and M sys = diag(M1,M2, . . . ,Mn) ∈ R6n×6n is the spatial mass-

inertia matrix of the system.

The final step in RNEA is to compute the actuation forces/torques using Equa-

tion 6.62 which can be written in its closed form as:

τ = [Jsys]T W sys (6.67)

where τ is the vector of actuator forces/torques.

After deriving the individual equations in RNEA in closed form, one could start

building the closed form Lagrangian equation in generalized coordinates. Substitut-

ing Equation 6.66 into Equation 6.67, one gets:

τ = [Jsys]T
(
M sysV̇

sys − [bsys]T M sysV sys + W
sys
ext

)
(6.68)
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in which, one can again substitute Equation 6.65 to arrive at:

τ = [Jsys]T
(
M sys

[
V̇

sys
base + Jsysq̈ + LsysbsysV sys

]
− [bsys]T M sysV sys + W

sys
ext

)

or , τ = [Jsys]T M sys
[
Jsysq̈ + LsysbsysV sys + V̇

sys
base

]
− [Jsys]T [bsys]T M sysV sys

+[Jsys]T W
sys
ext .

Substituting Equation 6.64 into the above equation while assuming a system with

fixed base i.e. V
sys
base = 0 and base acceleration as the gravity vector i.e. V̇

sys
base =

V̇
sys
g = [V̇ g,0, . . . ,0]T , one gets:

τ = [Jsys]T M sysJsys
︸ ︷︷ ︸

M(q)

q̈ + [Jsys]T
(
M sysLsysbsys − [bsys]T M sys

)
Jsys

︸ ︷︷ ︸
C(q,q̇)

q̇+

[Jsys]T M sysV̇
sys
g︸ ︷︷ ︸

g(q)

+ [Jsys]T W
sys
ext︸ ︷︷ ︸

τ ext

.
(6.69)

Hence, the expressions for individual terms in Equation 6.63 are given by:

M(q) = [Jsys]T M sysJsys (6.70)

C(q, q̇) = [Jsys]T
(
M sysLsysbsys − [bsys]T M sys

)
Jsys (6.71)

g(q) = [Jsys]T M sysV̇
sys
g (6.72)

τ ext = [Jsys]T W
sys
ext (6.73)

where the system Jacobian can be further factorized and written as Jsys = AsysSsys

as shown in Equation 6.17.

6.6 Conclusion

This chapter presents the screw theory and Lie group theory based approaches for

the kinematic and dynamic modeling of serial or tree type robotic systems. Starting

with a topological description of a kinematic chain using graph theoretic concepts,

the recursive relations for computing kinematics are presented. Then equations of

motion for a single rigid body dynamics are presented from both classical and mod-

ern viewpoints in order to highlight the advantage of the modern geometric setting.

Finally, a fully recursive O(n) algorithm for computing the inverse dynamics of a

kinematic tree is presented and further utilized to develop EOM in closed form. This

chapter hence provides the theoretical background needed to understand the kine-

matics and dynamics of more complex series-parallel hybrid robotic systems which

will be discussed in the next chapter.
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Chapter 7

Modular and Analytical Methods

for Series-Parallel Hybrid

Systems

This chapter presents the kinematics and dynamics of series-parallel hybrid robots

based on the theoretical foundations presented in the previous chapter for tree type

systems. The main contribution here is an analytical and modular methodology to

compute the kinematics and dynamics of arbitrary hybrid robots that are a serial

composition of serial or parallel submechanism modules. The approach allows mod-

ular composition of the analytical loop closure functions (LCF) and its associated

derivatives and transfers them into computation of the analytical forward and in-

verse dynamics algorithms. The benefit of this approach is that efficient and re-

cursive O(n) dynamics algorithms for tree type systems can be directly used. The

results are free of numerical errors resulting from loop closure and free of singu-

larities arising from redundant constraints. This approach forms the basis of the

Hybrid Robot Dynamics (HyRoDyn) software framework which will be described in

the next chapter. The explanation in this chapter is aided with an example of a

series-parallel hybrid humanoid robot developed at DFKI-RIC which employs several

different closed loop and parallel mechanism based modules. The content presented

here is based on [Kumar and Mueller, 2019] and was first presented in the form of a

poster [Kumar et al., 2018d].

This chapter is organized as follows: Section 7.1 provides theoretical preliminar-

ies for modeling robots with closed loops along with an introduction to the concept of

loop closure functions. It derives the formulas for the forward and inverse dynamics

for these mechanisms. Section 7.2 introduces the notion of modularity and guide-

lines for selecting submechanism modules in series-parallel hybrid robotic systems.

Section 7.3 presents the modular graph based topological modeling of series-parallel
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Figure 7.1: A closed loop robot and its associated spanning tree numbered using
regular numbering scheme. Here, links and joints are denoted as vertices and edges
respectively.

hybrid robots using the previously identified submechanism modules. Section 7.4

elaborates the analytical and modular approach for kinematic and dynamics mod-

eling of such series-parallel hybrid systems. It further comments on their compu-

tational complexity. Section 7.5 draws the conclusions of this chapter and makes a

bridge to the software implementation of this approach which is discussed in next

part of this thesis.

7.1 Modeling Rigid Body Systems with Closed Loops

This section briefly introduces the theory of multi-body dynamics subjected to holo-

nomic and sceleronomic constraints. It mostly adopts the notation and terminology

introduced by Featherstone in [Featherstone, 2008]. Consider a rigid body system

with NB bodies, NJ joints, and NL = NJ −NB kinematic loops. Assume that a span-

ning tree is defined and that the joints are enumerated using regular numbering

scheme (see Fig. 7.1 for example). Let n denote the degree of freedom of the selected

spanning tree, computed as n =
∑NB

i=1 ni, and let nc denote the number of loop-closure

constraints, computed as nc =
∑NJ

k=NB+1 nck where nck denotes the number of loop

constraints imposed by kth cut joint. Further, let q indicate the vector of all joints of

the spanning tree (of size n) and let y indicate the vector of all independent variables

(of size n− nc).

7.1.1 Loop Constraints

Loop constraints are non-linear constraints on the motion variables of a multi-body

system. Loop constraints can be expressed in an implicit and in an explicit way, they
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are summarized in Table 7.1 at position, velocity, and acceleration levels. Here let

K = ∂φ
∂q

, k = −K̇q̇, G = ∂γ
∂y

, and g = Ġẏ. If both functions φ and γ describe the same

constraint, φ ◦ γ = 0, KG = 0, and Kg = k can be deduced. Algorithms to compute

variables in Table 7.1 from the spanning tree are provided in [Featherstone, 2008]

and skipped here for brevity.

Table 7.1: Loop constraints [Featherstone, 2008]

Type position velocity acceleration

implicit: φ(q) = 0 Kq̇ = 0 Kq̈ = k

explicit: q = γ(y) q̇ = Gẏ q̈ = Gÿ + g

7.1.2 Equations of Motion (EOM)

The equations of motion for a tree topology multi-body system can be written as

τ = M(q)q̈ + C(q, q̇) (7.1)

where q, q̇, q̈ are (n × 1) vectors of joint position, velocity and acceleration variables

of the spanning tree, M(q) is the (n× n) generalized mass-inertia matrix, C(q, q̇) is

a (n× 1) vector for Coriolis-centrifugal and gravity efforts, and τ is the (n× 1) vector

of force/torque variables. In case of robots with closed loops, the equivalent spanning

tree of the robot system is subjected to loop constraint forces

M(q)q̈ + C(q, q̇) = τ + τ a + τ c (7.2)

where τ c and τ a are the constraint and active forces, respectively produced by the cut

joints. If the selected cut joint is passive, τ a = 0 can be substituted in Equation 7.2.

The constraint force τ c is usually unknown but its value can either be calculated or

eliminated from the equation following the Jourdain’s principle [Piedboeuf, 1993] of

virtual power, i.e., τ cq̇ = 0. Based on the (implicit or explicit) nature of the loop

constraints, the equations of motion are developed for the entire system.

7.1.2.1 EOM with Implicit Loop Constraints

The cut joints impose a set of kinematic constraints on the spanning tree which are

briefly introduced in Table 7.1. Assuming that the implicit position level constraints

have been successfully differentiated twice, the acceleration level loop constraints

can be collected in a single matrix equation of the form

Kq̈ = k (7.3)
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where K is a (nc×n) matrix. If the system is subjected to an implicit loop constraint

then it can be shown that τ c takes the form

τ c = KT λ (7.4)

where λ is the vector of Lagrangian multipliers. Combining Equations 7.2, 7.3 and

7.4, the equation of motion of the overall system taking into account implicit loop

constraints can be written as

[
M KT

K 0

] [
q̈

−λ

]
=

[
τ −C + τ a

k

]
. (7.5)

This is a system of (n + nc) equations in (n + nc) unknowns. The coefficient ma-

trix of dimension (n + nc) × (n + nc) in Equation 7.5 is symmetric but not posi-

tive definite. If the rank of matrix r = rank(K) is less than nc, then the coeffi-

cient matrix becomes singular and the system is said to be over-constrained. Over-

constrained systems are actually very common. For example, planar kinematic loops

impose redundant constraints on the system – that either need to be removed man-

ually [Featherstone, 2008] or demand numerical decomposition techniques which

deteriorate the computational performance and numerical accuracy of the solution

[Mueller, 2014].

7.1.2.2 EOM with Explicit Loop Constraints

Using explicit velocity level loop constraint (refer to Table 7.1) and Jourdain’s princi-

ple of virtual power, one can establish that τ c will have the following property

GT τ c = 0 . (7.6)

Similarly, one can write the explicit motion constraints at an acceleration level

q̈ = Gÿ + g . (7.7)

Combining Equations 7.2, 7.6 and 7.7, the equation of motion taking into account

explicit loop constraints can be developed.




M −I 0

−I 0 G

0 GT 0







q̈

τ c

ÿ


 =




τ −C + τ a

−g

0


 (7.8)
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7.1.3 Loop Closure Functions

It is usually more complex to deal with robots involving closed loops. In contrast to a

tree type robot, the mobility of closed loop system is dependent on r which can vary

with the configuration. Also, the different assembly modes can lead to configuration

ambiguities. Thus, it is useful to derive explicit functions for the modeling of closed

loop systems whenever and wherever possible.

Let us define loop closure functions such that they provide a unique mapping

between the independent position variables y and position variables in the spanning

tree q. The set of independent joint variables y may or may not be a subset of the

position variables of the spanning tree q. For this assumption to hold true, let us

define a set C ⊆ Rn−r of acceptable values of y, and assume y ∈ C. For all y ∈ C,

there exists a function, γ such that

q = γ(y)

q̇ = Gẏ

q̈ = Gÿ + Ġẏ = Gÿ + g
(7.9)

It must be noted that the above relations are identical to the explicit loop con-

straint equations noted in Table 7.1 when the loop closure errors are zero. This

method is less generic in nature than the ones described before because it is not

always possible to find such a mapping analytically. However, the advantages of

an analytical solution to the loop closure constraints outweighs the manual effort

needed because numerical loop closure errors can not occur. Also, there is no need to

introduce a constraint stabilization term unlike when practically dealing with Equa-

tion 7.3. Further, the spanning tree can be selected such that there are no active

forces on the cut joints i.e. τ a = 0.

7.1.4 Forward and Inverse Dynamics

The equations of motion presented above could be either solved for independent joint

accelerations ÿ under given actuator force conditions or for the actuator forces u

required to generate given acceleration. The former is called the forward dynamics

problem and the latter is called the inverse dynamics problem [Featherstone, 2008,

Jain, 2011b]. In the following, the forward and inverse dynamics formula are derived

such that a link between the loop closure functions and spanning tree dynamics is

established.
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7.1.4.1 Forward Dynamics Solution

By using Equation 7.6 and multiplying by GT on both sides of Equation 7.2, the loop

constraint forces τ c can be eliminated.

GT Mq̈ = GT (τ −C) (7.10)

Substituting Equation 7.7 in Equation 7.10 and simplifying one can arrive at the

solution to the forward dynamics problem:

ÿ = (GT MG)−1(GT τ −GT (C + Mg)) . (7.11)

7.1.4.2 Inverse Dynamics Solution

Equation 7.10 could be rewritten as:

GT τ = GT (Mq̈ + C) = GT τ ID (7.12)

where τID is the inverse dynamics output of a spanning tree given by

τ ID = M(γ(y))(Gÿ + g) + C(γ(y),Gẏ) . (7.13)

The solution to Equation 7.12 is not unique because GT is an (n − r) × n matrix

which imposes (n − r) constraints on an n dimensional vector of unknowns, leaving

r freedoms of choice. In other words, there are ∞r different values of τ which will

produce the same acceleration. To arrive at a unique solution, the actuated degrees

of freedom must be separated from the passive degrees of freedom. This can be done

with the help of a matrix Gu which basically contain the rows of G corresponding to

the actuated degrees of freedom. If the rank of matrix Gu is equal to (n− r), then the

system is properly actuated1 and a unique solution to the inverse dynamics problem

can be found which is given by:

τ u = G−T
u GT τ ID (7.14)

where τ u is a vector of actuator forces required to produce the given acceleration ÿ.

7.1.5 Comparison of Numerical and Analytical Resolution of Loop

Constraints: Case Study of a 3D Slider Crank Mechanism

To make a comparison between numerical and analytical resolution of loop closure

constraints, we present the case study of a 3D slider crank mechanism. This mecha-

1If p > rank(Gu), the system is redundantly actuated and τ u = G†T
u GT τ ID
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nism consists of a crank, a connecting rod and a slider. Fig. 7.2a shows the schematic

of the 3D slider crank linkage. The crank is driven by a motor with its rotational axis

parallel to global X-axis. The slider makes a sliding movement on the ground with its

translational axis coinciding with the global X-axis. Those two parts are connected

via the connecting rod that itself is connected to the two parts by use of two ZYX ball

joints. Since, the system has two spherical joints (SS pair) on the connecting rod, the

system has one redundant rotational DOF around the rod’s axis (see Fig. 7.2b). The

input motor angle is denoted with ϕ and the output slider movement is denoted with

d. An input movement trajectory, ϕ = πt2, is provided to the mechanism for a simula-

tion time of 1 second in 100 time steps. The numerical solution is obtained using the

multi-body simulation tool called ADAMS and the analytical solution is implemented

in the HyRoDyn software framework. The analytical equations for the loop closure

function are skipped here for brevity.

Z

X

Z

Y

(a) Schematic

B2

B  - Ball jo int (3  DOF) B1

(b) Redundant constraint in SS pair

Figure 7.2: 3D slider crank mechanism

Fig. 7.3 shows the input and output motion trajectories plotted using HyRoDyn

and ADAMS respectively. It can be noticed that the plots produced by ADAMS are

subjected to some numerical jitters. Further, the results from the inverse dynamics

analysis is plotted (see Fig. 7.4). To study the effect of redundant constraints on the

quality of numerical solution, two different cases of this mechanism with same physi-

cal dimensions are studied: one with SU pair and the other SS pair on the connecting

rod. As one can expect, the mechanism with SU pair should match better with the

analytical solver. However, we found that the quality of the numerical solution also

depends on whether the inertia term around the rod’s redundant axis (highlighted in
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red in Fig. 7.2b) is defined. Fig. 7.4 (a) shows the best match between the analytical

solution and numerical solution obtained from ADAMS for a model with SU pair on

the rod and inertia around rod’s axis is set to zero. The solution becomes unstable

when there is a non-zero inertia defined for the rod around this axis (Fig. 7.4 (b)).

Fig. 7.4 (c) and (d) demonstrate the case with SS pair on the rod with and without

zero inertia. Both of these plots are subjected to numerical jitters. Further, it was

found that the computational performance of the analytical solver was much better

than the numerical solver. Thus, it can be concluded that analytical solutions to loop

closure constraints, when available, always outperform their numerical counterparts.
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7.2 Notion of Modularity

Hybrid robots are robots that can be seen as a serial composition of serial or parallel

submechanisms modules. Table 2.1 and Table 2.2 of Chapter 2 present a survey on

closed loop kinematics and parallel submechanism modules which have been utilized

in series-parallel hybrid robot designs in the last decade. Such a design methodology

is biologically inspired (see Fig. 7.5) as most joints found in the biological systems

are actuated with muscle groups in a parallel architecture. This allows the exploita-

tion of the non-linear transmission from the actuation space to the task space and

provide better actuator placement possibilities which can optimise the mass-inertia

properties of the limbs. Two observations can be made from this survey:

• submechanism modules are used as a mechanical generator of a motion sub-

space (revolute, universal, spherical, free joint etc.)

• the same type of submechanism with different physical parameters is utilized

as a module to serve different purposes (ankle, wrist, torso joints etc.) in the

same robot.

The analysis of closed loop mechanisms is difficult and hence they require special

treatments in contrast to tree type systems. Numerical resolution of the loop closure

constraints can lead to inaccuracy and poor performance as described in the previous

section. Analytical resolution of loop closure constraints is worth the effort if it can

be made reusable as this can help in dealing with a large number of similar loop con-

straints inside a hybrid robot. This inspires an analytical treatment of loop closure

constraints for a submechanism module in a robot assembly so that the modularity

in the hardware design is also reflected in the kinematic and dynamic modeling of

the robot.

7.2.1 Definition of Submechanism Module

A submechanism module (Mi) is defined as a set of links and joints which can pro-

duce any motion from m-dimensional motion subspace of SE(3) while demonstrating

properties of a minimal loop cluster. A loop cluster is any set of loops with the prop-

erty that no loop within the cluster is coupled to any other loop outside it; and a

minimal loop cluster is the one that can not be divided into two small loop clusters.

In other words, these loop clusters do not share a common edge (joint). A serial com-

bination of links and joints can be seen as a submechanism with no closed loops. This

definition helps us in two different ways:

• it reveals the block diagonal structure in the constraint Jacobian matrix (G)

and its derivative (Ġ) which can lead to efficiency in kinematics and dynamics
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Figure 7.5: Biologically inspired series-parallel hybrid humanoid design

computations,

• and, it helps in generation of simpler abstract mechanisms which do not further

contain any closed loops and have physical meaning.

To define a submechanism module, it is crucial to define three subsets of joints from

the connectivity graph (Gi) of a mechanism:

• spanning tree joints (qi ∈ Rni): all the joints belonging to the spanning tree (Ti)

chosen by regular numbering scheme,

• independent joints (yi ∈ Rmi): a set of independent variables selected such that

yi defines qi uniquely,

• active joints (ui ∈ Rpi): all the joints containing the actuators

Let us define a selection matrix, Qi ∈ Rpi×ni such that ui = Qiqi. Also, in the scope

of the current work, it is assumed the submechanism modules are properly actuated

(i.e. pi = mi) and properly constrained (i.e. mi = ni − nci).

7.2.2 Guidelines for Selection

While the definition of a submechanism module is intentionally chosen not to be too

restrictive, some guidelines can be followed while selecting the submechanism mod-

ules:

• It is evident that the choice of independent coordinates for a parallel submecha-

nism module is non-unique. The independent joints in a submechanism module
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Universal joint

(2 DOF) 

Figure 7.6: Example of submechanism definition

should be chosen such that they represent the operational space or platform co-

ordinates of the submechanism module because it is easier to solve the inverse

kinematics of parallel mechanisms analytically in comparison to forward kine-

matics. Further, it is possible to integrate sensors to measure these coordinates

directly in many cases (see Table 2.1). For serial submechanism modules, the

choice of independent coordinates must be the same as its configuration space

coordinates.

• A careful choice of submechanism module can help in exploiting the hierarchy in

the robot design through abstractions. The two categories of parallel submech-

anism modules used in the design of series-parallel hybrid robots (see Table 2.1

and Table 2.2) always encapsulate a known joint type (for e.g. revolute, uni-

versal, spherical etc.). Overall, the serial nature of hybrid robot design may

simply be following well studied 6 or 7 DOF anthropomorphic limb designs such

as URS, SRS etc. Hence, analytical inverse kinematics solutions for such limbs

can be easily mapped to the series-parallel hybrid robot and therefore enable

the analytical computation of kinematics and dynamics of the complete system.

Example 2 The designer may construct the ankle joint of a humanoid robot ei-

ther using a set of two serially connected actuators (e.g. 2R orthogonal ar-

rangement) for the sake of simplicity or utilize a parallel mechanism (e.g.

2SPRR+1U [Kumar et al., 2018c]) for minimizing the lower leg inertia and exploit-
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{
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Figure 7.7: Example of series-parallel hybrid composition

ing the non-linear transmission. Fig. 7.6 shows the two design possibilities and the

corresponding definitions of the submechanism modules.

7.3 Topological Modeling

A submechanism module is modeled using a two-terminal graph (TTG) which is de-

fined as a graph with two distinguished vertices, called source and sink. The source

and sink basically represent a fixed transformations to a submechanism interface

point (for e.g. physical screws or nut-bolt pair) in the overall assembly of the hybrid

robot. In addition to the source and sink links, base and end-effector links on the

submechanism are identified on the TTG which is important for local resolution of

loop closure constraints inside the submechanism module. Further, a spanning tree

is deduced from this TTG, where all the nodes except for the ones connected using

fixed joint are numbered using regular numbering scheme described in Section 6.1.

It is additionally ensured that the main branch or trunk of the tree connecting the
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base and EE link is numbered first and then the additional branches are numbered.

We call this extension of regular numbering scheme as modular graph enumeration

scheme. Right top and bottom of Fig. 7.6 shows the associated submechanism graphs

skipping the source and sink links.

The series composition G = Gx ⊕ Gy of two TTGs Gx and Gy is a TTG created from

the disjoint union of graphs Gx and Gy by merging the sink of Gx with the source of

Gy. The source of Gx becomes the source of G and the sink of Gy becomes the sink

of G [Eppstein, 1992]. A series-parallel hybrid robot can be seen as series composi-

tion of various submechanism modules represented by their respective graphs. Let

T i denote the spanning tree of a submechanism module and s serial or parallel sub-

mechanism modules are joined in series to compose a series-parallel hybrid robot.

The spanning tree of this hybrid robot (T ) will be given by:

T =
s⊕

i=1

T i (7.15)

The three joint variable sets namely spanning tree joints, independent joints and

active joints set for the hybrid robot can be composed as: qT = (qT
1 , . . . , q

T
s ), yT =

(yT
1 , . . . ,y

T
s ), uT = (uT

1 , . . . ,u
T
s ).

7.3.1 Bottom-Up Composition

The topological model of a complex series-parallel hybrid robot can be composed

from topological models of its submechanism modules as shown in Equation 7.15.

However, it must be noted that the composition operation is non-commutative i.e.

G1 ⊕ G2 6= G2 ⊕ G1. Once, the submechanism graphs have been combined, the fixed

joints involved can be removed. Provided the graph descriptions of individual mod-

ules, the graph description of the composed mechanism can be easily deduced. Let

(p1, s1) denote the predecessor array and successor arrays representing G1 and (p2, s2)

denote the predecessor array and successor arrays representing G2. Let ι denote the

submechanism interface link on G1, then the predecessor array of the composition p

is given by:

p = {p1, p
′
2} where ∀i ∈ {1, . . . , | p2 |} , p′

2(i) =

{
ι : p2(i) = 0

p2(i) + max(s1) : p2(i) 6= 0
(7.16)

and the successor array s of the composition is given by:

s = {s1, s
′
2} where ∀i ∈ {1, . . . , | s2 |} , s′

2(i) = s2(i) + max(s1) . (7.17)
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Figure 7.8: Graphs of submechanism modules

From predecessor and successor arrays, other properties such as parent array λ and

child array µ can be easily calculated. This way of modeling is preferable when a

complex model is being built up from scratch so that each submechanism model can

be unit-tested beforehand or when there are well-defined attachment interfaces on

all the modules involved during the composition.

7.3.2 Top-Down Decomposition

During topological modeling, there might sometimes be a need of decomposing a com-

plex series-parallel hybrid model into models of its submechanism modules. This can

also be done easily thanks to the modular graph enumeration scheme. If a topologi-

cal graph G decomposes into G1 and G2, Let ι denote the submechanism interface link

on G, then the successor array splits into s1 and s′
2 such that min(µ(ι)) is the first

element of s′
2. Then, s2 can be computed as s2(i) = s′

2(i)−max(s1) ∀i ∈ {1, . . . , | s′
2 |}.

The predecessor array p will split into p1 and p′
2 such that ι is the first element of p′

2.

And the predecessor array p2 can be computed as:

∀i ∈ {1, . . . , | p′
2 |} , p2(i) =

{
0 : p′

2(i) = ι

p′
2(i)−max(s1) : p′

2(i) 6= ι
. (7.18)

This kind of topological decomposition is needed when a complex system model is

already at hand and the topological models of the submechanism modules are to be

derived.
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Example 3 Fig. 7.7 shows the composition of a series-parallel hybrid humanoid leg

with the help of four submechanism modules. The first module T 1 is an RR module

and consists of Hip1 and Hip2 joints, second module T 2 is a 1-RRPR module used

for Hip3 joint, third module T 3 is again 1-RRPR module used for Knee joint and the

fourth module T 4 is 2-SPRR+1U mechanism used for the ankle joint. The respective

graphs of the three distinct submechanism modules are provided in Fig. 7.8. T 2 is

attached to T 1 at link 2, T 3 is attached to the link 3 of T 1 ⊕ T 2 and T 4 is attached

to the link 4 of T 1 ⊕ T 2 ⊕ T 3. The submechanism interface links are collected in an

submechanism interface array ι = {0, 2, 3, 4}. The graph description of the overall

series-parallel hybrid composition is given by:

p = {0, 1, 2, 2, 4, 3, 3, 7, 6, 9, 10, 10, 6, 13, 14, 6, 16, 17}
s = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

λ = {0, 1, 2, 2, 4, 3, 3, 7, 6, 9, 10, 10, 6, 13, 14, 6, 16, 17}
µ = {{1}, {2}, {3, 4}, {6, 7}, {5}, {}, {9, 13, 16}, {8}, {}, {10},

{11, 12}, {}, {}, {14}, {15}, {}, {17}, {18}, {}}

(7.19)

and the graph enumerated using the modular numbering scheme is shown in Fig. 7.9.

7.4 Kinematics and Dynamics

7.4.1 Submechanism Module

For serial submechanism modules, the independent variables in the spanning tree

are the same as generalized coordinates of the spanning tree i.e. qi = yi, q̇i = ẏi and

q̈i = ÿi. The loop closure function for a serial submechanism module is given by:

qi = γi(yi) = yi

Gi = Ii

gi = 0i

(7.20)

where Ii is an identity matrix of size (ni × ni) and gi is a zero vector of size (ni × 1).

Since, we assume that all the submechanism modules are properly actuated, the

matrix Gui is also an identity matrix of size (ni × ni).

Problems related to geometry or kinematics for parallel robots is usually easy to

formulate but difficult to solve because they result in a set of non-linear algebraic

equations which need careful analysis and treatment. The three most useful solu-

tion techniques to deal with such problems are polynomial continuation, Gröbner
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bases, and elimination method [Nielsen and Roth, 1999]. To the best knowledge of

the author, there is no universally applicable way to solve kinematics problems in

case of parallel robots. Hence, the geometer or kinematician may choose any for-

mulation and solution method which works the best for a specific type of parallel

robot and arrive at the loop closure function. The loop closure functions for par-

allel submechanism modules are defined using Equation 7.9. The foundations for

deriving LCFs for 1-RRPR and 2-SPRR+1U mechanisms used in the humanoid leg

example introduced in Fig. 7.7 can be found in Section 3.5 [Featherstone, 2008] and

Section 4.3 [Kumar et al., 2018c] respectively and are skipped here for brevity.

The EOM for the equivalent spanning tree (Ti) of a submechanism module sub-

jected to analytical loop closure constraints (GT
i τ ci = 0) is given by

GT
i M iGiÿi + GT

i (Ci + M igi) = GT
i τ i (7.21)

It may be noted that Equation 7.21 has the same algebraic form as the equation of

motion for the unconstrained system in Equation 7.1 and hence can be written in the

form:

M̂ iÿi + Ĉi = τ yi (7.22)

where M̂ i = GT
i M iGi is module’s (mi ×mi) mass-inertia matrix which is symmetric

and positive-definite and Ĉi = GT
i (Ci + M igi) is its (mi × 1) vector of bias forces

and τ yi = GT
i τ i is the (mi × 1) vector of generalized forces for the submechanism

module. The actuator forces τ ui for the submechanism module can be computed using

Equation 7.14 where Gui = QiGi.

With qi, q̇i, q̈i known by solving the loop constraints determined by Equation 7.9,

only the equations (7.1) of the unconstrained system need to be evaluated. This

is most efficiently carried out by a recursive O (n) algorithm. Various of such

have been proposed in the literature. The actual compuational effort depends

on the representation of spatial twists and wrenches. The spatial representa-

tion [Jain, 2011b, Featherstone, 2008] is deemed as the most efficient representa-

tion. For the i
th

submechanism module, denote with V i,k =
(
ωT ,vT

)T
∈ se (3)

the twist vector of body k, and with J i,k the instantaneous screw coordinate vec-

tor of joint k, both in spatial representation. The recursive Newton-Euler algo-

rithm (RNEA) [Featherstone, 2008, Müller, 2018] consists of a forward recursion

(k = 1, . . . , ni), where the spatial state of the system is computed from the gener-

alized coordinates, velocities, and accelerations (qi, q̇i, q̈i).

V i,k = V i,λi(k) + J i,kq̇i,k

V̇ i,k = V̇ i,λi(k) + J i,kq̈i,k + adV i,λi(k)
V i,k

(7.23)



7.4. Kinematics and Dynamics 149

The backward recursion (k = ni, . . . , 1) in RNEA computes the generalized forces τ i

from the spatial state of the system. To this end, denote with qi,k and τi,k the kth

element of qi and τ i of submodule i.

W i,k =
∑

j∈µi(k)

W i,j + M i,kV̇ i,k − adT
V i,k

M i,kV i,k + W
app
i,k

τi,k = JT
i,kW i,k

(7.24)

Here, V i,k, M i,k, W
app
i,k are the spatial twist, the inertia matrix, and the applied

wrench of body k in submodule i, respectively. The 6× 6 matrix

adV =

(
ω̃ 0

ṽ ω̃

)
(7.25)

is called the screw product or spatial cross product operator. Here, ω̃ and ṽ represent

the skew symmetric matrices associated with the vectors ω and v respectively.

Figure 7.9: Modular composition of loop closure function
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Algorithm 10 Spanning tree state (SYSSTATE)

(in) Independent joint state (y, ẏ, ÿ)

(out) Spanning tree joint state (q, q̇, q̈)

1: function SYSSTATE(y, ẏ, ÿ)

2: for Mi ∈ (M1, . . . ,Ms) do

3: if mi 6= ni then ⊲ Check if module is parallel

4: qi ← γi(yi)

5: q̇i ← Giẏi

6: q̈i ← Giÿi + gi

7: else

8: qi ← yi, q̇i ← ẏi, q̈i ← ÿi

9: q ← yi, q̇ ← ẏi, q̈ ← ÿi ∀i ∈ [1, . . . , s]

10: return [q, q̇, q̈]

7.4.2 Series-Parallel Hybrid Composition

The loop closure function for the series-parallel hybrid robot is composed as follows.

γ =
[

γT
1 . . . γT

i . . . γT
s

]T
(n×1)

G =




G1 . . . 0 . . . 0

...
...

...
...

...

0 . . . Gi . . . 0

...
...

...
...

...

0 . . . 0 . . . Gs




(n×m)

g =
[

gT
1 . . . gT

i . . . gT
s

]T
(n×1)

(7.26)

From Equation 7.26, three observations about G can be made: it typically contains

many zeros due to branch induced sparsity, it contains various identity matrix blocks

corresponding to serial submechanism modules and it has a block diagonal nature

due to modular choice of spanning tree. These properties of the matrix can be used

to save some computational costs occuring in sparse matrix multiplications. Fig. 7.9

shows the block diagonal nature of the loop closure Jacobian for the series-parallel

hybrid leg example introduced in Fig. 7.7. The actuator Jacobian matrix Gu also has

a block diagonal nature which can be exploited while computing its inverse as shown
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in Equation 7.27.

Gu = QG =




Gu1 . . . 0 . . . 0

...
. . .

...
. . .

...

0 . . . Gi . . . 0

...
. . .

...
. . .

...

0 . . . 0 . . . Gus




(m×m)

G−1
u =




G−1
u1 . . . 0 . . . 0

...
. . .

...
. . .

...

0 . . . G−1
ui . . . 0

...
. . .

...
. . .

...

0 . . . 0 . . . G−1
us




(m×m)

(7.27)

Algorithm 10 presents an algorithm to compute the position, velocity and accel-

eration state of the spanning tree from the loop closure function exploiting these

properties. Once, the full system state of the equivalent spanning tree is known, it

is straightforward to compute the pose of any point on the spanning tree as well as

quantities like point Jacobian, spatial twists and acceleration etc.

Algorithm 11 Inverse Dynamics (IDYN)

(in) Independent joint state (y, ẏ, ÿ) and system model (M)

(out) Actuator forces (τ u)

1: function IDYN(M,y, ẏ, ÿ)

2: [q, q̇, q̈]← SYSSTATE(y, ẏ, ÿ) ⊲ Algorithm 10

3: τ ← RNEA(M, q, q̇, q̈) ⊲ Inv. dyn. of tree, Algorithm 12

4: for Mi ∈ (M1, . . . ,Ms) do

5: if mi 6= ni then ⊲ Check if module is parallel

6: τ ui ← G−1
ui GT

i τ i

7: else

8: τ ui ← τ i

9: τ u ← (τ ui : 1 ≤ i ≤ s)
10: return τ u
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Algorithm 12 Modular Recursive Newton Euler Algorithm (RNEA)

(in) Spanning tree joint state (q, q̇, q̈), vector of external wrenches W ext and system

model (M)

(out) Tree joint forces (τ )

1: function RNEA(M, q, q̇, q̈)

2: V 0,0 = 0 ⊲ Velocity of root link

3: V̇ 0,0 = −V̇ g ⊲ Gravity vector

4: for i ∈ (1, . . . , s) do ⊲ Inter-modular F.R

5: for k ∈ (1, . . . , ni) do ⊲ Intra-modular F.R

6: V i,k = V i,λi(k) + J i,kq̇i,k

7: V̇ i,k = V̇ i,λi(k) + J i,kq̈i,k + adV i,λi(k)
V i,k

8: for i ∈ (s, . . . , 1) do ⊲ Inter-modular B.R

9: for k ∈ (ni, . . . , 1) do ⊲ Intra-modular B.R

10: W i,k =
∑

j∈µi(k) W i,j + M i,kV̇ i,k − adT
V i,k

M i,kV i,k + W ext
i,k

11: τi,k = JT
i,kW i,k

12: return τ

An algorithm to solve the inverse dynamics of the series-parallel hybrid compo-

sition is provided in Algorithm 11 which takes as input the motion described in in-

dependent coordinates (y, ẏ, ÿ). First, the full state of the spanning tree is computed

(Line 2) with the help of Algorithm 10. The next step is to compute the joint forces (τ )

for the spanning tree which is done using a modular form of RNEA presented in Al-

gorithm 12. In this algorithm, the forward and backward recursions are carried out

first within the module (intra-modular) and then across the modules (inter-modular)

to compute the spatial state of the spanning tree (using Equation 7.23) and tree joint

forces (using Equation 7.24). And lastly, the tree joint forces are converted to the ac-

tuator forces of the series-parallel hybrid robot using an inter-modular recursion (see

Line 6 and Line 8) by exploiting the block diagonal nature of loop closure Jacobian

matrix.

7.4.3 Computational Effort

In general, it is more difficult to analyse the computational performance of dynam-

ics algorithms for systems with closed loops because the closed form solutions to the

loop closure constraints might not always exist and the number of floating point op-

erations involved are highly dependent on the geometry of the parallel mechanism.
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Nevertheless, the presented modular approach leads to some cost savings occuring

in matrix-vector multiplication and inversion which will be discussed here. The tree

joint forces (τ ) are solved using O(n) RNEA. The projection of these forces to the

independent joint space of the robot i.e. τ y = GT τ can be computed with mn mul-

tiplications and m(n − 1) additions or 2m(n − 1) floating point operations (FLOPs).

Due to block diagonal structure in G, this matrix-vector multiplication can be done in

2
∑s

i=1mi(ni−1) FLOPs. It is trivial to show that 2
∑s

i=1mi(ni−1) ≤ 2m(n−1) which

demonstrates the cost savings involved in this step 2. The projection of indepen-

dent joint forces to actuator forces requires the inversion of actuator Jacobian matrix

Gu which can be done with O(m3) complexity and its multiplication with τ y vector

which requires 2m(m−1) FLOPs. Due to the modular formulation, actuator Jacobian

matrix Gu also has a block diagonal structure and instead of a full inversion, its in-

verse can be computed simply by computing the inverse of its submatrix blocks along

the diagonal. Hence, compared to O((
∑s

i=1mi)
3) complexity involved in this process,

the block diagonal nature leads to a reduced inversion complexity of O(
∑s

i=1m
3
i ) as

∑s
i=1m

3
i ≤ (

∑s
i=1mi)

3∀mi ∈ N. Lastly, the matrix-vector multiplication τ u = G−1
u τ y

leads to a reduced cost of 2
∑s

i=1mi(mi− 1) FLOPs as compared to 2m(m− 1) FLOPs.

These cost savings demonstrate the efficiency of the inverse dynamics algorithm due

to the adopted notion of modularity.

7.5 Conclusion

This chapter presents an analytical and modular approach for kinematic and dy-

namic modeling of series-parallel hybrid robots. The key idea behind this approach

is to see a complex hybrid mechanism as a serial composition of serial or parallel

submechanism module. Once, the submechanisms in the hybrid kinematic chain are

identified, the topological model for each submechanim module is derived and used to

compose the topological model of the complete hybrid chain. Thanks to the modular

graph enumeration during topological modeling, the associated loop closure functions

can be easily composed and have a block diagonal structure. This can be exploited in

various kinematics and dynamics algorithms and leads to efficient and user-friendly

models. The approach presented here forms the basis of the analytical and modular

software workbench called HyRoDyn which will be presented in the next part of this

thesis.

2∑s

i=1
mini ≤

∑s

i=1
mi

∑s

i=1
ni ∀ mi, ni ∈ N
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Chapter 8

HyRoDyn Software Architecture

This chapter presents the various aspects of the HyRoDyn software architecture

which is built on the modular and analytical methods for solving kinematics and dy-

namics of complex hybrid robotic systems presented in the previous chapter. The con-

tent presented here is based on [Kumar and Mueller, 2019] and was first presented in

the form of a poster [Kumar et al., 2018d]. The chapter is organized as the following:

Section 8.2 presents the robot description format for HyRoDyn and Section 8.3 de-

scribes a visual editing tool Phobos for generating such description files. Section 8.4

presents some software implementation details of HyRoDyn and Section 8.5 presents

the integration of HyRoDyn in a robot middleware operating system called RoCK.

CAD Model

(Solidworks)

Robot descriptions files

(URDF, Lua, 

OpenRave XML etc.)

Maplesoft, MATLAB, 

SINGULAR etc.

Algebraic Geometry and Screw Theory based 

Mechanism Analysis and Synthesis

Custom 

Symbolic CodeFeedback for 

mechanism synthesis

Parallel Submechanisms

(Motion subgroups)

One-time offline step for each new PKM

Figure 8.1: HyRoDyn Developer Workflow
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8.1 Motivation

Building a robot is a highly complex process which requires cross-domain expertise.

Robots are becoming so complex that it is kind of impossible for a single person to

manage the process of robot development. We restrict the scope of robot development

to its conceptualization, construction, kinematic, dynamic modeling and position-

velocity-torque control. These are the absolute minimum steps that are needed in

the development process of most robots before more complex behaviors are realized

with the system. To aid the further explanation, three roles are identified:

• Designer: Designer is the person responsible from initial design conceptualiza-

tion to implementing the mechatronic aspects in the final prototype. A designer

is an expert in CAD software and may also know some CAE tools (e.g. ADAMS

MSC, RecurDyn) for immediate analysis and simulation of their design.

• Kinematician: Kinematician or geometer is a domain expert in the field of

geometric and kinematic analysis of mechanisms. Such a person is expected to

have strong foundations in mathematics in particular in the area of geometry

and mechanics.

• Control Engineer: Control Engineer is the person responsible for implement-

ing low, mid or high level controllers inside a robot. They are considered to be

expert in control theory and have a good understanding of applied mechanics.

The main motivation behind the HyRoDyn software architecture is to provide

a holistic treatment for kinematic and dynamic modeling of series-parallel hybrid

robotic systems while involving the three above defined roles into the process. In

Chapter 2, a systematic survey on the state of the art in series-parallel hybrid robots

is presented. Designers find it increasingly useful to utilize parallel kinematics based

submechanism modules in their design to achieve a good payload to weight ratio,

stiffness properties and dynamic properties. While they can perform a basic simula-

tion of their design in CAD or CAE software, they often turn to domain level experts

to optimise their design further. The presence of closed loops in robots significantly

increases the complexity of the kinematics and dynamics problems associated with

multi-body systems (MBS) (see Section 2.3 for detailed perspectives). Hence, most

multi-body dynamics libraries or software packages support only serial or tree type

mechanisms and provide analytical formulations for solving forward kinematics, for-

ward and inverse dynamics. Inverse kinematics is usually solved through numerical

techniques. Further, it has been noted that a limited number of tools that do pro-

vide the possibility of modeling closed loop systems deal with loop closure constraints

numerically. This allows for a general treatment of mechanisms but only leads to a
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limited local kinematics and dynamics analysis of these systems without deeper in-

sights that are typically required in the design and analysis of complex mechanisms.

Further, the numerical approaches may suffer from inaccuracies and computational

inefficiency. Hence, a big portion of research done by the kinematics community is to

provide comprehensive geometric/kinematic analysis of mechanisms of specific class

or type (for e.g. see Chapter 4 and Chapter 5). This kind of analysis is usually a

one time effort and very useful in the design optimisation for e.g. removing singu-

larities from the feasible workspace, optimising force and velocity transmission of

the parallel joint modules in different applications (e.g. wrist, ankle or torso design).

Typically, this kind of feedback is given by the geometer/kinematician to the mechan-

ical designer to optimise their design. This information is also useful for the control

engineers for modeling the kinematics and dynamics to realize a position, velocity or

torque control in the robot. However, there is no effort yet to make this kinematic

analysis reusable in the context of design and modeling closed loop systems and the

mechanisms that can be derived from their compositions. There is, however, a very

practical need to do so because of the growing popularity of series-parallel hybrid de-

signs in robotics. It is becoming increasingly desirable to analyse and control these

robots accurately and efficiently. In Chapter 7, analytical and modular methods for

solving the kinematics and dynamics of series-parallel hybrid robots are presented

based on the concept of loop closure functions. The main idea behind HyRoDyn is

to store these LCFs in configurable submechanism libraries to form a PKM software

database. This leads to an analytical and modular software workbench which opti-

mises the above workflow and make the process efficient and reusable. It fits into the

overall picture of x-RoCK project series [D-RoCK, 2018] which attempts to streamline

and simplify the robot development process. In the following, HyRoDyn developer

and user workflows are discussed.

CAD Model

(Solidworks)

Robot descriptions files

(URDF, Lua, 

OpenRave XML etc.)

DRoCK Orogen

Component(s)
Robot Hardware

Robot VisualizationForward 

models

Inverse 

models

DRoCK Orogen

Component(s)

Simulation
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Figure 8.2: HyRoDyn User Workflow

8.1.1 Developer Workflow

An overview of HyRoDyn developer workflow is demonstrated in Fig. 8.1. The de-

signer usually starts with a high level design specification which is often overly sim-
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plistic in nature. An example can be to design a 32 DOF humanoid robot with height

1.60-1.80 m and weight 60-70 kg which can carry 5 kg payload in each arm. The de-

signer performs a simulation study to deduce further design criteria which includes

required range of motion in each joint, torque requirements. They may start with

a walking simulation of a simple stick figure humanoid (where links are simplified

as point masses) to get an estimate of torque requirements in the system for the de-

sired height and weight ranges. Once a rough estimate of range of motion, torque

requirements is at hand, the designer starts with the mechanism as well as actuator

design. The designer often takes inspiration from nature and tries to abstract the

biological system with well studied kinematic joint types (see Fig. 7.5). For exam-

ple, a humanoid leg might be constructed as a serial mechanism of type spherical-

revolute-universal (SRU) or spherical-revolute-spherical (SRS). The kinematic joints

in this design may further be realized using already existing closed loop mechanisms

or PKM modules in order to optimise mass-inertia properties of links, dynamic per-

formance, stiffness properties etc. In the process of doing so, they may invent a new

parallel mechanism, the preliminary analysis of which can be conducted in typical

CAD software. However, in order to further optimise the design, a complete kine-

matic analysis is desirable.

At this step, the designer communicates with the kinematician to perform a de-

tailed analysis. Based on the topological description of this new mechanism, the

kinematician formulates the constraint equations of the mechanism and analyses

the geometric conditions under which these equations are valid 1. The kinematician

should try to keep these constraint equations as generic as possible by maintaining

a balanced trade-off between the principle solvability of the equations and computa-

tional efficiency in solving them. They may use modern computer algebra tools (for

e.g. MATLAB, Maple, Mathematica, SINGULAR etc) for analysing and solving these

constraint equations. Various key insights like maximum number of solutions to for-

ward/inverse kinematics, singularity curves of the mechanism, velocity/force trans-

mission can be derived. This feedback can be provided to the designer for improving

the mechanism design. The symbolic solution of these constraint equations can be

exported in the form of efficient C-code and transferred into loop closure function of

the submechanism library in HyRoDyn’s PKM software database. More details about

writing a submechanism library will be provided later in this chapter. The PKM soft-

ware database in HyRoDyn will grow as developers around the world can contribute

to it and benefit from the existing submechanism libraries.

The control engineer working with the designer and kinematician would export

1While the topological description carries indicative information about the mobility of the mecha-
nism, the real mobility of the mechanism depends on the configuration and choice of geometric param-
eters (For further perspectives, read Chapter 3).
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the CAD model of the submechanism into robot description formats (for e.g. URDF)

using tools like CAD2SIM or Solidworks2URDF exporter. This hardware model can

be unit-tested with the HyRoDyn library. At this stage, they can already realize a

physical prototype of the mechanism and test the model for control purposes. Due to

the modular approach here, it becomes easier to debug the software and improve the

mechanism’s model. On successful testing, the model can be stored in the x-RoCK

hardware database.

8.1.2 User Workflow

Once, the submechanism design has been optimised, the designer repeats the same

process for designing other submechanism modules and composes the overall model

from it. For e.g. a humanoid leg of type SRU can be realized with a composition of

RR module, 1-RRPR for hip flexion-extension, 1-RRPR for knee joint and 2-SPRR+1U

module for the ankle joint (see Fig. 7.7). Preliminary simulation of the overall CAD

model can be performed by the designer and the design can be optimised.

The kinematician at this stage checks if its feasible to a derive closed form solution

for the abstracted serial SRU chain. If yes, such a model can be provided to the control

engineer.

The control engineer exports the robot description of all the submechanism mod-

els (including source and sink transforms described in Section 7.3) and test it using

HyRoDyn. Then, a Blender based visual editor called Phobos is used to compose the

complete robot model and its description is exported. This provides a user-friendly

way to compose highly complex models. Once, the overall model has been tested, it

is added to the xRoCK hardware database. These models can be used to implement

position, velocity or torque control in the robot and can be used in conjugation with

more complex control architectures like whole body control. The forward algorithms

in HyRoDyn can be used for simulation purposes and the inverse algorithms can be

used for analysis and control. The overall user workflow is depicted in Fig. 8.2.

8.2 SMURF: Robot Description for HyRoDyn

There are a number of (open source) model formats commonly used in robotics re-

search (we will not discuss proprietary formats used in industry here). Among them

are the widespread Unified Robot Description Format (URDF2) used in ROS and the

Simulation Description Format (SDF) developed for the simulation software Gazebo3.

Other formats used in some applications are more general ones such as the 3D asset

2http://wiki.ros.org/urdf/XML
3http://sdformat.org/
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{
{
{
{

Figure 8.3: Example of YAML based submechanism description

exchange format Collada4 and more specialized ones such as the custom XML format

used by the motion planning library OpenRAVE5. All of these models were designed

with specific purposes in mind and thus have some drawbacks or limitations. For

instance, the rather generic, complicated syntax of Collada makes is less readable for

humans, a problem since more often than not the task of deriving a robot description

from CAD data still involves manual editing in text editors and is thus notoriously

error-prone to begin with. On the other hand, URDF, which was specifically designed

for robotics, misses such key features as proper definition of closed loops and mod-

ularity, problems that often lead to complicated work-arounds when working with

URDF descriptions of contemporary, complex robots. Other formats, such as SDF, al-

low the definition of parallel linkages, but do not further provide the functionality to

explicitly define a spanning tree of a looped graph, allowing a standardized tree rep-

resentation of a model. This is however a desirable feature, for instance to maintain

determinacy in planning and handling of joint state uncertainties.

To overcome the limitations of URDF, which mainly deals with geometric

and physical parameters of a robot, but is arguably the most widely-used for-

mat in the scientific robotics community, the Supplementable Mostly Univer-

sal Robot description Format (SMURF) format has been developed at DFKI-RIC,

augmenting URDF by annotating data with reference to its links and joints

[von Szadkowski and Langosz, 2015]. To accomodate the definition of the kind of

modular mechanisms described in this thesis, SMURF was updated to allow the speci-
4https://www.khronos.org/collada/
5http://openrave.programmingvision.com/wiki/index.php/Format:XML
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fication of sub-mechanisms mapped on the spanning tree defined in a URDF file, thus

preserving the possibility to define an explicit spanning tree on a looped graph, while

still adding the information relevant for identifying the nature of loop closure con-

straints in the mechanical system. The submechanisms definition is exported in the

form of a YAML Ain’t Markup Language (YAML) file as:

...

- name: <SUBMECHANISM_NAME>

type: <TYPE>

file_path: <PATH_TO_SUBMECHANISM_URDF>

jointnames_independent: [<J1>,..,<JM>]

jointnames_spanningtree: [<J1>,..,<JN>]

jointnames_active: [<J1>,..,<JP>]

...

This YAML file basically contains the list of submechanisms that constitute the overall

spanning tree of the robot (see Section 7.2.1 for the formal description). The parallel

mechanisms are identified by a type (e.g. 1-RRPR, 2-SPRR+1U, 2SPU+1U, 6-UPS

etc.) and vectors of names of independent joints, active joints and spanning tree

joints are defined. The spanning tree joint names are listed respecting the modular

graph enumeration scheme described in Section 7.3. Further, it is required to provide

a file path to the submechanim’s URDF here for the parallel submechanism modules.

Overall, to define a series-parallel hybrid robot completely, one needs to have the

full URDF file of the robot itself, along with a YAML based submechanism description

file which contains information about the modular composition (see Fig. 8.3 for an

example).

8.3 Phobos: Visual Editor for HyRoDyn

Phobos [von Szadkowski and Langosz, 2015] is an open source visual editor for robots

based on Blender developed by DFKI-RIC and is capable of exporting both URDF and

the accompanying SMURFmodels. It is based on what-you-see-is-what-you-get (WYSI-

WYG) philosophy. Phobos was extended for the purpose of the methods presented

here, allowing the export of sub-mechanism definitions as described above as part of

the SMURF representation of a robot. The sub-mechanisms recognized by HyRoDyn

can be defined in a generic fashion in YAML files, which are parsed by Phobos and

fed into an interactive operator that allows the assignment of the different joints de-

fined for a mechanism to joints in the visual model, visualizing the components of the

mechanism in the process. The relevant information for the mechanism definition is
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(a) Knee module (b) Hip3 module (c) Hip12 module (d) All modules

Figure 8.4: Top-Down modeling using Phobos (Credits: Kai Alexander von Szad-
kowski)

stored in the objects representing the mechanical joints and exported to SMURF to-

gether with the rest of the robot data, i.e. the kinematic model as a URDF, motor and

sensor information, etc. This data can then be processed by HyRoDyn.

Due to the handling of objects in Blender in a similar spanning tree as URDF, the

use of Phobos enables both a top-down or bottom-up approach to design and describe

such modular series-parallel hybrid robotic systems. Since both approaches contain a

number of hurdles for human designers, the use of a visual editor makes this process

more reliable and simple.

8.3.1 Top-Down Modeling

In the top-down approach, an already existing URDF representation of a robot can

be annotated with sub-mechanism definitions and the submechansim URDFs can be

exported. Fig. 8.4 shows an example of top-down modeling using Phobos. A URDF

of the RH5 humanoid upper leg is imported into Phobos and three submechanisms

namely Knee, Hip3 and Hip12 are annotated on the model. A SMURF export at this

stage provides the YAML based submechanism description and individual URDFs for

each annotated submechanism. For the example shown in Fig. 8.4, the submech-

anism description will include the first three blocks of the description provided in

Fig. 8.3. The blue cone at the end of the kinematic chain in Fig. 8.4 demonstrates the

sink link.

8.3.2 Bottom-Up Modeling

In the bottom-up approach, URDF representations of pre-defined sub-mechanisms are

assembled into one complex model. This is a powerful way of modeling complex sys-
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tems as symmetry in the mechanical design can be exploited to replicate complex

substructures without having to remodel them. This is demonstrated with the help

of an example composition in Fig. 8.5. Fig. 8.5a shows the already annotated ankle

submechanism of the humanoid leg. It is imported in the Phobos environment al-

ready containing the upper leg assembly (see Fig. 8.5b for an exploded view). Using

the source and sink links on these submechanisms, they are connected to form the

single leg assembly of RH5 humanoid as shown in Fig. 8.5c. Since, the two legs in

the RH5 humanoid are symmetric in design, the leg assembly in replicated twice in

Phobos. Then, the batch rename feature is used to rename left leg attributes to right

leg attributes. After this step, the second leg joint in the right leg is adjusted to re-

gain the symmetry which prepares lower body model of RH5 humanoid as shown in

Fig. 8.5d.

(a) Ankle (b) Ankle & upperleg (c) RH5 single leg (d) RH5 both legs

Figure 8.5: Bottom-Up modeling using Phobos (Credits: Kai Alexander von Szad-
kowski)

8.4 HyRoDyn Software Library

Hybrid Robot Dynamics (HyRoDyn) is a software library that implements the

modular and analytical formulations for series-parallel hybrid robotic systems

presented in Chapter 7. It is implemented in C++ and utilizes the im-

plementation of multi-body dynamics algorithms for tree type systems (based

on Featherstone [Featherstone, 2008]) from the Rigid Body Dynamics Library

(RBDL) [Felis, 2017]. Additionally, it depends upon the linear algebra package Eigen

3 [Guennebaud et al., 2010] and yaml-cpp6 for parsing the modular submechanism

definitions provided in SMURF model. The functions implemented in HyRoDyn have a

6https://github.com/jbeder/yaml-cpp
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model-based interface which separates the models from the algorithms. The library

is completely independent of any middleware software used in robotics community.

8.4.1 Submechanism Libraries

The most crucial aspect of HyRoDyn is its submechanism libraries which contains

the symbolic expressions for the loop closure function of a particular type of the sub-

mechanism. Each submechanism library is a C++ class that inherits from an ab-

stract class called AnalyticalLoopConstraintSet. It is a way of enforcing a contract

between the class designer (i.e. HyRoDyn main developer) and the users of that

class (i.e. Kinematician). The abstract class defines the matching member variables

and functions that the derived submechanism class must have. Fig. 8.6 shows the

the relationship between the abstract class AnalyticalLoopConstraintSet and child

submechanism classes with the help of a class diagram. Hence, an object of the ab-

stract class AnalyticalLoopConstraintSet is basically an abstract mechanism which

defaults to a serial mechanism because the loop closure function for a serial chain

defaults to identity function. A submechanism class is specific to a mechanism type

which must have a member variables as geometric parameters of the mechanism,

member functions as loop closure functions and a constructor which loads the robot

model and extracts the geometric parameters of the robot. The class structure is com-

pletely agnostic to any specific method for solving the loop closure constraints inside

the class. While the general guideline is to derive analytical expressions for LCFs,

one may also use numerical methods inside them.

Example 4 The C++ code snippet presented in Listing 8.1 shows the ease of use of

HyRoDyn library. First, an object rh5 of the RobotModel_HyRoDyn class is created

(Line 7). By defining the file paths to the URDF and submechanism description of

the RH5 humanoid leg (Lines 9 and 10), a robot model is loaded (Line 12). The Hip3

and Knee joint angles are set to 0.1 radians and 0.2 radians respectively (Lines 14 and

15) which constitutes a configuration in independent joint space y of the robot. One

could set the independent joint velocities and accelerations by setting the variables

yd and ydd (they default to zero). Three different member functions of this class are

demonstrated in this example.

• The complete system state of the robot can be computed by calling the member

function calculate_system_state(). The output of this function is stored in the

member variables Q, QDot, QDDot (see Line 18-19 for the position output of the

spanning tree).

• The inverse dynamics of the robot can be computed by calling the member func-

tion calculate_inverse_dynamics(). The output of this function is stored in the
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AnalyticalLoopConstraintSet

+ active_dof: unsigned int

+ independent_dof: unsigned int

+ spanningtree_dof: unsigned int

+ selection_matrix: MatrixXd 

+ AnalyticalLoopConstraintSet()

+ calc_loopclosure_function(y: VectorXd): VectorXd

+ calc_loopclosure_Jacobian(y: VectorXd): MatrixXd

+ calc_loopclosure_Jacobiand(y: VectorXd, yd: VectorXd)

+ get_active_dof(): unsigned int

+ get_independent_dof(): unsigned int

+ get_spanningtree_dof(): unsigned int

+ get_selection_matrix(): MatrixXd 

Class Name

Member

Variables

Member

Functions

+ 2SPRR+1U(file_path: string)

+ calc_loopclosure_function

(y: VectorXd): VectorXd

+ calc_loopclosure_Jacobian

(y: VectorXd): MatrixXd

+ calc_loopclosure_Jacobiand

(y: VectorXd, yd: VectorXd)

- s1, s2: Vector3d

- f1, f2: Vector3d

- r: double

- n1, n2: Vector3d 

2SPRR+1U

+ 1RRPR(file_path: string)

+ calc_loopclosure_function

(y: VectorXd): VectorXd

+ calc_loopclosure_Jacobian

(y: VectorXd): MatrixXd

+ calc_loopclosure_Jacobiand

(y: VectorXd, yd: VectorXd)

1RRPR

- l1: double

- l2: double

- d: double

+ MECH_TYPE(file_path: string)

+ calc_loopclosure_function

(y: VectorXd): VectorXd

+ calc_loopclosure_Jacobian

(y: VectorXd): MatrixXd

+ calc_loopclosure_Jacobiand

(y: VectorXd, yd: VectorXd)

<MECH_TYPE>

- geometric_parameter_1

...

- geometric_parameter_n

Figure 8.6: Class diagram demonstrating the relationship between the abstract class
AnalyticalLoopConstraintSet and submechanism classes

member variable Tau_actuated (see Line 21-22 for the output actuator torques).

• The forward dynamics of the robot can be computed by calling the member func-

tion calculate_forward_dynamics(). The output of this function is stored in the

member variable Tau_actuated (see Line 25-26 for the output independent joint

accelerations).

The output of this simple program can be found in Listing 8.2. Notice in Line 2 that the

position state of the spanning tree is zero at all indices except for indices belonging to

the Hip3 and Knee submechanism modules. The velocity and acceleration state of the

spanning tree are zero vectors because there was no input velocities and accelerations

to the model and hence not shown here. The inverse dynamics output is shown in

Line 4 which corresponds to the gravity torques in this configuration since the velocity

and acceleration are set to zero. The forward dynamics output shown in Line 6 also

corresponds to an almost zero vector since the output of inverse dynamics is the input

to forward dynamics function.

Listing 8.1: C++ code for solving system state, inverse and forward dynamics using

HyRoDyn

1 #include <iostream >
2 #include <hyrodyn / robot_model_hyrodyn . hpp>
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3
4 int main ( int argc , char∗∗ argv )
5 {
6 / / Create an ob jec t o f RobotModel_HyRoDyn class
7 hyrodyn : : RobotModel_HyRoDyn rh5 ;
8 / / Define robot descr ipt ion f i l e paths
9 str ing f i lepath_urdf = " leg . urdf " ;

10 str ing filepath_submechanisms = " submechanisms_leg . yml" ;
11 / / Load robot model
12 rh5 . load_robotmodel ( f i lepath_urdf , filepath_submechanisms ) ;
13 / / Set independent j o i n t angles
14 rh5 . y ( 2 ) = 0 . 1 ; / / Hip3 j o i n t
15 rh5 . y ( 3 ) = 0 . 2 ; / / Knee j o i n t
16 / / Compute the system state of the robot
17 rh5 . calculate_system_state ( ) ;
18 cout << "System State Output : " << rh5 .Q. transpose ( ) << endl ;
19 / / Compute inverse dynamics of the robot
20 rh5 . calculate_inverse_dynamics ( ) ;
21 cout << " Inverse Dynamics Output : " << endl <<
22 rh5 . Tau_actuated . transpose ( ) << endl ;
23 / / Compute forward dynamics of the robot
24 rh5 . calculate_forward_dynamics ( ) ;
25 cout <<"Forward Dynamics Output : " << endl <<
26 rh5 . ydd . transpose ( ) << endl ;
27 return 0;
28 }

Listing 8.2: Output of C++ code in Listing 8.1

1 System State Output:
2 0 0 0.1 0.120279 −0.00973191 0.2 −0.0393719 0.0129114 0

0 0 0 0 0 0 0 0 0
3 Inverse Dynamics Output:
4 −1.2033 −0.0178554 −49.4034 36.2226 −1.48666 −1.48665
5 Forward Dynamics output:
6 −9.3213e−17 2.2155e−16 6.3693e−16 −7.4643e−16 −5.0238e−16 1.7903e−14

8.4.2 Computational Performance

The computational performance of HyRoDyn is evaluated by testing it with different

robot models (e.g. UR5, Recupera Wheelchair system, RH5 humanoid) of varying

complexity for different algorithms (SYSSTATE, IDYN, FDYN) presented in this the-

sis. Active, independent and spanning tree DOF for these systems as well as number
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Table 8.1: Robotic systems tested with HyRoDyn

Robotic
system

Spanning tree
DOF (n)

Independent
DOF (m)

Active
DOF (p)

Independent
loops (c)

UR5 6 6 6 0

Recupera 18 5 5 2

RH5 leg 18 6 6 4

RH5 both
legs

36 12 12 8

RH5 full 71 29 29 14

of independent closed loops present in them are specified in Table 8.1. The compu-

tational performance is measured in terms of CPU time for 100, 000 calls of these

methods for randomized input in independent joint space respecting the joint limits.

Fig. 8.7 shows the average CPU time needed for using these methods for the different

robotic systems. These tests are performed on a standard laptop with Intel Core i7

CPU @ 2.8 GHz.
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Figure 8.7: Computational performance of HyRoDyn for solving the system state,
inverse dynamics and forward dynamics for different robotic systems described in
Table 8.1

8.5 Integration in Middleware

A middleware is a software framework which enables distributed processes to ex-

change data on heterogeneous platforms. This software bus uses an object map to of-

fer a simple and coherent interface to access objects and to guarantee data transmis-

sion. Probably, the most frequently classical used robot middlewares are the Robot
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Operating System (ROS), Yet Another Robot Platform (YARP), Robot Construction

Kit (RoCK), OpenRTM etc.

HyRoDyn is implemented as an Orogen component in the Robot Construction Kit

(RoCK)[Joyeux, 2010] which is based on the component model of the Orocos Real

Time Toolkit (RTT) and the object request broker (ORB) implementation, omniORB.

Components encapsulate different functionalities or tasks, run independently and

provide input and output for other components. The configuration can be applied to

each component individually. HyRoDyn-orogen component implements both inverse

and forward tasks. The inverse task as shown in Fig. 8.8a takes as input the motion

trajectories defined in the independent joint space (y, ẏ, ÿ) and computes the actua-

tor trajectories (u, u̇, ü, τ u). This is crucial for abstraction of the robot in independent

joint space so that higher level of control can be done by treating the robot as a tree

type system. The forward task as shown in Fig. 8.8b takes as input the actuator

status (u, u̇, ü) and computes the independent joint status (y, ẏ, ÿ) of the robot. Both

tasks compute the full system state of the spanning tree (q, q̇, q̈) and make it avail-

able on an output port which can be used for robot visualization. The input-output

interface of HyRoDyn-orogen component is shown in Fig. 8.8. The component can be

configured by a SMURF file (URDF and YAML based submechanism file) and provides

a bi-directional mapping between the independent joint space and actuator space of

the robot. These tasks can be used for both real time simulation and control of series-

parallel hybrid robots. The component based architecture of RoCK framework makes

it easy to reuse the same component in different robotics applications.

independent_joint_state
base/samples/Joints

hyrodyn::InverseTask

joint_command

actuator_command
base/commands/Joints

base/commands/Joints

ee_pose
base/samples/RigidBodyState

(a) Inverse Task

independent_joint_status

actuator_status

base/commands/Joints

base/samples/Joints

hyrodyn::ForwardTask

joint_status
base/commands/Joints

(b) Forward Task

Figure 8.8: HyRoDyn orogen component in RoCK

8.5.1 Interfacing with Other Components

An advantage of component based software architecture is that it allows interfacing

with other components to exchange data so that complex applications can be designed

in a modular way. HyRoDyn orogen component can be interfaced with other compo-

nents by following the guidelines below.

• To keep the configuration requirement of the component minimal, the output of

the component is decided based on its input.
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– If only position is provided, HyRoDyn only computes the position and static

forces/torques (gravity terms).

– If position and velocity are provided as inputs, HyRoDyn computes output

position+velocity with required forces/torques (coriolis-centrifugal + grav-

ity terms).

– If position, velocity and acceleration are provided as inputs, HyRoDyn com-

putes output position, velocity, acceleration with required forces/torques

(mass-inertial + coriolis-centrifugal + gravity terms).

– If effort is provided on the input port, it will be assumed that inverse dy-

namics on the abstracted mechanism is being solved outside the component

and hence, the component will simply transform these torques into the ac-

tuation space. This feature can be used if model order reduction is desired

for inverse dynamics computations.

• HyRoDyn component takes a very strict approach towards plant modeling in

mechanics domain. The input and output ports should strictly correspond to

the joints available in the spanning tree. It does not bypass any joint status/-

commands if they are not available in the urdf file and submechanism file.

• Floating base robots such as humanoids are modeled using a six DOF free flyer

joint which should be defined explicitly in both YAML based submechanism de-

scription file and the robot’s URDF. A combination of six one DOF joints are

added to the urdf in the following sequence: X, Y, Z, RX, RY, RZ. This becomes

the part of both independent joint space input and joint space command output.

The actuator space remains the same. HyRoDyn expects the floating base coor-

dinates (from other components or Inertial Measurement Unit) as the input as

it does not solve the inverse dynamics problem in a true hybrid sense.

• The input and output ports operate on SI units i.e. for rotary joints: position

is measured in rad, velocity in rad/s, torque in N m etc. and for linear joints:

position is measured in m, velocity in m/s, force in N etc. Torque (N m) to

current (A) conversion or position (rad/m) to motor ticks conversion must be

done outside this component.

8.5.2 Examples

HyRoDyn component can be used in various application designs. In the following

two examples, we discuss its application in gravity component control and task space

control of a robot.
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Example 5 HyRoDyn orogen component can be used to put a robot in gravity compen-

sation mode. Fig. 8.9 shows the application of HyRoDyn orogen component in the grav-

ity compensation control of the Recupera Exoskeleton system using the RoCK frame-

work. HyRoDyn component takes as input the independent joint state from NDLCOM

joint driver, solves the inverse dynamics and generates the actuator space commands

which is fed to the NDLCOM driver. These are then sent to the low level actuation

space controllers configured in current control mode implemented on FPGA stacks in

each joint.

independent_joint_state actuator_command

InverseTask

joint_command

base/commands/Joints

actuator_command

ndlcom_joint::Task

actuator_status

independent_joint_status

base/samples/Joints

base/samples/Joints

Rock Component Input Port Output Port

rock-roboviz

joint_status
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First level control
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Figure 8.9: Application of HyRoDyn orogen component in the gravity compensation
control of the Recupera Exoskeleton

Example 6 HyRoDyn orogen component can be used to in whole body control ap-

plications where the chosen solver only has to work for a tree type system. Fig. 8.10

shows its application in whole body control (WBC) of the RH5 humanoid using the

RoCK framework. WBC component takes as input a list of task space trajectories and

outputs the independent joint space velocities for the robot by exploiting the redun-

dancy of the Jacobian. It is then fed to an interpolator componnet which generates the

position, velocity and acceleration command for the robot. HyRoDyn component solves

the joint-space inverse dynamics and generates the actuator space commands which

is then fed to the NDLCOM device drivers and further sent to the low level actuation

space controllers implemented on FPGA stacks in each joint.
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Figure 8.10: Application of HyRoDyn orogen component in the whole body control of
RH5 humanoid

8.6 Conclusion

This chapter presents the architecture of HyRoDyn software framework for the simu-

lation and control of the series-parallel hybrid robots. Different aspects of this frame-

work such as robot description format, visual editing of the robot models, HyRoDyn

software library and its integration in RoCK middleware are discussed. In the next

chapter, various results from the applications of this software framework in the sim-

ulation, control and analysis of the two hybrid systems namely Recupera-Reha ex-

oskeleton and RH5 humanoid will be presented.
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Chapter 9

Results and Applications

This chapter presents the results from simulation, analysis and real time control of

the series-parallel hybrid robots, in particular, Recupera-Reha exoskeleton and RH5

humanoid, using HyRoDyn. As an outlook, the application of this tool in model order

reduction of the dynamic model is presented. Finally, the application of this tool in

the area of robotic rehabilitation is presented. The content presented here is based

on [Kumar and Mueller, 2019, Kumar et al., 2019a] and [Kumar et al., 2019b]. The

chapter is organized as the following: Section 9.1 presents the simulation results

on the two systems. Section 9.2 presents the results from real time control of these

systems exploiting the inverse dynamic model. Section 9.3 presents the applications

of this tool in robot analysis and as an outlook Section 9.4 presents some insights

into model order reduction. Finally, Section 9.5 presents the application of this tool

in robotic rehabilitation.

9.1 Simulation

HyRoDyn can be used for both kinematic and dynamic simulation of series-parallel

hybrid robots. In the following, two different simulation examples of the Recupera-

Reha exoskeleton and RH5 humanoid are presented.

9.1.1 Recupera-Reha Exoskeleton

Let us consider a subsystem from Recupera-Reha exoskeleton which includes the

upper body (which includes two arms) and torso submechanism (6-UPS Stewart plat-

form) for the purpose of a purely kinematic simulation. This system has a total of

4 (left arm) + 4 (right arm) + 6 (torso) = 14 DOF, 1 (double parallelogram in left

shoulder) + 1 (double parallelogram in right shoulder) + 5 (6-UPS Stewart platform)

= 7 independent closed loops, and 8 (left arm) + 8 (right arm) + 24 (6-UPS Stewart
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platform) = 40 DOF in the spanning tree. Fig. 9.1 shows the kinematics simulation

environment in RoCK. On the left side of the figure, a GUI to send joint commands in

the independent joint space is shown and on the right side the robot can be visualized

in its zero configuration.

Figure 9.1: Kinematics simulation environment for Recupera Exoskeleton in RoCK

(a) Left arm forward (b) Right arm forward (c) Turn Left (d) Turn Right

(e) Bend forward (f) Bend backward (g) Bend Left (h) Bend Right

Figure 9.2: Different poses in kinematic simulation of Recupera exoskeleton

Fig. 9.2 shows the different poses during the kinematic simulation using HyRo-

Dyn. Fig. 9.2a and Fig. 9.2b show the left and right arms pointing forward respec-

tively which is achieved by performing shoulder flexion and elbow extension move-

ments. Fig. 9.2c and Fig. 9.2d show the turn left and right movements respectively

which is achieved by setting the yaw angle (about z-axis) of the Stewart mechanism

in independent joint space. Fig. 9.2e and Fig. 9.2f show the bend forward and back-
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Figure 9.3: Animation of up-down movement with RH5 leg
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(c) Independent joint velocity
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(d) Independent joint acceleration

Figure 9.4: Task space and independent joint space trajectories of RH5 leg for up-
down movement

ward movements respectively which is achieved by setting the roll angle in the torso

mechanism. Similarly, Fig. 9.2g and Fig. 9.2h show the bend left and backward right

movements respectively which is achieved by setting the pitch angle in the torso

mechanism. During the kinematic simulation, the full position state of the spanning

tree is computed analytically and hence an accurate visualization of the complex

robotic system can be achieved.
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9.1.2 RH5 Humanoid Leg

In Fig. 8.10, the application of HyRoDyn in whole body control of a humanoid robot

is shown. Here, we present the task space control of RH5 humanoid leg previously

introduced in Fig. 7.7. We assume a perfect model and hence, no controller action is

required. Two set points i.e. foot up position and foot down position, are chosen in

the task space of the robot. Using whole body control, the independent joint positions

needed to reach these points are computed for the abstracted serial robot. Then,

these waypoints in independent joint space are fed to an interpolator which provides

smooth trajectories (y, ẏ, ÿ) for up and down movement of the leg. Fig. 9.4 shows

the task space and independent joint space trajectories for the RH5 leg to produce

this movement. These trajectories are then used to compute the actutaor trajectories

(u, u̇, ü, τ u) using inverse kinematics and inverse dynamics algorithms as presented

earlier. Fig. 9.5 shows the actuator position, velocity, acceleration and torque profile

of the robot. Further, the full spanning tree state (q, q̇, q̈) is computed during this

process which can be used for robot visualization (see Fig. 9.3).
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Figure 9.5: Actuator state of RH5 leg for up-down movement
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Figure 9.6: Feed-forward control of RH5 humanoid using HyRoDyn

9.2 Real Time Control

HyRoDyn can be used for both kinematic and dynamic control of series-parallel hy-

brid robots. Two different examples of real-time control are presented here which

takes into account the inverse dynamic model of the concerned robotic systems.

9.2.1 Feed-Forward Control of RH5 Humanoid

Feed-forward control scheme consists of feed-forward of the nonlinear dynamic model

of robot and a linear servo feedback. It is the simplest form of the non-linear con-

troller which can be employed for motion control of a robot exploiting its dynamic

model. The control law can be formulated by the following equation:

τ = τ u + Kp(uref − u) + Kd(u̇ref − u̇) (9.1)
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(a) Pose 1 (b) Pose 2 (c) Pose 3 (d) Pose 4

Figure 9.7: Gravity compensation for four different poses

Table 9.1: Commanded torque, measured torque and MAE for 4 different poses shown
in Fig. 9.7

Pose Commanded Torque (Nm) Measured Torque (Nm) ‖MAE‖
1 (−3.72, 0.85,−5.02,−2.99)T (−3.78, 0.86,−4.84,−2.99)T 0.2631

2 (−4.70, 1.42,−9.62,−3.24)T (−4.59, 1.42,−9.51,−3.24)T 0.1536

3 (−1.59,−1.91,−5.37,−0.41)T (−1.56,−1.90,−5.48,−0.42)T 0.1162

4 (5.40,−3.86,−8.24,−2.09)T (5.27,−3.85,−8.31,−2.09)T 0.1435

where τ u is the vector of actuator forces computed by inverse dynamic model i.e.

Equation 7.14, Kp = diag(K1
p ,K

2
p , . . . ,K

p
p ) and Kd = diag(K1

d ,K
2
d , . . . ,K

p
d) are the

diagonal matrices for proportional and derivative gains respectively. Fig. 8.10 shows

the application of HyRoDyn in feed-forward motion control of the RH5 humanoid leg

presented in Fig. 7.7. The input motion is specified in the independent joint space us-

ing an position interpolator between two desired set points. For the sake of simplicity,

only one joint i.e. LLHip3 is moved from a position of −0.91 rad to −0.22 rad. The

interpolator produces a smooth reference trajectory (yref
3 , ẏ

ref
3 , ÿ

ref
3 ) between these

two set points back and forth. Inverse kinematics and dynamics problems are solved

using HyRoDyn and the reference commands for the actuators (uref , u̇ref , τ ref
u ) are

generated. These actuator commands are then fed to the feed-forward controller im-

plemented on the FPGA of the BLDC joints in the humanoid platform. This controller

utilizes the commanded actuator forces as a feed-forward term and commanded ac-

tuator position and velocity (along with the measured position and velocity i.e. u &

u̇) for computing the linear servo feedback. Fig. 9.6 shows the trajectory tracking in

both actuation and independent joint space. In particular, Fig. 9.6a shows the motion

tracking in the independent joint space i.e. it compares the reference position values

(yref
3 ) against absolute position encoder measurements in the concerned joint (y3).

Similarly, Fig. 9.6b and Fig. 9.6c show the actuator position and velocity tracking.

Finally, Fig. 9.6d compares the commanded actuator force in LLHip3 and LLKnee

joints against the direct force measurements available from the actuators.
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9.2.2 Gravity Compensation Control of Recupera Exoskeleton

A good gravity compensation model is crucial to ensure transparency of the exoskele-

ton to the human subject. Fig. 8.9 shows the application of HyRoDyn in the gravity

compensation control of the Recupera Exoskeleton system. The dynamic model in

HyRoDyn takes as input the independent joint state (y) of the robotic system and

outputs the actuator torques (τ u) to compensate the gravity effect. The actutaor

forces are then converted into reference current values for the FPGA based current

controller implemented on the BLDC joints in the system. Table 9.1 shows aver-

age commanded torque (predicted with inverse dynamic model), average measured

torque (through motor current), mean absolute error (MAE) in joint space and norm

of MAE for a duration of 10s sampled at 100Hz for four balanced poses (guided by

hand) of the right arm as shown in Fig. 9.7. It can be observed that for all poses,

norm of MAE is between 0.12 Nm & 0.26 Nm which demonstrates the good quality of

the model. Fig. 9.7 shows four different poses during the dual arm gravity compensa-

tion mode with the human subject inside the exoskeleton. Due to the good quality of

the gravity compensation model, the human subject can move its arms freely within

the system. Optionally, human arm weight compensation can also be included in the

model.

9.3 Robot Analysis

HyRoDyn provides various tools for robot analysis as demonstrated in the following.

9.3.1 Workspace, Configuration Space, Actuation Space

HyRoDyn can be used for various offline applications like computation of the robot’s

workspace, configuration space, actuation space etc. Fig. 9.8 shows the workspace of

Recupera Exoskeleton arm computed by homogenously discretizing the independent

joint space and visualized with Blender based software tool Phobos. For example,

Fig. 4.6 shows the slice of configuration space showing the actuation space of the 2-

SPRR+1U parallel mechanism in the ankle joint of the RH5 leg. Such data can also

be used to generate Look Up Tables (LUTs) or data driven approaches for learning

the kinematic model.

9.3.2 Quality of Velocity and Force Transmission

The quality of velocity or force transmission of a robot can be measured by plot-

ting the inverse of condition number of the kinematic Jacobian matrix (J) over the

robot’s workspace. The inverse of condition number of the Jacobian is calculated with
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Figure 9.8: Workspace of Recupera Exoskeleton arm

min

max

(a) RH5 leg (b) Recupera Right Arm

Figure 9.9: Workspace quality measure using HyRoDyn
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c(J) = 1
‖J‖‖J−1‖ where ‖.‖ represents the Euclidean norm of the matrix. Its value is

bounded between 0 and 1 which signify the worst and best conditioning. Fig. 9.9

shows the plot of inverse of condition number of Jacobian over the workspace of RH5

leg and Recupera right arm systems. It is also possible to compute various slices of

configuration space and equip them with such quality measures (for e.g. see Fig. 4.8).

This is very relevant for the analysis of various parallel submechanism modules in a

robot.

9.4 Model Order Reduction

{

{

{

{

Figure 9.10: Serial-Parallel hybrid composition of the RH5 leg and assumed simplifi-
cations

Model order reduction (MOR) techniques aim to reduce the computational com-

plexity of large scale mathematical models in computer simulations. Traditionally,

this technique has been used for problems in fluid mechanics [Lassila et al., 2014]

and structural mechanics [Wu and Tiso, 2016] to reduce the simulation time while

making little compromises on the accuracy. As the complexity of rigid multi-body

systems used in robotics is increasing, the need of MOR becomes indispensable for

simulation and real-time control of modern contemporary robots. While this term is

not classically used in the area of rigid body dynamics, the use of model simplifica-

tion approach is common nevertheless. However, the trade off between the complete

dynamic model and simplified dynamic model has not been reported in the literature.

In that vein, we first briefly discuss the model simplification used in the state of the
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art. Then, we present a model simplification study on RH5 humanoid leg using Hy-

RoDyn using a computational performance metric and relative power error metric for

modeling simplification error.

9.4.1 Model Simplification in SOTA

Series-parallel hybrid robots are highly complex mechatronic systems and generic

treatment of such robots remains an open problem. However, modularity in robot

design allows for certain abstractions which simplifies their modeling and control.

Such abstractions are shown in Fig. 2.6. While Fig. 2.6(a) captures the true complex-

ity of the robot, due to absence of generic methods to model and control such sys-

tems, three different abstractions namely actuation space, independent joint space

and task space, are adopted to simplify the modeling and control (for details, see Sec-

tion 2.3). As pointed out before, the computation of full inverse dynamic model for

hybrid robots can be computationally expensive due to the large size of their span-

ning trees and the large number of loop closure constraints to be resolved. For exam-

ple, RH5 humanoid [Peters et al., 2017] which only contains relatively simple parallel

mechanism modules (with less than 3 DOF) has 32 DOF (m = p = 32), c = 15 inde-

pendent closed loops and n = 76 DOF in its spanning tree. The moving parts inside a

parallel submechanism module may have relatively small contribution to the overall

dynamics of the system which is essentially due to dynamics of major link segments

lying on the trunk of the spanning tree and joint friction etc [Buschmann et al., 2013].

Hence, they may be left unmodeled or their mass-inertia properties can be merged

to the larger link segments which are relevant to the independent joint space of the

robot. Assuming actuators are the ideal torque source in the system, a simplified

inverse dynamic model (see Fig. 2.6(c)) in independent joint space is often combined

with an inverse static model in actuation space (see Fig. 2.6(b)) to compute the actu-

ator forces [Hopkins et al., 2015], [Vonwirth, 2017] using

τ u = G−T
u τ y (9.2)

This approach is used in model based torque controlled series-parallel hybrid

humanoids such as THOR [Hopkins et al., 2015], Valkyrie [Paine et al., 2015],

Lola [Buschmann et al., 2013] etc.

9.4.2 Model Simplification Study on RH5 Leg

The subject of interest within this study is the leg of the RH5 hu-

manoid [Peters et al., 2017], currently being developed at the DFKI-RIC. Fig. 9.10

shows the serial-parallel hybrid mechanism consisting of 4 individual submechanism
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of types RR, 1-RRPR and 2SPRR+1U. The full model of the leg (T ) has m = 6 inde-

pendent degrees of freedom, p = 6 active joints and n = 18 spanning tree joints.

Further, we introduce three different model simplifications from the full description

of the robot:

1. T̂1 is a subgraph of T containing only the independent joints neglecting all other

branches,

2. T̂2 is a subgraph of T containing only the independent joints where bodies sepa-

rated by the cut joints in T are merged to parent and child links of each parallel

submechanism module with the help of fixed joints 1,

3. T̂3 is a subgraph of T which includes the Hip3 submechanism but the rest of the

kinematic chain is kept serial like T̂2. For the simplified models, it is assumed

that actuators are still the ideal sources of forces or power.

Further, the bi-directional kinematic mapping between the independent joint space

and the actuator space is preserved. In the following, we present a task space trajec-

tory input to the models to study the effect of neglected dynamics.

9.4.2.1 Metrics

The following metrics are used in the model simplification study.

1. Computation Time: A first metric is given by the raw computation time of

the inverse dynamics problem, tID ∈ R+. It relates to the computational effort

of the algorithm. All computations have been performed on a standard laptop

with Intel Core i7 CPU @ 2.8 GHz using HyRoDyn software tool.

2. Power Error Metric: The power P ∈ R+ is invariant to coordinate transfor-

mation and can therefore be used to describe the input-output behaviour of a

system.

P = τ T
q q̇ = τ T

u u̇ = τ T
y ẏ (9.3)

The total power can be expressed as a sum of power of each individual submech-

anism i ∈ {1, . . . , s}.

∆P =

∥∥∥∥∥

s∑

i=1

∆τ T
uiu̇i

∥∥∥∥∥
1

(9.4)

The relative power error can then be defined as the ratio ∆P
P

.
1It should be noted that the total mass of T̂1 is less than T and T̂2 and T have equal masses.
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9.4.2.2 Task Space Trajectory

We present a comparison between the full model (T ) and simplified models (T̂i, i ∈
{1, 2, 3}) in task space control of the humanoid leg. Two set points i.e. foot up position

& foot down position, separated by 15 cm in z-direction, are chosen in the task space

of the robot. Using the inverse kinematics, the independent joint positions are com-

puted which can be done either numerically or analytically. Then, these way-points

in independent joint space are fed to an interpolator which provides smooth trajec-

tories (y, ẏ, ÿ) for up and down movement of the leg. Fig. 9.4 shows the task space

and independent joint space trajectories for the RH5 leg. These trajectories are then

used to compute the actuator trajectories (u, u̇, ü, τ u) using inverse kinematics and

inverse dynamics algorithms as presented earlier. Fig. 9.5 shows the position, veloc-

ity, acceleration required in different actuators of the robot to produce this movement

for all the models as they share the same inverse kinematics mapping. The effect of

neglected dynamics due to model simplification can be observed in Fig. 9.11 which

compares the acuator forces between the two models (T & T̂2). It can be noticed that

the highest error is in Hip 3 Act joint.
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Figure 9.11: Actuator forces comparison between the full model T and simplified
model T̂2
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Table 9.2: Comparison of CPU time and relative power error between the full and
simplified models

Model (n) Rel. Power Error (∆P
P

%) tID (µs) Speedup in tID w.r.t. T (%)

T (18) - 32.03 -

T̂1 (6) 53.24 12.08 62.28

T̂2 (6) 12.43 12.08 62.28

T̂3 (8) 3.05 14.32 55.41

9.4.2.3 Discussion

In general, it is observed in the study that T̂1 performs worse than T̂2 due to the

missing masses and the results have been skipped here for brevity. The branches

in Hip 3 and Knee submechanisms have relatively higher masses and inertias than

the branches in the Ankle submechanism and hence are more prone to influencing

the error in overall dynamics of the system. The comparison of average CPU time

for solving inverse dynamics (per call) and relative error in power between the full

and simplified models is shown in Table 9.2 for the workspace trajectory following

study. It can be noticed that model simplifications definitely provide a computational

advantage in solving inverse dynamics for real time control. In the state of the art,

it has been considered as a rule of thumb that a simplified model neglecting all the

closed loops is sufficient for dynamic control. However, this is not true as certain

closed loops may affect the error dynamics more than others and simplified models

respecting those loop closure constraints outperform these models in terms of accu-

racy without compromising much on the CPU time. For example, the simplified model

T̂3 which respects the loop closure constraints in Hip3 submechanism (see Fig. 9.10)

adds only 2 extra DOF to the spanning tree in comparison to T̂2 brings down the rel-

ative power error to ≈ 3 % while taking only ≈ 2µs extra in computation of inverse

dynamics.

To find a reduced order model which decreases the computational effort without

compromising much on the accuracy is an interesting problem. This could also pro-

vide some insights on how to select the appropriate set of cut joints and generalized

coordinates to properly describe the system. If these are known subjected to some

offline analyses, HyRoDyn can also be used for computing the simplified inverse dy-

namic model.

9.5 Application in Robotic Rehabilitation

The inital need of the development of HyRoDyn software tool came from Recupera-

Reha project [Recupera-Reha, 2018] which involved the development of a light weight
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Figure 9.12: RECUPERA exoskeleton configurations (left and right: full-body, middle:
wheelchair) with its ROM and force/torque capabilities. Modules highlighted in green
are used in both systems, mechanisms highlighted in blue exist only in the fullbody
system. Full-body system (weight = 42 kg, height = 1.70−1.90 m) is driven by 28 brush-
less direct current (BLDC) and 4 servo motors. Wheelchair system (weight = 8.6 kg,
29.2 kg including commercial wheelchair) is driven by 8 BLDC and 4 servo motors.

and modular full body exoskeleton for the purpose of robot-assisted rehabilitation of

neurological diseases. To make the design highly modular and lightweight, various

combinations of serial and parallel actuated submechanisms are used to obtain a

series-parallel hybrid design. Fig. 9.12 shows the overview of the developed system.

Its lightweight design and modularity allows to use the system in different configu-

rations, e.g., (1) as a 10 DOF upper body wheelchair-mounted part system or (2) as

a 30 DOF full-body system with legs to support sitting and standing postures. The

wheelchair system is designed to support the hemiparetic stroke patients who are

usually bounded to a wheelchair in their early days after stroke. Once, they start

to recover, they can continue training with the full body exoskeleton system which

provides them the possibility to perform upper body exercises while both sitting and

standing. Both systems are designed such that the patient does not have to carry

the weight of the exoskeleton as the weight of the system is compensated by the con-

troller and transferred to the ground. Further, the mobility of the patient is not com-

promised. Due to its bilateral design, the system can be used with both left and right

sided stroke patients and can provide extended training possibilities e.g. dual arm

tasks, and mirror therapy [Kumar et al., 2019b]. In this section, the control architec-

ture of the exoskeleton, which uses HyRoDyn as a central component, is described

along with some experimental results.
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Figure 9.13: Hybrid centralized-decentralized control and network architecture. The
exoskeleton is controlled by two central systems, called ZynqBrain (ZB), and a net-
work of decentralized Actuator Control Units (ACU) for BLDC motor control. Each
motor is controlled locally by an adjacent ACU. The distributed ACUs are intercon-
nected via an NDLCom network. ACUs that belong to a specific limb form a subsys-
tem. Bottom left: cascaded actuator-level control architecture implemented on the
FPGA of each ACU; u is the angular position, u̇ is the angular velocity and i is the
motor current. The reference values are provided by the mid-level control on the ZBs.
All ACUs continuously send telemetry status data including u, u̇ and i to ZB1 with a
frequency of 100 Hz using the NDLCom network.



188 Chapter 9. Results and Applications

9.5.1 Exoskeleton Control

9.5.1.1 First-Level Control

Each actuator is driven by an FPGA that implements the first level control archi-

tecture for the joint using a cascaded position, a velocity, and a current control loop.

Each of the control cascades can be directly selected for control. Fig. 9.13 shows a

block diagram illustrating the actuator level control architecture. The motors can be

torque controlled with the help of motor current measurements. The actuator level

modularity permits the implementation of decoupled safety checks from the mid-level

controllers. For example, the position, velocity and current are limited via maximal

values, and the controller is stopped in case the sensors fail at some point. This low

level control architecture meets the requirements for the therapy concepts to be im-

plemented in the system and constitutes a solid foundation for both kinematic and

dynamic control which is implemented at mid-level.

9.5.1.2 Mid-Level Control

Mid-level control architecture implements the kinematic and dynamic model of the

system and associated control approaches for rehabilitation therapies using HyRo-

Dyn. In the (1) Gravity Compensation (GC) mode, the weight of the system is com-

pensated with the help of an inverse dynamic model of the exoskeleton arms. One

can also use GC mode to take into account the dynamics of human arms. The input

to this model is the actuator positions read from the position encoders and the output

is the reference torque values which is then converted into motor current and sent

to the current controller implemented in the ACU. The GC mode is used to imple-

ment a transparent behavior of the system and represents the basic operation mode

of the system, on which most of the other modes are based. To support repetitive

movement therapies, (2) Teach & Replay (TR) can be used. This mode consists of

two phases. First, the affected arm is put in the gravity compensation mode so that

a therapist can easily move the arm. The forearm is equipped with a touch sensor

which recognizes the intention of the therapist to teach a trajectory and stores the

trajectory (position and velocity readings from the involved ACUs) in the system’s

storage device. Subsequently, the trajectory can be replayed according to a trigger by

the patient or therapist. During the replay, the exoskeleton executes the trajectory

movement in the cascaded position-velocity control mode in the ACU. Mirror therapy

can be supported using the (3) Master-Slave (MS) mode, where movements from the

healthy arm can be transferred to the unhealthy arm in a mirrored fashion. In this

mode, the healthy arm is kept in the gravity compensation mode and the actuator

positions read from the healthy arm are mirrored and sent to the ACUs of the un-
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Figure 9.14: Web GUI for high level control

healthy arm, which is in cascaded position-velocity control mode. Further, sitting and

standing features for the lower part of full body exoskeleton are implemented at this

level.

9.5.1.3 High-Level Control

The high level control of the exoskeleton can be managed by a web-based GUI using a

mobile phone or tablet (see Fig. 9.14). The Python Flask framework [Ronacher, 2017]

was used to implement the web application. The Flask web server hosted on Zyn-

qBrain2 was used as the server application. The GUI allows the therapist to select

the therapy mode (for e.g. GC mode, MS mode, TR mode etc) or to manage different

patient profiles, e.g., patient specific data and movements. Moreover, it allows the

therapist to use the exoskeleton in different settings: single arm, dual arm, full body

etc. Both left and right sided stroke patients can be supported.

9.5.1.4 Software Implementation

The mid and high level control is implemented using the Robot Construction Kit

(Rock)[Joyeux, 2010] which is based on the component model of the Orocos Real Time

Toolkit (RTT) and the object request broker (ORB) implementation, omniORB. Com-

ponents (or tasks) encapsulate different functionalities, run independently and pro-

vide input and output for other components (see Fig. 9.15). A central component in

the software architecture is the HyRoDyn orogen component described in Section 8.5

which is used for accessing the kinematic and dynamic models of the exoskeleton sys-

tem (for e.g. Gravity Compensator in Fig. 9.15 is simply an instance of it). The con-

figuration can be applied to each component individually. This allows adjustments to
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Figure 9.15: Software architecure overview: A Component Network Manager config-
ures, connects and starts the subset of components (V) required for a specific mode.
The corresponding directed connections (E) are described in the table in the top right
corner. The components required for each mode are also represented by colors. A web
server application hosted on ZynqBrain 2 is used as user interface.

the system in a very flexible way and to distribute computational demanding compo-

nents among the two ZynqBrains. Additionally, a web server is running on the second

ZynqBrain providing access to a web application written in JavaScript and provides a

user interface for the therapist or patient, e.g., to select a mode, adjust settings or ob-

serve the current state of the exoskeleton (see Sec. 9.5.1.3). Furthermore, some func-

tionalities can be triggered by biosignals like EEG or EMG as the biosignal processing

can be done on the embedded processors [Kirchner et al., 2016, Wöhrle et al., 2017].

9.5.2 Therapy Modes

This section presents the experimental results of the rehabilitation therapies imple-

mented on the wheelchair configuration. Since the upper body design is identical

for both configurations, the results are equally valid between them. All the therapy

modes can be used in both sitting and standing modes with the Recupera full body

exoskeleton (see Fig. 9.23).

9.5.2.1 Gravity Compensation Mode

Fig. 9.16 shows four different poses during the dual arm gravity compensation mode

with the human subject inside the exoskeleton. Due to the good quality of the gravity

compensation model, the human subject can move its arms freely within the sys-

tem. Optionally, human arm weight compensation can also be included in the model

using the concept of mimic joints [Kumar et al., 2017b]. Another application of this

functionality is the get in helper mode (see Fig. 9.17) which allows easy entry of the

human subject inside the exoskeleton system. Thanks to the transparent behaviour

of the exoskeleton arms in this mode, the human subject can wear them in a safe and

user-friendly manner. Healthy subjects can enter the dual arm exoskeleton in less
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(a) Pose 1 (b) Pose 2 (c) Pose 3 (d) Pose 4

Figure 9.16: Gravity compensation mode with human subject

(a) Initial position (b) Waist strap (c) Shoulder straps (d) Insert right arm

(e) Attach upper arm (f) Attach forearm (g) Insert left arm (h) System ready

Figure 9.17: Get in helper mode: To enable easy entry of the human subject inside the
exoskeleton system, this mode sends the two exoskeleton arms into a special initial
position as shown in (a) and switches to GC mode. When human subject sits in the
wheelchair, the (b) waist straps, and the (c) shoulder straps are secured. Then, the
subject (d) inserts its right arm in the system, and the (e) upper arm and (f) forearm
are attached to the exoskeleton system. Similarly, (g) the left arm is inserted and
secured to the exoskeleton system. The system is ready to be used in (h) dual-arm
setup with the human subject.

than a minute on average provided no passive adjustments in the system are to be

done.

9.5.2.2 Teach & Replay Mode

To demonstrate Teach & Replay therapy, drinking and pointing trajectories were

taught to the system and were replayed ten times with and without human subject.

Fig. 9.19 and Fig. 9.20 show the error band plots between the commanded trajectories
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(a) Pose 1 (b) Pose 2 (c) Pose 3 (d) Pose 4

(e) Pose 5 (f) Pose 6 (g) Pose 7 (h) Pose 8

Figure 9.18: Teach and Replay mode with human subject for drinking movement
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Figure 9.19: Teach & Replay therapy for drinking movement
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(b) Pointing: without human (Overall RMSE = 0.05287)

Figure 9.20: Teach & Replay therapy for pointing movement

and joint status recorded from the exoskeleton and also notes the root mean square

error (RMSE) for the two taught movements. It can be observed that the system per-

forms better in the presence of a human subject as the human body acts as a damper

to the small vibrations occuring due to structural flexibilities. Fig. 9.18 shows the

motion sequence during the drinking movement with a human subject inside the

exoskeleton system.

9.5.2.3 Master-Slave Mode

Master-Slave mode can be used in the Mirror therapy which involves mirroring the

movements from the healthy arm (in GC mode) to the position controlled affected

arm. Fig. 9.21 shows the joint position data recorded from the master and slave arms
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Figure 9.21: Mirror therapy

(a) Pose 1 (b) Pose 2 (c) Pose 3 (d) Pose 4

Figure 9.22: Master slave mode with human subject

during a mirror therapy session. This mode is ideal for increasing the self-training

time of the stroke patients as they can train themselves by naturally copying the

movements from their healthy arm to the affected arm in the minimal supervision of

the therapists. Fig. 9.22 shows four different poses from the master slave mode with

the system with a human subject inside.

9.6 Conclusion

This chapter presents the results of application of HyRoDyn software tool in simula-

tion, analysis and real time control of highly complex series-parallel hybrid robotic

systems such as the Recupera-Reha exoskeleton and RH5 humanoid. It enables ef-
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(a) Sitting posture (b) Standing posture

Figure 9.23: Sitting and Standing with RECUPERA full body exoskeleton

ficient and error free computation of kinematics and dynamics of such systems and

forms the basis of their real time control. Further, it provides insights into model

simplification of complex multi-body systems. Finally, the application of this software

tool in a real application has been demonstrated. Overall, it can be concluded that

HyRoDyn is a powerful software for modeling very complex robotic systems and pro-

vide a variety of tools to deal with different aspects of series-parallel hybrid robots

thereby helping the designers and control engineers alike in developing the future

robotic systems.
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Chapter 10

Conclusion and Outlook

This chapter is the synopsis of this thesis and presents the main scientific contribu-

tions of the work. As an outlook, some insights for future work are described at the

end.

10.1 Thesis Summary

The general motivation of this thesis stems from the growing popularity of series-

parallel hybrid architectures in robotics. These robots combine the advantages of se-

rial and parallel architectures and have significant mechanical advantages in terms

of better payload-to-weight ratio, better stiffness property, good dynamic character-

istics etc. Hence, this design trend is clearly reflected in various robot designs not

only at DFKI-RIC (for e.g., AILA, Mantis, Charlie, Recupera Exoskeleton, RH5 hu-

manoid etc.) but also around the world, for e.g. Lola (TUM), Valkyrie (NASA), THOR

(Virginia Tech.) etc. On the downside, they also inherit the kinematic complexities

of serial and parallel designs. Hence, the overall kinematic complexity of robot archi-

tectures is steadily increasing as the advantages of a series-parallel hybrid designs

are becoming evident. In order to fully exploit their potential, it becomes very impor-

tant to have their systematic analysis and accurate kinematic and dynamic modeling.

Notwithstanding this hurdle, it is becoming equally important to develop robot soft-

ware capable of handling this complexity for designers and control engineers so that

they can develop and optimize high performance robotic systems. Modularity and

model-based software development are keys to handle this complexity.

To lay a strong foundation, an extensive survey on various series-parallel hybrid

robots was performed in order to study their design aspects in mechanics, electronics

and software domains. The key insight from this survey was that these robots utilize

parallel mechanisms as an abstraction of different kinematic joints and it is quite

common to use different variants of the same parallel mechanism in order to build
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different kinematic joints. In most cases, it can be observed that the designer uti-

lize these mechanisms as a higher DOF actuator module with additional mechanical

advantages. This approach was also followed in two different series-parallel hybrid

robotic systems namely Recupera-Reha exoskeleton and the RH5 humanoid being

developed at DFKI-RIC during the thesis period.

Two new parallel mechanisms namely Active Ankle (used for constructing Hip

and Ankle joints in Recupera-Reha exoskeleton) and 2SPRR+1U (used for ankle joint

and its variant 2SPU+1U for torso and wrist joints in RH5 humanoid) were invented.

To get a complete understanding of their geometric behavior, a rigorous and compre-

hensive kinematic analysis of these mechanisms were performed and the solutions

to their forward and inverse kinematics problems were derived. Additionally, tools

from computational algebraic geometry were used to get some global insights into

their geometry. This analysis is not only useful for the purpose of kinematic control

but also helps designers in improving their design for tailored application cases.

The next natural question to ask was how one could use the insights from a com-

prehensive kinematic analysis of these mechanisms for solving the kinematics and

dynamics of the overall series-parallel hybrid robotic system. Instead of resorting to

numerical resolution of loop closure constraints, analytical loop closure functions for

these mechanisms were derived. Then a modular approach for the topological model-

ing of these systems was conceptualized based on which the loop closure functions of

the overall hybrid system is composed in a modular fashion. The modularly composed

loop closure function demonstrates block diagonal structure which can be exploited

in various kinematics and dynamics algorithms.

This approach is implemented in a software framework called HyRoDyn written

in C++. The robot description for HyRoDyn can be generated from a visual editing

tool called Phobos which allows both bottom-up and top-down modeling approaches.

Presently, closed form solutions to mechanisms such as 1-RRPR, 2-SPU+1U, 2-

SPRR+1U, 6-RUS, 6-UPS, parallelogram chains are available in its submechanism

libraries and the software can be used to analytically solve the kinematics and dy-

namics of arbitrary series-parallel hybrid robots composed of these submechanism

modules. Actuation of the robot can be arbitrarily selected. The software has been

successfully used in the analysis and control of some complex series parallel hybrid

robots such as the Recupera-Reha exoskeleton and the RH5 humanoid.

10.2 Scientific Contributions

Following is the list of concrete scientific contributions (linked with respective publi-

cations) arising out of this work.
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• Survey on series-parallel hybrid robots: A systematic survey of various

series-parallel hybrid robotic systems developed in the last decades in the

field of legged robotics, exoskeletons and industrial automation has been per-

formed [Kumar et al., 2019c]. Their designs are studied in mechanics, electron-

ics and software domains to develop a thorough understanding of the state of

the art. It has been found that most of these hybrid robots utilize parallel sub-

mechanisms as an abstraction to a higher degree of freedom active joint (for e.g.

universal, spherical, six dof) leading to an inherently modular design. This lets

the designers exploit the non-linear transmission, enhance the stiffness and dy-

namic capabilities of the robot and produce a light weight design. Further, this

review also highlighted the approaches that have been adopted in their mod-

eling and control including the underlying assumptions and their limitations.

The insights from this review forms the basis of this work i.e. submechanism

based modularity should be reflected in the kinematic and dynamic modeling of

these robots.

• Kinematic Analysis of 2SPRR+1U mechanism: The novel 2SPRR+1U

mechanism and its existing variant 2SPU+1U mechanism for the abstrac-

tion of a universal joint has been studied extensively. This study, published

in [Kumar et al., 2018c], involves exhaustive kinematic analyses which pro-

vide solutions to forward and inverse kinematic problems for these mechanism

types. The use of computational algebraic geometry provides some global in-

sights into the mechanism geometry for example, an upper bound to the maxi-

mum number of assembly modes, global description of its singularity curve etc.

Further, workspace analysis and its force and velocity transmission capabili-

ties are presented. These results are of both theoretical and practical interest

for roboticists interested in utilizing the 2SPRR+1U mechanism or 2SPU+1U

mechanism for an integrated 2 DOF universal joint unit.

• Kinematic Analysis of Active Ankle mechanism: A comprehensive study

of design, analysis and control of the novel 3R-[2SS] mechanism also called as

Active Ankle [Simnofske et al., 2016] developed for the abstraction of a spheri-

cal joint has been performed. This mechanism demonstrates an almost spher-

ical motion in SE(3) i.e. the primary motion of this device is spherical but is

coupled with small translations that can be neglected for most practical appli-

cations. Due to this behavior, its kinematic analysis is very interesting. The

solution to inverse kinematics problem is not sufficient for its kinematic control

and hence, it is important to solve a rotative inverse kinematics problem which

asks for a pose in SO(3) instead of SE(3) and provides the joint angles needed

to achieve the pose along with an estimation of end effector shift. These results
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are published in [Kumar et al., 2018a]. Further the results from its kinematic

control in task space is available in [Kumar et al., 2016].

Further, tools from computational algebraic geometry are used for solving the

forward kinematics problems which provide several global insights into the

mechanism’s behavior. It is established that the upper bound to the number of

unique solutions to forward kinematic problem is 40 which supports our obser-

vation that once the actuator angles are fixed in the three legs, ACTIVE ANKLE

behaves as a special instance of 6−6 Stewart platform. In practice, a maximum

of 16 real solutions of the forward kinematic problem were found. In addition,

the results of the torsional motion analysis which is of practical interest is pre-

sented and some singularities of the mechanism are highlighted. Moreover, the

assembly modes where the mechanism behaves as an almost-spherical device

are identified. These results are published in [Kumar et al., 2018b].

• Modular and Analytical Approach for Kinematic and Dynamic Model-

ing of Hybrid robots: The main contribution of this thesis is the modular and

analytical approach for the kinematic and dynamic modeling of series-parallel

hybrid robots. The notion of modularity is derived from an extensive survey on

series-parallel hybrid robots which showed that parallel mechanisms are used

as an abstraction to certain kinematic joints. Since, different variants of the

same mechanism are used again and again in the same robot, it makes sense

to utilize the closed form analytical solutions to the loop closure constraints

based on the type of parallel mechanism used in the design. This leads to

analytical derivation of loop closure function for the overall robot where the

modularity reveals a block diagonal structure which can be exploited in various

kinematics and dynamics algorithms. This results in a computationally effi-

cient and error free formulation of these problems. This approach is published

in [Kumar and Mueller, 2019].

• HyRoDyn Software Framework: The modular and analytical approach is

implemented in the form a software framework called Hybrid Robot Dynamics

(HyRoDyn) for solving kinematics and dynamics of series-parallel hybrid robots.

The main idea here is to store the analytically derived loop closure functions

(LCF) in a configurable mechanism library which is identified by its type (for

e.g. RH5 ANKLE [Kumar et al., 2018c]). Based on submechanisms defined in a

hybrid robot, it can modularly compose the LCF of the overall system in an auto-

mated way and transfers them to various kinematics and dynamics algorithms.

The input to HyRoDyn is the SMURF file which can be exported through a

blender based Visual Editor called Phobos. The modeling approach allows for

both bottom up composition and top down decomposition which is very useful
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in dealing with highly complex robotic systems. For example, a complex robotic

system model can be composed from the models of simpler well-tested modules

and vice-versa. HyRoDyn has also been integrated in the RoCK middleware

and can be used as a configurable multi-purpose component for various robot

control applications. This work is published in [Kumar et al., 2018d].

• Application in Robotic Rehabilitation: The real world application of Hy-

RoDyn software tool is demonstrated in the field of robotic rehabilitation where

it has been used for the kinematic and dynamic control of a complex series-

parallel hybrid Recupera-Reha exoskeleton. It serves as a central object in

its control architecture and helps in implementation of several therapy modes

for rehabilitation namely gravity compensation, teach and replay, master-slave.

Further, it allows the inclusion of human arm dynamic model into control which

is very useful for weak patients in early days of stroke. The system was exten-

sively tested with and without human subjects and a preliminary clinical trial

was also conducted. The results are published in [Kumar et al., 2019b].

10.3 Future Work

This thesis addresses various challenges one encounters during the development of

complex series-parallel hybrid robots. However, it also opens doors to several lines of

research which should be pursued in the future.

• Model order reduction: The rising complexity of the series parallel hybrid

robots can pose a challenge to the real time performance of various kinemat-

ics and dynamics models. Future robotic systems may have few hundreds of

moving bodies and may require very fast computation of robot dynamics for the

purpose of optimal control. In this scenario, it is important to evaluate the ef-

fect of dominant bodies in the kinematic chain and neglect the bodies which

do not contribute much to the overall dynamics of the system. In the outlook

of this thesis [Kumar et al., 2019a], an important observation is made: not all

parallel mechanisms contribute equally to the overall dynamics of the system

and with the help of some empirical analysis it is possible to find parts of EOM

which should be solved. This depends on state space of different bodies and

their mass-inertia properties. In the future work, an automated approach for

model order reduction in rigid body dynamics will be investigated.

• Support for numerical resolution for loop constraints: At the moment,

HyRoDyn only allows the analytical resolution of loop closure constraints for

the parallel mechanisms that are known to its database. The next obvious step
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is to extend the software so that it can deal with loop closure constraints nu-

merically for arbitrary mechanisms in a modular way. Numerical resolution of

loop closure constraints is well known in the literature and these algorithms

will be implemented in the near future. This will enhance the generality of this

software tool.

• Floating base systems and contact constraints: Presently, only fixed base

robotic systems are supported within the software. Since, legged robotics is one

of the primary application of series-parallel hybrid robots, it is of urgent im-

portance to extend this software to support floating base systems and contact

constraints. However, algorithms for dealing with contact constraints and float-

ing base systems already exist in the state of the art [Featherstone, 2008] and

these will be implemented inside HyRoDyn in the near future.

• Variable Stiffness Mechanisms: This thesis dealt with the use of paral-

lel mechanisms as an abstraction of a kinematic joint in order to enhance

its mechanical properties. A natural extension in this direction would be to

introduce flexible elements in the parallel mechanism based modules in or-

der to achieve variable stiffness mechanisms (VSM). A preliminary study of

a novel VSM concept was studied by Christoph Stoeffler in his Masters the-

sis [Stoeffler et al., 2018] under my supervision. This concept involved includ-

ing a non-linear spring in series with the actuator along with redundant actu-

ation of the parallel mechanism. Using this concept, it has been shown that it

is possible to achieve an independent position and stiffness control using this

device [Stoeffler et al., 2018]. The future work includes building a testbed to

demonstrate its practical feasibility and integrate it in a series-parallel hybrid

robot. HyRoDyn also needs to be extended for this purpose in order to allow

such modules in overall kinematics and dynamics computations of the robot.

• Open source release to engage with larger community: The development

of HyRoDyn is presently limited to DFKI-RIC and it has been used successfully

in different projects (for e.g. Recupera-Reha, D-RoCK, TransFIT) within the

institute. It is planned to make HyRoDyn software open-source in future so

that more people from the kinematics community can help in contributing to

the submechanism libraries in HyRoDyn so that catalog of supported parallel

mechanisms can be enriched. In this way, HyRoDyn will serve the interest of

designers and control engineers from the robotics community around the world.
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Appendix A

Lie Groups

“Lie theory is in the process of becoming the most important part of modern

mathematics. Little by little it became obvious that the most unexpected theories,

from arithmetic to quantum physics, came to encircle this Lie field like a gigantic

axis.”

– Jean Dieudonne, French mathematician (1906-1992)

Lie groups are abstract mathematical objects important for the study of continu-

ous symmetry such as rotational symmetry in three dimensions. These are attributed

to Norwegian mathematician Sophus Lie (1842-1899) and are widely used in differ-

ent areas of mathematics and physics. His original motivation to develop this theory

was to model the continuous symmetry in differential equations similar to Galois’

motivation to use finite groups in order to model the discrete symmetries of algebraic

equations.

In the following, the basic concepts from group and Lie group theory, are intro-

duced which are particularly useful in understanding the mechanics formulations ap-

plied to robotics. The content presented here is inspired from [Murray et al., 1994],

Wikipedia and Wolfram Mathworld.

A.1 Basics

In this section, basic definitions of a group and its related concepts like rings and

fields are presented.

A.1.1 Groups

Definition 15 (Group) A group is a set G, together with a binary operation ◦ (called

the group action of G) that combines any two elements g1 and g2 from this group to
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form another element, denoted as g1 ◦ g2. In order to qualify as a group, the set and

the operation (G, ◦) has to satisfy the following four axioms:

1. Closure: For all g1, g2 ∈ G, the result of the operation g1 ◦ g2 must also be an

element of the set G.

2. Associativity: For all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

3. Identity element: There exists an element e ∈ G such that for every element g

in the set G, the equation e ◦ g = g ◦ e = g holds.

4. Inverse: For each g in G, there exists an element g−1 ∈ G, such that g−1 ◦ g =

g ◦ g−1 = e, where e is the identity element.

Commonly encountered group actions include addition (+), for which the identity

is a zero element, and the inverse element is subtraction; and multiplication (×),

for which the identity element has a unit value and the inverse element is division.

Additive groups are usually commutative in nature meaning that the left-right order

of the group elements in a sequence does not affect the result of their operation i.e

g1 + g2 = g2 + g1. Multiplicative groups may be commutative, but are often not,

giving rise to the notion of left (Lg : h 7→ g ◦ h) and right (Rg : h 7→ h ◦ g) group

actions. It is to be noted that group (G, ◦) for which the commutative property g1 ◦
g2 = g2 ◦ g1∀g1, g2 ∈ G holds is called an Abelian group (in honor of a Norwegian

mathematician Niels Henrik Abel). For example, (R,+) is an Abelian group since

addition of real numbers is closed, associative and commutative. Its identity element

is zero and inverse operation is subtraction. An example of non-Abelian group is the

set of all (n×n) matrices with multiplication operation, also known as General Linear

group GL(n), as matrix multiplication is non-commutative. Both (R,+) and GL(n)

are examples of so called infinite groups as they contain infinite elements. If there

are a finite number of elements, the group is called a finite group and the number of

elements is called the group order of the group. The set of finite number of integers

n form a finite cyclic group Zn = {0, 1, . . . , n− 1} of order n under the group operation

of addition with modulo n (see Fig. A.1 for an example). Its identity element is e = 0

and additive inverse is g−1 = n − g. Other examples of finite groups include finite

symmetric groups, permutation groups etc.

The basic concept of a group – a set with an operation for combining its elements –

extends to several other mathematical structures, for example rings and fields which

are very useful concepts in the abstract algebra.
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Figure A.1: Cyclic group Z4 with addition operation (modulo 4)

A.1.2 Rings

Definition 16 (Ring) A Ring is a set R equipped with two binary operations: (+)

that acts like addition and (·) that acts like multiplication. This abstract mathemati-

cal structure is denoted as (R,+, ·) and must satisfy the following axioms:

1. Commutativity under addition: A ring forms a commutative or Abelian

group under addition i.e.

• ∀a, b ∈ R, a+ b ∈ R (closure property)

• ∀a, b, c ∈ R, (a+ b) + c = a+ (b+ c) (associative property)

• there exists an element 0 in R such that a+ 0 = a∀a ∈ R (identity element)

• for every a in R there exists −a in R such that a+(−a) = 0 (additive inverse)

• ∀a, b ∈ R, a+ b = b+ a (commutative property)

2. Monoid under multiplication: A ring forms a monoid1 under multiplication

i.e.

• ∀a, b, c ∈ R, (a · b) · c = a · (b · c) (associative property)

• there exists an element 1 in R such that a · 1 = a and 1 · a = a for all a in R

(identity element)

3. Distributivity: The multiplicative operation must distribute over the additive

operation, so that the product of a sum is equal to the sum of individual products.

This means:

• ∀a, b, c ∈ R, a · (b+ c) = a · b+ a · c (left distributivity)

• ∀a, b, c ∈ R, (b+ c) · a = b · a+ c · a (right distributivity)

1A monoid in which each element has an inverse is a group.
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For example, the real numbers R form a ring under standard addition and multipli-

cation operations because

• elements of R form the group (R,+) under addition,

• multiplication of real numbers produces real numbers and is associative,

• multiplication distributes over addition, and

• the real numbers do not form a group under multiplication as the inverse of 0 is

not a real number which is already relaxed for the definition of rings.

Another example includes the set of (n × n) matrices under addition and multipli-

cation operations form a matrix ring. These are examples of infinite rings. Also, Zn

when equipped with both addition and multiplication operations of modulo n forms

a finite ring. When applied to Z4 introduced in Fig. A.1, it is trivial to see that even

under the multiplication operation with modulo 4, the required algebraic structures

are preserved e.g. g2 = g1 · g2 = 1 · 2 and g2 = g2 · g3 = 2 · 3 = 6 ≡ 2 (mod 4).

A.1.3 Fields

A field is a ring for which the inverse of every non-zero element is also an element

and hence it is a set where four binary operations namely addition, subtraction, mul-

tiplication and division are possible (loosely speaking).

Definition 17 (Field) A field is a set F equipped with primarily two binary opera-

tions addition and multiplication which satisfy the following field axioms:

Property addition multiplication

associativity (a+ b) + c = a+ (b+ c) (a · b) · c = a · (b · c)
commutativity a+ b = b+ a a · b = b · a
distributivity a · (b+ c) = a · b+ a · c (a+ b) · c = a · c+ b · c
identity a+ 0 = a = 0 + a a · 1 = a = 1 · a
inverse a+ (−a) = 0 = (−a) + a a · a−1 = 1 = a−1 · a if a 6= 0

Written in a compact form, a field is a set F equipped two binary operations addi-

tion and multiplication such that both (F,+) and (F, ·) are commutative groups and

these operations are linked together with the distributive property.

Both the real and complex numbers form fields but the ring of square matrices do

not form a field since they may contain linearly dependent rows that do not have well

defined inverse. These are examples of infinite fields. Finite fields (also called as
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Galois fields) are fields with finitely many elements, whose number is also referred to

as the order of the field. As seen previously, simplest finite fields are accessible using

modular arithmetic. For a given prime number n, Zn is a finite field under addition

and multiplication operations. It is easy to check that Z4 is not a finite field because

2 does not have a multiplicative inverse as 2 · 2 = 4 = 0 mod 4. However, Z5 is a finite

field since n = 5 is a prime.

A.2 Some Group Concepts

A.2.1 Building Blocks of Groups

Definition 18 (Subgroup) A subgroup (H, ◦) is a subset of group elements of a group

(G, ◦) that satisfies the group axioms. “H is a subgroup of G” is written as H ⊆ G, or

sometimes H ≤ G.

A proper subgroup of a group G is a subgroup H which is a proper subset of G (i.

e. H 6= G). In this case, “H is a proper subgroup of G” is written as H ⊂ G, or

sometimes H < G. Every group G has at least two subgroups. These are the groups

containing the identity element e (also known as trivial subgroup) and the group

itself G. These are not usually very interesting. However, other subgroups, if they

exist, might be the building blocks of the group under study. If the group has only

these two subgroups, it is called a simple group. These are the building blocks of

the group similar to how prime numbers are building blocks of integers.

Definition 19 (Cosets) For a subgroup H of a group G and an element g of G, define

g ◦H to be the set {g ◦ h : h ∈ H} and H ◦ g to be the set {h ◦ g : h ∈ H}. A subset of G

of the form g ◦H for some g ∈ G is said to be a left coset of H and a subset of the form

H ◦ g is said to be a right coset of H. This distinction is necessary since G may not be

Abelian.

Although derived from a subgroup, cosets are not usually themselves subgroups of G,

only subsets.

Definition 20 (Normal Subgroup) A subgroup H of a group G is called a normal

subgroup of G if it is invariant under conjugation; that is, the conjugation of an ele-

ment of H by an element of G is always in H. It is usually denoted as H ⊳ G.

H ⊳ G⇔ ∀h ∈ H, g ∈ G : g ◦ h ◦ g−1 ∈ H (A.1)

If a subgroup is a normal subgroup, the sets of left and right cosets of H in G coincide.
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Example 7 Let us consider the group of integers {. . . ,−2,−1, 0, 1, 2, . . .} under ad-

dition denoted as G = (Z,+) with identity element e = 0 and inverse g−1 = −g.

Any integer multiple of this group will form a subgroup. For example, H = 4Z =

{. . . ,−8,−4, 0, 4, 8, . . .} qualifies for a subgroup. In the following table, some examples

of (left) cosets are provided for the chosen subgroup 4Z and picking some elements

(0, 1, 2, 3) from the group (Z,+).

Remainder Coset Elements

0 0 + 4Z {. . . ,−8,−4, 0, 4, 8, . . .}
1 1 + 4Z {. . . ,−7,−3, 1, 5, 9, . . .}
2 2 + 4Z {. . . ,−6,−2, 2, 6, 10, . . .}
3 3 + 4Z {. . . ,−5,−1, 3, 7, 11, . . .}

It is easy to see that our chosen subgroup H = (4Z,+) is also a normal subgroup as

∀h ∈ H, g ∈ G : g + h+ (−g) ∈ H. Also, the chosen cosets form a group which is called

as quotient group written as Z/4Z.

Overall, it is possible to show that when H ⊆ G, and its cosets form a group, then

g−1 ◦H ◦ g = H∀g ∈ G. The converse of this statement is also true. The proof is out of

the context of the present text. The coset group is called factor group in a general

context.

A.2.2 Relationship between Groups

Definition 21 (Group Homomorphism) Group homomorphism is a structure pre-

serving relationship between two groups. A function f : G 7→ H between two groups

(G, ·) and (H, ∗) is called a homomorphism if the equation

f(g · k) = f(g) ∗ f(k) (A.2)

holds for all elements g, k in the function domain G.

Example 8 Consider the two groups: additive group of real numbers (R,+) and the

multiplicative group of positive real numbers (R+,×). Let us define exponential func-

tion as f : R 7→ R+ such that f(x) = exp(x). One could easily check that for any

x, y ∈ R, the following holds true.

f(x+ y) = exp(x+ y) = exp(x) · exp(y) = f(x) · f(y)

Hence, the exponential function is a group homomorphism.
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Definition 22 (Group Isomorphism) Two groups (G, ·) and (H, ∗) are called iso-

morphic if there exists group homomorphisms f1 : G 7→ H and f2 : H 7→ G such that

applying the two functions one after the another in each of the two possible orders

gives identity functions of G and H. Consider any pair of elements (g1, g2) ∈ G and

(h1, h2) ∈ H and require that f2 = f−1
1 is bijective, then the following holds true.

f1(f2(h1 ∗ h2)) = f1(f2(h1) · f2(h2)) = f1(f2(h1)) ∗ f1(f2(h2)) = h1 ∗ h2 (A.3)

f2(f1(g1 · g2)) = f2(f1(g1) ∗ f1(g2)) = f2(f1(g1)) · f2(f1(g2)) = g1 · g2 (A.4)

In short, when a group homomorphism is also a bijection (i.e. one-to-one and onto), it

is called group isomorphism.

Example 8 (Continued) Let us define natural logarithm function as f ′ : R+ 7→ R

such that f ′(x) = log(x′). 2 One could easily check that for any (x′, y′) ∈ R+, the

following holds true.

f ′(x′ · y′) = log(x′ · y′) = log(x′) + log(y′) = f ′(x′) + f ′(y′) (A.5)

Hence, logarithm natural function is also a group homomorphism. Since, natural

logarithm and exponential functions are bijective i.e. f ′ = f−1, it is easy to verify that

for any (x, y) ∈ R and (x′, y′) ∈ R+

exp(log(x′ · y′)) = exp(log(x′) + log(y′)) = exp(log(x′)) · exp(log(y′)) = x′ · y′

log(exp(x+ y)) = log(exp(x) · exp(y)) = log(exp(x)) + log(exp(y)) = x+ y

holds true.

Definition 23 (Group Automorphism) A group automorphism f : G 7→ G is a

group isomorphism from a group G to itself. The group of all automorphisms of G

is denoted as Aut(G).

Let (G, ◦) be a group and g is an element of it. The map ig : G 7→ G given by

ig(x) = g ◦ x ◦ g−1 is an automorphism of G. It is called conjugation by g, or the

inner automorphism corresponding to g. An outer automorphism of G is an au-

tomorphism which cannot be expressed in this form for g ∈ G, but can be so expressed

if g belongs to a larger group containing G.

A.2.3 Group Operations

Groups can be combined together to form larger groups and hence it is important to

know how their underlying sets combine, and nature of overall group action. In this
2Prime notation is used to distinguish between two groups. It should not be confused with derivative.
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context, direct and semi-direct product of the groups are introduced.

Definition 24 (Direct Product) Consider two groups (G, ·) and (H, ∗), the direct

product K = G×H is defined as follows:

1. The underlying set is the Cartesian product, K = G × H and contains all the

ordered pairs (g, h), where g ∈ G and h ∈ H.

2. The binary operation ◦ in the resulting group G×H is defined component-wise:

(g1, h1) ◦ (g2, h2) = (g1 · g2, h1 ∗ h2) (A.6)

The resulting algebraic object satisfies all the group axioms like associativity, exis-

tence of an identity element i.e. (eG, eH) and inverse i.e. (g−1, h−1). Another implica-

tion of the above definition is that both groups (G, ·) and (H, ∗) are normal subgroups

of the group (K, ◦) resulting from their direct product.

Example 9 Let (R,+) be the group of real numbers under addition. Then the direct

product R×R = R2 is the group of all two-component vectors (x, y) under the operation

of vector addition:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

If both (G, ·) and (H, ∗) are finite groups, then the order of the direct product group

(G ×H) is product of cardinalities of the two groups i.e. |G| · |H|. Further, it should

be noted that if either of the two groups is non-abelian, then the direct product group

is also non-abelian.

In group theory, a semidirect product is a generalization of the direct product

which expresses a group as a product of subgroups. One could think about this con-

struction from two viewpoints: intrinsic and extrinsic. The intrinsic viewpoint de-

scribes the semidirect product G as the product between two subgroups N and H,

one of which should be a normal subgroup. This concept is called inner semidirect

product denoted as G = N ⋉H and is helpful in studying group’s behavior and clas-

sify its isomorphisms. Another way to think of semidirect products is extrinsic: given

two abstract groups N and H with some specified relationship between them, given

by a certain homomorphism φ, one can construct a new group called the semidirect

product (or outer semidirect product) G = N ⋉φ H. This allows one to build new,

larger groups from smaller ones, with a construction that is more general and richer

than a direct product.

Definition 25 (Inner Semidirect Product) Let (G, ◦) be a group and let N ⊳ G be

the normal subgroup and H be any subgroup of G. Then the following statements are

equivalent:
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1. G = NH = {n ◦ h | n ∈ N,h ∈ H} is the product of subgroups3 where the

subgroups have a trivial intersection i.e. N ∩H = {e}.

2. Every g ∈ G can be written uniquely as g = n◦h and g = h◦n with n ∈ N,h ∈ H.

3. Let us define ψ : H 7→ G/N as a function that maps from the subgroup H to the

factor group G/N as ψ(h) = hN . Then ψ is an isomorphism.

If any of these conditions hold, then G = N ⋉ H expresses G as an inner semidirect

product of N and H. In other words, one could also say that G splits over N .

Definition 26 (Outer Semidirect Product) LetH andN be unrelated groups, and

suppose φ : H 7→ Aut(N) is a homomorphism, which sends elements h ∈ H to auto-

morphisms φh of N . Then the group G = N ⋉φ H is defined as the set of ordered pairs

(n, h) with n ∈ N,h ∈ H and group operation given by the formula:

(n, h) · (n1, h1) = (nφh(n1), hh1) (A.7)

This defines a group in which the identity element is (eN , eH) and the inverse of the

element (n, h) is (φh−1(n−1), h−1).

The concept of groups can be further elaborated when it is endowed with addi-

tional structures for example topological space, differential manifold or of an alge-

braic variety. In the next section, the concept of Lie groups is presented.

A.3 Lie Groups

Definition 27 (Lie Group) A Lie group is a group (G, ◦) which is equipped with

an additional structure of a smooth differential manifold and for which the group

operation ◦ : (g, h) 7→ g ◦ h and inversion g 7→ g−1 are smooth maps. A Lie group is

Abelian if g ◦ h = h ◦ g for all g, h ∈ G.

Since, Lie groups are not necessarily commutative, the notions of left and right ac-

tions (or translations), as introduced in Section A.1.1, are important. Moreover, it

can be easily verified that left and right actions commute when used as composite

functions: Lg(Rh) = Rh(Lg) 4.

A.3.1 Translational Group

Definition 28 (Translational Group) The translational group T (n) is defined by

choosing the Euclidean space Rn as the underlying set and addition (x,y) 7→ x + y as

the group operation.

3This is different from direct product.
4It is equivalent to Lg ◦ Rh = Rh ◦ Lg when ◦ is used as a notation for composite functions.
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The translational group is an Abelian group with identity element as zero vector

0 ∈ Rn, also known as origin, and the inverse of any element x ∈ Rn is −x.

A.3.2 General Linear Group

Definition 29 (General Linear Group) The general linear group of order n is the

set of n × n invertible matrices, together with the operation of ordinary matrix multi-

plication. It is denoted as GL(n,F) where F is the underlying set.

Its identity element is the n × n identity matrix and inversion is given by matrix

inverse. Since, both matrix multiplication and inverse are smooth operations in ma-

trix components, it is a matrix Lie group. As a manifold, it can be regarded as an

open subset in Fn2
. An example of general linear group is the group of all n × n real

matrices denoted as GL(n,R) with group operation (A,B) 7→ A · B∀A,B ∈ Rn×n

and the inversion is given by A−1 with det(A) 6= 0. In the following, some important

subgroups of GL(n,F) are discussed.

A.3.2.1 Orthogonal Group

Definition 30 (Orthogonal Group) The orthogonal group of order n is the set of

n×n invertible matrices, together with the operation of ordinary matrix multiplication

such that RRT = RT R = I. It is denoted as O(n,F) where F is the underlying set.

Its identity element is the n × n identity matrix and inversion is given by matrix

transpose. Very frequently encountered are the real orthogonal matrices O(n,R) ⊂
GL(n,R), simply denoted as O(n). An element in O(n) can be parameterized by n(n−
1)/2 unique parameters. Out of n2 parameters of a general real matrix, the remaining

n(n + 1)/2 parameters are determined by the condition RRT = I. The determinant

of any orthogonal matrix is either 1 or −1.

A.3.2.2 Special Orthogonal Group

Definition 31 (Special Orthogonal Group) The orthogonal n×nmatrices with de-

terminant 1 form a normal subgroup of O(n,F) known as the special orthogonal group

SO(n,F).

SO(n) = {R ∈ GL(n,F) : RRT = I,det R = +1} (A.8)

Example 10 The 2-dimensional special orthogonal group SO(2) is useful for describ-

ing rotations with 2(2 − 1)/2 = 1 degrees of freedom (for e.g. motion produced by a

revolute joint). Similarly, SO(3) is useful for describing the motion of a spherical joint

i.e. rotations with 3(3− 1)/2 = 3 degrees of freedom.
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A.3.2.3 Special Linear Group

Definition 32 (Special Linear Group) The general n × n matrices with determi-

nant 1 form a subgroup of GL(n,F) known as the special linear group SL(n,F).

SL(n) = {A ∈ GL(n,F) : det A = +1} (A.9)

A.3.3 Euclidean Group

An Euclidean group E(n) is the group of Euclidean isometries of an Euclidean space

Rn i.e. the transformations of that space that preserve the Euclidean distance be-

tween any two points.

Definition 33 (Euclidean group) Let us define an element of the Euclidean group

E(n) to be a pair (R,p), where R is an element of the orthogonal group O(n) and p

is an element in translational group Rn. Any element (R,p) of E(n) gives a transfor-

mation of n-dimensional Euclidean space f(R,p) : Rn 7→ Rn and can be interpreted as

either a translation followed by an orthogonal transformation x 7→ R(x + p) or the

same orthogonal transformation followed by a translation: x 7→ Rx + c with c = Rp.

Hence, the group operation can also be thought of as a set of mappings.

The identity element of the Euclidean group E(n) is the pair (In×n,0) where In×n is

the identity element of O(n) and 0 ∈ Rn is the identity element (or origin) in transla-

tional group T (n). The inverse of an element (R,p) ∈ E(n) is given by (R−1,−R−1p).

Dimensionality or Degrees of Freedom The dimension of E(n) is n(n+1)/2. Out

of these, n can be attributed to available translational symmetry, and the remaining

n(n− 1)/2 to rotational symmetry.

Group Structure It can be checked that for any translation t ∈ T (n) and isometry

x ∈ E(n), the operation xtx−1 ∈ T (n) and hence, T (n) is the normal subgroup of E(n),

also written as T (n) ⊳ E(n). This implies that E(n) is the semidirect product of O(n)

and T (n) written as E(n) = O(n)⋉T (n). In other words, O(n) is the quotient or factor

group of E(n), expressed as O(n) ∼= E(n)/T (n). Another simple way to check whether

E(n) is the semidirect product of O(n) and T (n) or not is the fact that inverse element

is given by (R−1,−R−1p) and not (R−1,−p) which would have been the case if it was

a direct product.

Direct and Indirect Isometries The direct isometries (i.e., isometries preserving

the handedness of chiral subsets) comprise a subgroup of E(n), called the special

Euclidean group SE(n) with det(R) = +1 also sometimes denoted as E+(n). The
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isometries that reverse the handedness are called indirect isometries, denoted as

E−(n). These isometries in E(n) are topologically disconnected i.e. there is no conti-

nous trajectory that starts in E+(n) and ends in E−(n) or vice-versa.

Matrix representation Euclidean group E(n) can be identified with (n+1)×(n+1)

matrices of the form

x =

[
Rn×n pn×1

01×n 1

]

(n+1)×(n+1)

(A.10)

where R ∈ O(n) and p ∈ Rn. Hence, E(n) can also be regarded as a subgroup of

GL(n + 1,R). Similarly, the special Euclidean group SE(n) can be defined as the

following:

SE(n) =

{[
R p

0 1

]
| R ∈ SO(n),p ∈ Rn

}
(A.11)

Example 11 The group of motions possible in SE(2) has a total of 3 DOF with 2

translational DOF and 1 rotational DOF. SE(2) can also be elaborated as SO(2) ⋉R2

and represents all the possible motions in a plane. Similarly, SE(3) is a Lie group of

6 dimensions out of which 3 are rotational and remaining 3 are translational. SE(3)

can also be elaborated as SO(3) ⋉ R3 and represents all the possible motions in 3D

space.
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Differential Geometry

“It is well known that geometry presupposes not only the concept of space but also

the first fundamental notions for constructions in space as given in advance. It

only gives nominal definitions for them, while the essential means of determin-

ing them appear in the form of axioms. The relationship of these presumptions

is left in the dark; one sees neither whether and in how far their connection is

necessary, nor a priori whether it is possible. From Euclid to Legendre, to name

the most renowned of modern writers on geometry, this darkness has been lifted

neither by the mathematicians nor the philosophers who have laboured upon it.”

– Bernhard Riemann, German mathematician (1826-1866)

Differential geometry is a mathematical discipline that uses the techniques of dif-

ferential and integral calculus, linear and multi-linear algebra to study problems in

geometry. Its applications are pervasive in a wide range of topics such as general the-

ory of relativity, mechanics, control theory, information geometry etc. In the last two

decades, ideas from differential geometry have played a crucial role in establishing

the scientific foundations of robotics. While the most obvious applications of differ-

ential geometry in robotics are robot mechanics and planning, it is also now being

used to solve problems in control theory, computer vision, machine learning etc. Carl

Friedrich Gauss (1777-1855) is considered as the father of differential geometry. He

was a cartographer and many terms in modern differential geometry (chart, atlas,

map, coordinate system, geodesic, etc.) reflect these origins. One of his most impor-

tant contributions was Theorema Egregium which explained why the Earth cannot

be displayed on a map without distortion. The definitions presented here are based

on [Nakahara, 2003] and [Boothby, 2003].

218
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B.1 Basics

The central object in modern differential geometry is the differential manifold. In

this section, basic concepts necessary in order to define a manifold are introduced.

B.1.1 Vector Space

Definition 34 (Vector Space) A vector space (or a linear space) V over a field K is

a set in which two operations, addition and multiplication by an element of K (called

a scalar), are defined. The elements of V (called vectors) should satisfy the following

axioms:

1. Associativity of addition: (u + v) + w = u + (v + w)

2. Commutativity: u + v = v + u

3. Identity element of addition: v + 0 = v ,v ∈ V

4. Inverse element of addition: For any v ∈ V , there exists −v such that v + (−v) =

0.

5. Compatibility of scalar multiplication with field multiplication: a(bv) = (ab)v

6. Identity element of scalar multiplication: 1v = v, where 1 denotes the multiplica-

tive identity in K.

7. Distributivity of scalar multiplication with respect to vector addition: a(u+v) =

au + av

8. Distributivity of scalar multiplication with respect to field addition: (a + b)v =

av + bv

Here, u,v,w ∈ V and the scalars a, b ∈ K.

Vector space has the properties of a commutative group under addition + : V ×V 7→ V

but it has an additional structure of scalar multiplication · : K×V 7→ V which makes

it different from ordinary groups. The simplest example of a vector space over a field

K is the field itself, equipped with its standard addition and multiplication. More

generally n-tuples (a1, a2, . . . , an) of elements of the field K forms a vector space and

is usually called a coordinate space (denoted asKn). For example, R3 is a vector space

and can be used to describe the translation of a rigid body in 3D space. However, the

idea of a vector space is much more abstract. For example, real polynomials of degree

less than or equal to n forms a vector space or the set of functions that are continuous

on R also form a vector space.
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Definition 35 (Basis) A set of linearly independent vectors {ei} is called a basis of

V , if any element v ∈ V is written uniquely as a linear combination of {ei}:

v = v1e1 + v2e2 + . . .+ vnen (B.1)

where vi ∈ K are the components of V with respect to the basis {ei}.

Definition 36 (Dual Vector Space) The dual V ∗ of a vector space V is a vector

space having the same dimension as V and has the property that a scalar product

is defined between V ∗ and V . If u ∈ V and v ∈ V ∗ then the scalar product is written

as u · v =
∑dim(V )

i uivi or alternatively as v · u (due to commutative property of scalar

product).

Definition 37 (Dual Basis) Let E = {e1, e2, . . . ,en} be a basis on V and E∗ =

{e∗
1, e

∗
2, . . . ,e

∗
n} be a basis on its dual vector space V ∗. These bases qualify for a dual

basis if:

e∗
i · ei = δij =

{
1 if i = j

0 otherwise
(B.2)

where δij is the Kronecker delta function. If E and E∗ were matrices containing ei and

e∗
i as their column entries respectively, then one could write E∗T E = I or E∗ = E−T .

Example 12 The standard basis vectors of the Cartesian plane R2 are {e1, e2} =

{[1 0]T , [0 1]T }. The standard basis vectors of its dual space R2∗ are {e∗
1, e

∗
2} =

{[0 1]T , [1 0]T }.

In the context of differential geometry, the tangent plane to a surface at a point is

a vector space whose origin is identified with the point of contact (also known as

tangent space). Its dual space is called a cotangent space.

B.1.2 Topological Space

Definition 38 (Topological Space) Let X be a non-empty set. A topology T on X is

a collection of open subsets of X satisfying the following axioms:

1. The empty set ∅ and X itself belong to T i.e. ∅, X ∈ T .

2. Any arbitrary (finite or infinite) union of members of T still belongs to the open

set T .

3. The intersection of any finite number of members of T still belongs to the open

set T .

A topological space is thus an ordered pair (X,T ).
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If X is a set and T is the collection of all the subsets of X , then axioms (1) − (3)

are automatically satisfied. This topology is called the discrete topology. Let X be

a set and T = {∅, X}. Clearly, T satisfies axioms (1) − (3). This topology is called

the trivial topology. Let X be the real line R. All open intervals (a, b) and their

unions define a topology called the usual topology; a and b may be −∞ and +∞.

respectively.

Example 13 Let X = {a, b, c} be a set and T = {∅, {a}, {a, b}, X} be the collection

of subsets of X inducing a topology. One could easily verify that this choice satisfies

all the above axioms and thus, the pair (X,T ) is a topological space. However, if we

choose T = {∅, {a, b}, {a, c}, X}, then axioms 1 and 2 are satisfied but axiom 3 fails for

e.g. {a, b}∩{a, c} = {a} 6⊂ T and hence the pair (X,T ) is not a topological space in this

case.

Definition 39 (Metric Space) A metric d : X ×X 7→ R is a function which satisfies

the following conditions:

1. d(x, y) = d(y, x)

2. d(x, y) ≥ 0 where the equality holds if and only if x = y.

3. d(x, y) + d(y, z) = d(x, z)

for any x, y, z ∈ X. If X is endowed with a metric d, X becomes a topological space

whose open sets are given by “open discs”,

Uǫ(X) = {y ∈ X | d(x, y) < ǫ} (B.3)

and all their possible unions. The topology T thus defined is called the metric topology

determined by d. The topological space (X,T ) is called a metric space.

The usual topology on Rn includes open balls i.e. Bǫ(x) = {y ∈ Rn | ∑n
i (xi − yi)

2 <

ǫ2} ⊆ Rn as its open sets for any point x ∈ Rn.

Definition 40 (Neighborhood) Suppose T gives a topology to X. N is a neighbor-

hood of a point x ∈ X if N is a subset of X and N contains some (at least one) open set

Ui to which x belongs.

The subset N need not be an open set. If N happens to be an open set in T , it is called

an open neighborhood.

Definition 41 (Homeomorphism) Let X1 and X2 be topological spaces. A map f :

X1 7→ X2 is a homeomorphism if it is continuous and has an inverse f−1 : X2 7→ X1

which is also continuous. If there exists a homeomorphism between X1 and X2 , X1 is

said to be homeomorphic to X2 and vice versa.
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In other words, X1 is homeomorphic to X2 if there exist maps f : X1 7→ X2 and

g : X2 7→ X1 such that f ◦ g = idX2 , and g ◦ f = idX1 . Intuitively speaking, we

suppose the topological spaces are made out of ideal rubber which we can deform at

our will. Two topological spaces are homeomorphic to each other if we can deform

one into the other continuously, that is, without tearing them apart or pasting. For

example, a coffee cup is homeomorphic to a dough-nut.

B.1.3 Manifold

Manifolds are generalizations of our familiar ideas about curves and surfaces to ar-

bitrary dimensional objects. A manifold is a topological space that locally resembles

Euclidean space near each point i.e. each point on a manifold with dimension n has

a neighborhood that is mapped to the Euclidean space of the same dimension. The

examples for one dimensional manifolds include lines and circles and for two dimen-

sional manifolds (also called as surfaces) include plane, sphere, torus etc.

Definition 42 (Manifold) A manifold M is a n-dimensional metric space such that

∀x ∈ M in an open neighborhood U ∈ M around x and it is homeomorphic to n-

dimensional Euclidean space Rn.

An intuitive example to understand the idea of a manifold is that we are living on

the Earth whose surface is S2 , which does not look like R2 globally. However, it looks

like an open subset of R2 locally. Fig. B.1a shows a manifold and illustrates various

associated concepts. The coordinate neighborhood Ui is an open set that cover M

for any index i and the coordinate function φi : Ui 7→ Rn (or simply coordinate) is

a homeomorphism of Ui onto an open subset U ′
i of n-dimensional real space Rn. The

pair (Ui, φi) is called a chart while the whole family of charts {(Ui, φi)} is called an

atlas. The transition map of the atlas φij : φi(Ui ∩ Uj) 7→ φj(Ui ∩ Uj) is the function

defined by φij = φj ◦ φ−1
i . Note that since φi and φj are both homeomorphisms, the

transition map φij is also a homeomorphism.

A differentiable manifold is a topological manifold with a globally defined dif-

ferential structure. Any topological manifold can be given a differential structure

locally by using the homeomorphisms in its atlas and the standard differential struc-

ture on a linear space. To induce a global differential structure on the local coordinate

systems induced by the homeomorphisms, their transition maps in the atlas must be

differentiable functions on the corresponding linear space.

Example 14 Let us work out an atlas of the unit circle S1 given by x2 + y2 = 1 in the

XY -plane as shown in Fig. B.1b. We need at least two charts. Define φ−1
1 : (0, 2π)→ S1

by

φ−1
1 : θ 7→ (cos θ, sin θ) (B.4)
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(a) Manifold and its associated con-
cepts (b) Charts for a unit circle S1

Figure B.1: Manifold: associated concepts and an example

whose image is S1 − {(1, 0)}. Define also φ−1
2 : (−π, π)→ S1 by

φ−1
2 : θ 7→ (cos θ, sin θ) (B.5)

whose image is S1−{(−1, 0)}. Clearly φ−1
1 and φ−1

2 are invertible and all the maps φ1,

φ2, φ−1
1 and φ−1

2 are continuous. Thus, φ1 and φ2 are homeomorphisms. It is also easy

to verify that the maps φ12 = φ2 ◦ φ−1
1 and φ21 = φ1 ◦ φ−1

2 are smooth.

Definition 43 (Product Manifold) Let M be an m-dimensional manifold with an

atlas {(Ui, φi)} and N be an n-dimensional manifold with {(Vj , ψj)}. A product mani-

fold M ×N is an (m+ n)-dimensional manifold whose atlas is {(Ui × Vj), (φi, ψj)}. A

point in M × N is written as (p, q), p ∈ M, q ∈ N , and the coordinate function (φi, ψj)

acts on (p, q) to yield (φi(p), ψj(q)) ∈ Rm+n.

Example 15 The torus T 2 is a product manifold of two circles, T 2 = S1 × S1. If

we denote the polar angle of each circle as θi mod 2π(i = 1, 2), the coordinates of T 2

are (θ1, θ2). Since each S1 is embedded in R2, T 2 may be embedded in R4. We often

imagine T 2 as the surface of a dough-nut in R3, in which case, however, we inevitably

have to introduce bending of the surface. This is an extrinsic feature brought about by

the ‘embedding’. When we say ‘a torus is a flat manifold’, we refer to the flat surface

embedded in R4.

B.2 Calculus on Manifolds

The significance of differentiable manifolds resides in the fact that we may use the

usual calculus developed in Rn. Smoothness of the coordinate transformations en-

sures that the calculus is independent of the coordinates chosen.
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Figure B.2: Differentiable Map

B.2.1 Differentiable Maps

Definition 44 (Differentiable Map) Let f : M 7→ N be a map from an m-

dimensional manifold M to an n-dimensional manifold N i.e. a point p ∈ M is

mapped to a point f(p) ∈ N , via f : p 7→ f(p) (see Fig. B.2). Further, let (U, φ) and

(V, ψ) be coordinate charts on M and N respectively, where p ∈ U and f(p) ∈ V . The

mapping f : M 7→ N is called a differentiable map if the map f̃ = ψ◦f ◦φ−1 : Rm 7→ Rn

is differentiable for all choices of coordinate charts on M and N .

Differentiable maps are also said to be smooth. By definition, the differentiability of

f is independent of the choice of coordinate system.

Definition 45 (Diffeomorphism) Let f : M 7→ N be a homeomorphism and φ and

ψ be coordinate functions as previously defined. If ψ ◦ f ◦ φ−1 is invertible (that is,

there exists a map φ ◦ f−1 ◦ ψ−1) and both ψ ◦ f ◦ φ−1 and φ ◦ f−1 ◦ ψ−1 are infinitely

differentiable (also denoted as C∞), f is called a diffeomorphism and M is said to be

diffeomorphic to N and vice versa, denoted by M ≡ N .

It was noted in Section B.1.2 that homeomorphisms classify topological spaces ac-

cording to whether it is possible to deform one space into another continuously. Dif-

feomorphisms classify spaces according to whether it is possible to deform one space

to another smoothly. Two diffeomorphic spaces are regarded as the same manifold.

Clearly a diffeomorphism is a homeomorphism.

It is now important to introduce two special classes of mappings namely, curves

and functions. An open curve in an m-dimensional manifold M is a map c : (a, b) 7→
M where (a, b) is an open interval such that a < 0 < b. If a curve is closed, it is

regarded as a map c : S1 7→ M . In both cases, the curve c is locally a map from an

open interval to M . On a chart (U, φ), a curve c(t) has the coordinate representation

x = φ ◦ c : R 7→ Rm (see Fig. B.3a). A real-valued function f on M is a smooth
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(a) A Curve on M (b) A function f : M 7→ R

Figure B.3: Curve and function on a manifold

map from M to R. On a chart (U, φ), the coordinate representation of f is given by

f ◦ φ−1 : Rm 7→ R which is a real-valued function of m variables (see Fig. B.3b). We

denote the set of all real valued smooth functions on M in the neighborhood around

point p by F(M).

B.2.2 Tangent and Cotangent Spaces

In differential geometry, one can attach to every point p of a differentiable manifold

M a tangent space TpM – a real vector space that intuitively contains the possible

directions in which one can tangentially pass through p. The elements of the tangent

space at p are called the tangent vectors at p. The manifold and its tangent space has

the same dimensions.

Definition 46 (Tangent Vector, Tangent Space) To define a tangent vector we

need a curve c : (a, b) 7→ M and a function f : M → R, where (a, b) is an open in-

terval containing t = 0. We define the tangent vector at c(0) as a directional derivative

of a function f(c(t)) along the curve c(t) at t = 0. The rate of change of f(c(t)) at t = 0

along the curve is
df(c(t))

dt

∣∣∣∣
t=0

. In terms of local coordinates, we have

df(c(t))

dt

∣∣∣∣
t=0

=
∂f

∂x

dx(c(t))

dt

∣∣∣∣
t=0

(B.6)

where ∂f
∂x

is a little abuse of notation which actually means
∂(f◦φ−1(x))

∂x
. In other words,

df(c(t))
dt

at t = 0 is obtained by applying the differential operator X to f i.e.

df(c(t))

dt

∣∣∣∣
t=0

≡ X[f ] (B.7)
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where the operator expression is given by X = dx(c(t))
dt

∣∣∣∣
t=0

∂
∂x

. It is X which we now de-

fine as the tangent vector to M at p = c(0) along the direction given by the curve c(t).

The tangent vectors to all the curves crossing at p which share the same differential

operator X, form a vector space (see Section B.1.1) called the tangent space of M at

p, denoted by TpM .

Evidently, ei = ∂
∂xi

(1 ≤ i ≤ m) are the basis vectors of TpM , and dimTpM = dimM .

The basis {ei} is called the coordinate basis. If a vector V ∈ TpM is written as

V = Viei, the numbers Vi ∈ R are called the components of V with respect to ei .

By construction, it is obvious that a vector V exists without specifying the coordinate

and that the assignment of the coordinate is simply for our convenience. This coordi-

nate independence of a vector enables us to find the transformation property of the

components of the vector. The basis of TpM need not be {ei}, and we may think of the

linear combinations êi ≡ Aiei, where A = (Ai) ∈ GL(m,R). The basis {êi} is known

as the non-coordinate basis.

Definition 47 (Tangent Bundle) Let M be a manifold of dimension m. The tan-

gent bundle of M , denoted as TM , is a manifold of dimension 2m which is a collec-

tion of all tangent spaces of M and hence is defined by the disjoint union of the tangent

spaces of M i.e.

TM =
⋃

p∈M

TpM . (B.8)

An element of TM will be written as (p,Xp) where p ∈ M and Xp ∈ TpM . There is a

natural projection π : TM 7→M given by π(Xp) = p.

Definition 48 (Cotangent Vector, Cotangent Space) Since TpM is a vector

space, there exists a dual vector space to TpM , whose element is a linear function from

TpM to R. The dual space is called the cotangent space at p, denoted by T ∗
pM and it

has the same dimension as TpM . An element ω : TpM 7→ R of the cotangent space T ∗
pM

is called a cotangent vector which is also a dual vector. Its simplest example is the

differential df of a function f ∈ F(M). The action of a vector V on f is V [f ] ∈ R. Then

the action of df ∈ T ∗
pM on V ∈ TpM is defined by

< df, V >= V [f ] ∈ R . (B.9)

Noting that df is expressed in terms of the local coordinate x = φ(p) as

df(x) =
∂f

∂x1
(x)dx1 + . . .+

∂f

∂xn
(x)dxn (B.10)
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it is natural to regard dxi as a basis of T ∗
pM . Further, its dual basis since

< dxi,
∂

∂xj
>= δij (B.11)

where δij is the Kronecker delta function. Thus an arbitrary cotangent vector can be

written as ω = ωidxi where the ωi are the components of ω.

The notion of tangent bundle can be easily extended to cotangent bundle when ap-

plied to cotangent space. The cotangent bundle is denoted as T ∗M .

Definition 49 (Inner product) The inner product between a tangent vector and

cotangent vector < , >: T ∗
pM × TpM 7→ R is defined by

< ω,V >=< ωidxi, Vj
∂

∂xj
>= ωiVjδij = ωiVj (B.12)

where ω ∈ T ∗
pM and V ∈ TpM .

It should be noted that the inner product is defined between a vector and a dual

vector and not between two vectors or two dual vectors.

B.3 Lie Algebra

Every Lie group has an associated Lie algebra, which is the tangent space around the

identity element of the group (see Appendix A for an introduction to group theory and

Lie groups). That is, the Lie algebra is a vector space generated by differentiating

the group transformations along chosen directions in the space, at the identity trans-

formation. The tangent space has the same structure at all group elements, though

tangent vectors undergo a coordinate transformation when moved from one tangent

space to another. In this section, we will establish basic definitions and concepts used

in the study of Lie Algebra.

B.3.1 Vector Field, Flow

If a vector is assigned smoothly to each point of the manifold M , it is called a vector

field over M . Each point has its own tangent vector space, so a vector field selects

one vector from each space.

Definition 50 (Vector field) A vector field F : M 7→ TM is a mapping from the

manifold M to the tangent bundle TM so that π ◦ F is the identity mapping where

π : TM 7→ M denotes the projection from TM to M . In terms of a local coordinate
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chart (φ,U), a vector field is written as

F (x) = F1(x)
∂

∂x1
+ . . .+ Fn(x)

∂

∂xn
(B.13)

where each Fi is a smooth function defined on an open neighborhood of x = φ(p).

Vector fields represent differential equations on manifolds. Let c : (a, b) 7→ M be a

curve on the manifold. The curve c is said to be an integral curve of the vector field

F if

ċ(t) = F (c(t)) . (B.14)

By the existence and uniqueness theorem for ordinary differential equations, the

existence of integral curves for a given nonzero vector field is guaranteed locally. The

vector field is said to be complete if the domain of definition of the integral curves

can be chosen to be (−∞,∞). In this case, the integral curves of a vector field define

a one-parameter family of diffeomorphisms Φt(q) : M 7→ M with the understanding

that Φt(q) is the point on the integral curve starting from initial condition q at t = 0.

This one parameter family of diffeomorphisms is referred to as the flow of the vector

field F .

B.3.2 Lie Derivative, Lie Brackets and Lie Algebra

Definition 51 (Lie Derivative) Let F be a smooth vector field and f ∈ F(M) a

smooth function on M . The Lie derivative of f with respect to F is a new function

Ff : M ∈ R defined by

Ff(p) = Fpf . (B.15)

In terms of a local coordinate chart (φ,U), if we write F =
∑n

i=1 Fi(x) ∂
∂xi

, then

Ff(x) =
n∑

i=1

∂f

∂xi
Fi(x) (B.16)

where all partial derivatives are evaluated at x = φ(p).

Definition 52 (Lie Brackets) Let F and G be two smooth vector fields. The Lie

bracket of F and G, denoted [F,G], is a new vector field defined by

[F,G]f = F (Gf)−G(Ff) . (B.17)

In terms of local coordinates, if we write F =
∑n

i=1 Fi(x) ∂
∂xi

and G =
∑n

i=1Gi(x) ∂
∂xi

,
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then the Lie bracket vector field [F,G] is given by

[F,G] =
n∑

j=1

(
n∑

i=1

∂Gj

∂xi
Fi −

∂Fj

∂xi
Gi

)
∂

∂xj
. (B.18)

Definition 53 (Lie algebra) A vector space V (over R) is a Lie algebra if there ex-

ists a bilinear operator V × V 7→ V , denoted [·, ·], satisfying

• Skew symmetry: [v, w] = −[w, v] for all v, w ∈ V

• Jacobi identity: [[v, w], z] + [[z, v], w] + [[w, z], v] = 0 for all v, w, z ∈ V

A subspace W ⊂ V is called a Lie subalgebra if [v, w] ∈ W for all v, w ∈ W . The

vector space of all smooth vector fields on a manifold M is an infinite-dimensional Lie

algebra under the Lie bracket operation on vector fields.

B.3.3 Lie Algebra associated with a Lie Group

Let X be a vector field on a Lie group G which is also a smooth manifold. X is left

invariant if (Lg)∗X = X, i.e.

ThLgX(h) = X(gh) (B.19)

for all h ∈ G. Let XL(G) be the set of all left invariant vector fields on G. Then for all

X,Y ∈ XL(G) we have

Lg∗[X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ] . (B.20)

Thus, XL(G) is a Lie subalgebra of the Lie algebra X(G), the set of all vector fields on

G.

For each ξ ∈ TeG, we define a vector field Xξ on G by

Xξ(g) = TeLgξ . (B.21)

Since,
Xξ(gh) = TeLgh · ξ = Te(Lg ◦ Lh) · ξ

= ThLg(TeLh · ξ) = ThLg(Xξ(h)) ,
(B.22)

Xξ is left invariant. The linear maps ρ1 : XL(G) 7→ TeG given by

ρ1(X) = X(e) (B.23)

and ρ2 : TeG 7→ XL(G) given by

ρ2(ξ) = Xξ (B.24)
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satisfy ρ1 ◦ ρ2 = idTeG and ρ2 ◦ ρ1 = idXL(G). Hence, XL(G) and TeG are isomorphic

vector spaces. Defining a Lie bracket in TeG by

[ξ1, ξ2] = [Xξ1 , Xξ2 ](e) , ξ1 , ξ2 ∈ TeG (B.25)

makes TeG into a Lie algebra. The vector space TeG with this Lie algebraic structure

is called the Lie algebra of G and is denoted as g.

B.3.3.1 Translational Group or Euclidean space under addition (Rn,+)

For the translational group (Rn,+), the identity element is e = 0, T0Rn ∼= Rn, and it

is easy to see that the left invariant field defined by v ∈ T0Rn is the constant vector

field Xv(x) = v for all x ∈ Rn. Therefore, the Lie algebra of Rn is Rn itself with the

trivial Lie Bracket [v1,v2] = 0 for all v1,v2 ∈ Rn.

B.3.3.2 Spherical Rotation Group (SO(3), ·)

The Lie algebra of SO(3), denoted so(3), may be identified with the 3 × 3 skew-

symmetric matrices of the form

[ω] =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 (B.26)

with the Lie Bracket structure

[[ω1], [ω2]] = [ω1][ω2]− [ω2][ω1] (B.27)

where [ω1], [ω2] ∈ so(3). We can identity so(3) with R3 using the Equation B.26, which

maps a vector ω ∈ R3 to a matrix [ω] ∈ so(3). It is straight forward to show that

[[ω1], [ω2]] = (ω1 × ω2)∧ (B.28)

where ω1,ω2 ∈ R3. Thus ω 7→ [ω] is a Lie algebra isomorphism between the Lie

algebra (R3,×) and the Lie algebra (so(3), [·, ·]).

B.3.3.3 Special Euclidean Group (SE(3), ·)

The Lie algebra of SE(3), denoted se(3), may be identified with the 4 × 4 matrices of

the form

[V ] =

[
[ω] v

0 0

]
(B.29)
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where ω,v ∈ R3. If

[V 1] =

[
[ω1] v1

0 0

]
[V 2] =

[
[ω2] v2

0 0

]
,

then the Lie Bracket structure is given by

[[V 1], [V 2]] = [V 1][V 2]− [V 2][V 1] =

[
[ω1 × ω2] v1 × ω2 + ω1 × v2

0 0

]
. (B.30)

The vector space se(3) is isomorphic to R6 via the mapping [V ] 7→ V = (v,ω) ∈ R6.
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Algebraic Geometry

“Algebra is nothing more than geometry, in words; geometry is nothing more

than algebra, in pictures.”

– Marie-Sophie Germain, French mathematician (1776-1831)

Algebraic geometry is the study of geometries that come from algebra, in partic-

ular, from rings. In classical algebraic geometry, the algebra is the ring of polyno-

mials, and the geometry is the set of zeros of polynomials, called an algebraic vari-

ety. [Rowland, 2019]

In the following, some basic definitions and concepts from the field of algebraic

geometry are introduced which are useful in the kinematic analysis of robot mech-

anisms. These are based on [Husty, 2017a] which is derived from an introductory

book on algebraic geometry titled “Ideals, Varities and Algorithms” [Cox et al., 2007].

C.1 Basics

Definition 54 (Affine Space) Affine space of n dimensions is written as Kn. Point

in this space will be written as n-tuples (a1, a2, . . . , an) where ai ∈ K , 1 ≤ i ≤ n.

Definition 55 (Monomial) A monomial is a product of power of variables of the

form xα1
1 xα2

2 . . . xαk

k . The exponents αi are condensed into a multi-index α =

(α1, α2, . . . , αn) ∈ Zn
>=0. Using this multi-index notation, a monomial can then be

concisely written as xα.

Definition 56 (Term) A term is a monomial multiplied by an element from the

ground field K expressed as

axα = axα1
1 xα2

2 . . . xαk

k (C.1)

232
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with a ∈ K.

Definition 57 (Polynomial) A polynomial f in x0, . . . , xn with coefficients in a field

K is a finite linear combination of monomials in the form

f =
∑

α

aαx
α, aα ∈ K,α ∈ N .

Definition 58 (Polynomial Ring) The set of all polynomials in x0, . . . , xn with co-

efficients in K is denoted as K[x0, .., xn]. The sum and product of two polynomials

from this set is again a polynomial in K[x0, .., xn] and hence it has the structure of a

commutative ring denoted as K[x].

C.2 Ideals and Affine Varieties

Definition 59 (Ideal) A subset I ⊂ K[x0, .., xn] is an ideal if it satisifies

1. 0 ∈ I,

2. If f, g ∈ I, then f + g ∈ I,

3. If f ∈ I and g ∈ K, then f · g ∈ I.

It follows that almost all the ideals are infinite sets of polynomials and can not be

written down as a whole. The first natural example of an ideal is the ideal generated

by a finite number of polynomials.

Definition 60 Let f1, . . . , fs be polynomials in K[x]. Then the set

I =< f1, . . . , fs >= {g ∈ K[x] : g =
s∑

i

hifi and h1, . . . , hs ∈ K[x]}

is the ideal generated by f1, . . . , fs.

The ideal generated by the given polynomials is the set of all combinations of these

polynomials using coefficients from K[x0, .., xn]. The polynomials f1, . . . , fs form the

so-called basis of the ideal I =< f1, . . . , fs > which is not unique as the same ideal

can be generated by another set of polynomials.

Definition 61 (Affine Variety) For a given ideal I =< f1, . . . , fs >, the set

V (I) = {(a1, .., an) ∈ Kn : fi(a1, .., an) = 0 , 1 ≤ i ≤ s} ⊆ Kn

is called the affine variety of the ideal I. In simple words, affine variety is the set of

all solutions to the system of equations f1(x1, . . . , xn) = . . . = fs(x1, . . . , xn) = 0.
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It follows immediately that all bases of the ideal describe the same variety. In gen-

eral, the variety of an ideal is a more interesting object, not the ideal itself, because

the variety is exactly the set of solutions of the input equations f1, . . . , fs. It should

be noted that the variety does not contain information about the multiplicity of solu-

tions. It is nothing more than a set of points in K[x].

Example 16 The equations for a circle and line are given by x2 + y2 − 1 = 0 and

x+ y − 1 = 0 respectively. Then the ideal generated by these two equations is given by

I =< x2 + y2 − 1, x + y − 1 >⊂ K[x, y] and the corresponding variety V (I) is the set

{(1, 0), (0, 1)} (see Fig. C.1).

(1,0)

(0,1)

Figure C.1: Variety corresponding to the ideal I =< x2 + y2 − 1, x+ y − 1 >

It is possible that different ideals describe the same variety.

Definition 62 (Radical) Let I ⊆ K[x] be an ideal. The set

√
I := {f ∈ K[x] : ∃m ∈ N,m ≥ 1 , fm ∈ I}

is called the radical of I.

The computation of the radical of an ideal I can be seen as reducing it down to the

most important things relevant for its vanishing set V (I).

C.3 Standard Bases

The idea of ordering different terms in polynomial is a key ingredient in polynomial

division and row-reduction algorithms.
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Definition 63 Let xα = xα1
1 . . . xαn

n and xβ = xβ1
1 . . . xβn

n be monomials in K[x] =

K[x0, .., xn]. To order these monomials a monomial ordering or termorder >x on

the set of monomials in K[x] is defined by an ordering > on the n-tuples α, β ∈ Zn
>=0

which has to fulfill the following conditions:

• > is a total ordering on Zn
>=0

• if α > β and γ ∈ Zn
>=0, then α+ γ > β + γ

• every non-empty subset of Zn
>=0 has a smallest element under >

If such an ordering > on Zn
>=0 is given the monomials are ordered using the following

equivalence:

xα >x x
β ⇐⇒ α > β

So, the monomials are ordered by comparing the ordered n-tuples constructed from

the powers of each variable. The most important term orderings are lexicographic

order, graded lex order, graded reverse lex order etc. In the scope of the present text,

we define only the lexicographic order.

Definition 64 (Lexicographic Order) Let α = (α1, . . . , αn) and β = (β1, . . . , βn)

be elements of Zn
>=0. We define α >lex β if the leftmost non-zero entry of the vector

difference α− β ∈ Zn is positive.

Definition 65 (Leading Monomial, Leading Coefficient and Leading Term)

Let f ∈ K[x] be a polynomial with f =
∑

α aαx
α and let >x be a monomial ordering

on K[x]. We define the leading monomial LM(f) as the monomial of f with respect

to >x with highest degree, the leading coefficient LC(f) as the coefficient of the

highest monomial and the leading term as LT (f) = LC(f) · LM(f).

Definition 66 (Gröbner Basis) For a fixed monomial order and an ideal I ∈ K[x],

a finite subset G = g1, . . . , gt of I is called a Gröbner Basis or standard basis if

< LM(g1), . . . , LM(gt) >=< LM(I) >

where LM(I) is the ideal generated by all the leading terms of the elements of I.

Gröbner Basis is a powerful tool and finds many applications in computational

algebra. In the following, we present some of its applications:

1. Solving a system of polynomial equations

Example 17 Let us define an ideal I =< x2 +y+z = 1, x+y2 +z = 1, x+y+z2 =

1 >⊂ Q[x, y, z] and suppose we want to find all the points on the variety of this
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ideal V(I). One can compute the Gröbner basis with the lexicographic order

z <lex y <lex x as the following:

g1 := x+ y + z2 − 1

g2 := y2 − y − z2 + z

g3 := 2yz2 + z4 − z2

g4 := z6 − 4z4 + 4z3 − z2

Thanks to the univariate polynomial (g4), one can compute all its roots easily and using

back substitution in g3, g2, g1, all the points on the ideal V(I) can be calculated. Powerful

computer algebra tools (Maple, Mathematica, MuPAD, Singular etc) can automatically

calculate the Gröebner basis and provide all the solutions.

2. Ideal membership problem: Given a polynomial f ∈ K[x0, .., xn] and an ideal

I =< f1, . . . , fs >, determine if f ∈ I. Combing Gröbner Basis with a division

algorithm, we can solve the ideal membership problem.

Theorem 1 Let G = {g1, . . . , gs} ⊆ K[x0, .., xn] be a Gröbner basis of an ideal

I and f ∈ K[x0, .., xn]. The polynomial f is an element of I if and only if the

remainder of f divided by the ordered s-tuple G is zero, also denoted as f
G

= 0.

Example 18 Let I =< xz−y2, x3−z2 > and we want to check if f = −4x2y2z2 +

y6 + 3z5 belongs to the ideal I. Using graded lexicographic ordering, we compute

the Gröbner basis of the ideal which is given by:

G = {f1, f2, f3, f4, f5} = {xz − y2, x3 − z2, x2y2 − z3, xy4 − z4, y6 − z5}

We may now test the polynomial membership in I by dividing f above by G:

f = (−4xy2z − 4y4)f1 + (−3) · f5 + 0

Since, the remainder is zero, we can see that f ∈ I.

3. Implicitization problem: Suppose that the parametric equations

x1 = f1(t1, . . . , tm)

...

xn = fn(t1, . . . , tm)

(C.2)

define a subset of an algebraic variety V in Kn. Find out the polynomial equa-

tions in xi that define V .

We can study the affine variety in Km+n defined by Equation Equation C.2 by
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eliminating the variables t1, . . . , tm from these equations. This can be done by

computing the Gröbner basis with lexicographic ordering t1 > . . . > tm > x1 >

. . . > xn. This choice of ordering should eliminate t1, . . . , tm and we will be left

with candidates of equations of V .

Example 19 Consider a parametric curve V defined by x = t4, y = t3, z = t2 in

C3. We compute the Gröbner basis G of the ideal I =< x− t4, y− t3, z− t2 > using

the lexicographic ordering C[t, x, y, z] and we find that

G = {−t2 + z, ty − z2, tz − y, x− z2, y2 − z3}

The last two polynomials depend only on x, y, z so they define the affine variety

in C3 containing our curve V .

C.4 Dimension, Primary Decomposition

The most important invariant of a linear subspace of affine space is its dimension. It

happens quite often that one is interested in the dimension of a variety.

Theorem 2 Let V = V (I) be an affine variety where I ⊂ K[x0, .., xn] is an ideal. If

the ground field K is algebraically closed, then the dimension of V is the maximum

dimension of the coordinate subspace1 in V (< LT (I) >).

Another possibility is to compute the Hilbert dimension of the algebraic variety. If the

Hilbert dimension is zero, it means that there are finite number of intersections be-

tween the polynomials that constitute the corresponding ideal. If the variety contains

parts with different dimensions, then the dimension of the whole variety is defined

to be the largest of these numbers. A proposal to define the degree of freedom of a

mechanism based on the Hilbert dimension of the ideal of the constraint polynomials

was proposed in [Husty and Schröcker, 2011].

Example 20 Consider an ideal I =< (2x1 − x2 − 2)x1, (2x1 − x2 − 2)x2
2 > whose

vanishing set V (I) is a union of a line described by 2x1 − x2 − 2 and an isolated point

(0, 0). The Hilbert dimension of the I is 1 which is the larger of the line and isolated

point.

If the variety is composed of simpler varieties as in the example above, it is also

interesting to study its decomposition. To do that, we introduce some preliminary

concepts in that direction.

1In Kn , a vector subspace defined by setting some subset of the variables x1, . . . , xn equal to zero is
called a coordinate subspace.
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Figure C.2: Variety V (< x3 − xy3 >) as the union of two varities V (< x >) and
V (< x2 − y3 >)

Definition 67 (Ideal Intersection) The intersection of the two ideals I and J in

K[x], I ∩ J , is the set of polynomials which belong to both I and J .

The intersection of ideals is equivalent to the union of corresponding varieties accord-

ing to the following theorem.

Theorem 3 If I and J are two ideals in K[x], then V (I ∩ J ) = V (I) ∪ V (J ).

A primary ideal and a prime ideal are defined as follows.

Definition 68 (Primary Ideal) An ideal I ⊆ K[x] is primary if fg ∈ I implies either

f ∈ I or some power gm ∈ I for m > 0.

Definition 69 (Prime Ideal) An ideal I ⊆ K[x] is prime if fg ∈ I implies either

f ∈ I or g ∈ I.

In this light, the following theorem is stated.

Theorem 4 Every ideal I ⊆ K[x] can be written as a finite intersection of primary

ideals.

Example 21 < x2 > is a primary ideal, but not prime ideal.

Definition 70 (Primary Decomposition) A primary decomposition of a given

ideal I is an expression of I as an intersection of primary ideals, namely I = ∩r
i=1Qi.

Such a decomposition is called minimal if the radicals
√Qi are all different and

Qi + ∩r
i6=jQj . Furthermore, if no radical

√Qi is strictly contained in another radical
√Qj , then the primary components are uniquely determined. The radicals

√Qi =: Pi

are the corresponding prime ideals.
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Example 22 The primary decomposition of the ideal < x3−xy3 >⊂ K[x, y] yields two

prime ideals < x > and < x2 − y3 >. Fig. C.2 shows the primary decomposition of the

ideal as the union of its corresponding varieties.
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Screw Theory

“The description of right lines and circles, upon which geometry is founded, be-

longs to mechanics. Geometry does not teach us to draw these lines, but requires

them to be drawn.”

– Sir Issac Newton, English mathematician (1642-1727)

Screw theory is the algebra and calculus of pairs of vectors, such as forces and mo-

ments and angular and linear velocity, that arise in the kinematics and dynamics of

rigid bodies. Expressing the motion of a rigid body as a combination of a rotation and

a translation about a line was first proposed by Chasles (1830) and further developed

by Poinsot (1848). Then, Julius Plücker came up with a way to assign six homoge-

nous coordinates for a line [Plücker, 1865]. In 1876, Sir Robert Stawell Ball devel-

oped a mathematical framework of screw theory for applications in rigid body me-

chanics [Ball, 1876]. K.H. Hunt [Davidson and Hunt, 2004] further developed screw

theory with a geometrical emphasis. Using line geometry, the major contribution of

Hunt was to classify the various screw systems.

D.1 Basics

Theorem 5 (Chasles’ Theorem) The most general motion of a rigid body consists

of a rotation about a line in space together with a translation along it. Such a quantity

is called twist or spatial velocity.

V =

[
ω

v

]
∈ R6 (D.1)

Theorem 6 (Poinsot’s Theorem) The most general force that can act on a rigid

body consists of a linear force acting along a line in space, together with a moment

240
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acting about it. Such a quantity is called a wrench or spatial force.

W =

[
m

f

]
∈ R6 (D.2)

(a) Plücker coordinates of a line L (b) Screw motion

Figure D.1: Screw representation with Plücker coordinates of a line along the screw
axis and the pitch, Fig. D.1b is adapted from [Lynch and Park, 2017]

Definition 71 (Plücker coordinates of a line) The Plücker coordinates of a line L
defined by two points in 3-D Euclidean space is given by the unit direction vector

between those points ŝ and a moment vector so × ŝ (see Fig. D.1a for a visualization).

L =

[
ŝ

so × ŝ

]
(D.3)

Definition 72 (Screw) A screw S is defined by a unit direction axis ŝ, the position

of a point so on this axis with respect to a reference frame and pitch h (see Fig. D.1b).

S =

[
ŝ

so × ŝ + hŝ

]
∈ R6 (D.4)

It is to be noted that setting h = 0, the vector

[
ŝ

so × ŝ

]
are the Plücker coordinates

of a line along the screw axis. Geometrically, a screw is determined by the Plücker

coordinates of a line along the screw axis and a pitch (see Fig. D.1). In classical screw

theory literature, it is often denoted as $.

Once, we have defined the notion of a screw V , a twist can be interpreted in terms

of this screw and a velocity θ̇ about it. The expression for the twist is given by V = Sθ̇.

[
ω

v

]
=

[
ŝ

so × ŝ + hŝ

]
θ̇ =

[
ŝθ̇

−ŝθ̇ × so + hŝθ̇

]
(D.5)
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Note that the linear velocity v is the sum of two terms: one due to translation along

the screw axis hŝθ̇ and other due to the linear motion induced by rotation about the

axis −sθ̇ × so. The first term ŝ is in the direction of the screw axis and second term

is in the plane orthogonal to ŝ. Recalling the scalar-1 and vector-2 triple product

identities, it is easy to show that, for any V = (ω,v) where ω 6= 0, there exists an

equivalent screw axis {so, ŝ, h} and velocity θ̇ where:

θ̇ = ‖ω‖ ŝ =
ω

‖ω‖ h =
ω · v
‖ω‖ so =

ω × v

‖ω‖ (D.6)

If ω = 0, then the pitch h of the screw is infinite. In this case, ŝ is chosen as v/‖v‖
and θ̇ is interpreted as linear velocity ‖v‖ along ŝ.

The screws can be classified into three basic types:

• zero-pitch screws: corresponds to pure rotation movements with h = 0, S0 =[
ŝ

so × ŝ

]

• infinite-pitch screws: corresponds to pure translation movements with h = ∞,

S∞ =

[
03×1

ŝ

]

• finite-pitch screws: h 6= 0, h 6= ∞. These can be written as a linear combination

of the zero pitch screw S0 and the infinite pitch screw S∞.

Definition 73 (Normalized or Unit Screw) For a given reference frame, a screw

axis S is written as

S =

[
ω

v

]
∈ R6 (D.7)

where either (i) ‖ω‖ = 1 or (ii) ‖ω‖ = 0 and ‖v‖ = 1. If (i) holds, then v = −ω×so +hω.

If (ii) holds, then the pitch of the screw is infinite and the twish is the translation along

the axis defined by v [Lynch and Park, 2017].

D.2 Reciprocity Conditions

The dot product between twists and wrenches gives the instantaneous power asso-

ciated with moving a rigid body through an applied force. A wrench F is said to be

reciprocal to a twist V if this instantaneous power is zero i.e. F · V = 0. Since both

twists and wrenches can be represented by screws, we can use them to define the

notion of reciprocal screws.

1a · (b × c) = b · (c × a) = c · (a × b)
2a × (b × c) = b(a · c) − c(a · b)
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Screw 1 Screw 2 Reciprocity condition

S0 S∞ orthogonal axes
S∞ S0 orthogonal axes
S0 S0 coplanar axes
S∞ S∞ always reciprocal

Table D.1: Reciprocity conditions

Definition 74 (Reciprocal Screws) Two screws S1 and S2 are said to be reciprocal

if the twist V about S1 and the wrench F along S2 are reciprocal. This is equivalent

to the following condition:

S1 ⊙ S2 = (ΠS1)T S2 = 0 where Π =

[
03×3 I3×3

I3×3 03×3

]
(D.8)

where ⊙ denotes the reciprocal product of two screws and expressions for S1 and S2

are given by:

S1 =

[
ŝ1

so1 × ŝ1 + h1ŝ1

]
,S2 =

[
so2 × ŝ2 + h2ŝ2

ŝ2

]
. (D.9)

Table D.1 presents some important examples of two reciprocal screws. The notion of

reciprocal screws is important in the analysis of parallel mechanisms as well contact

modeling.

D.3 Screw Systems

Definition 75 (Screw System) A screw system of dimension n (0 ≤ n ≤ 6) com-

prises of n linearly independent screws that result in a n degree-of-freedom system.

[Davidson and Hunt, 2004] provides an extensive treatment on all screw systems,

the one-system to the five-system, in their general and special forms. The one-system

consists of one screw. The two-system comprises of ∞1 screws and the general ruled

surface on which these screws lie is a cylindroid. The three-system comprises of ∞2

screws and the general ruled surface on which these screws lie is a hyperboloid and

so on. These screw systems explain the transitory mobility of spatial linkages which

can be extended to full-cycle mobility for a great number of linkages.

D.3.1 Serial Robots

The twist system T of a serial kinematic chain with n degrees of freedom is the linear

combination of the twist systems of its kinematic joints T i. Its wrench system is the
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intersection of the wrench systems of its kinematic jointsW i.

T =
n⊕

i=1

T i , W =
n⋂

i=1

W i (D.10)

Hence, it is easier to find the twist system of a serial mechanism and its wrench

system can be computed by finding the reciprocal of its twist system.

D.3.2 Parallel Robots

The twist system T of a PKM consisting of a set of m serial kinematic chains is the

intersection of the twist system from each serial kinematic chain T i. Its wrench

system is the linear combination of the wrench system from each serial kinematic

chainW i:

T =
m⋂

i=1

T i , W =
m⊕

i=1

W i (D.11)

Hence, during the analysis, it is easier to find the wrench system of the whole PM

as the sum of wrench systems of the individual legs and then finding the reciprocal

twist of the whole manipulator.

D.4 Actuation and Constraint Wrench Systems

A spatial parallel manipulator consists of a total wrench system of dimension 6. It

can be considered as the linear combination of actuation wrench system,Wa and con-

straint wrench system,Wc.

If the PM has n number of legs, each leg has a twist system Ti, (i = 1, ..., n) of dimen-

sion t. Hence, the constraint wrench system,Wc
i of each leg will be of dimension 6− t.

Constraint wrench system of the manipulator of dimension c would be:

Wc =Wc
1 ⊕Wc

2 ⊕ ...⊕Wc
n (D.12)

If each leg has n(< t) unactuated joints, the wrench system reciprocal to unactuated

joints is of dimension 6 − n. Then, actuation wrench system of each leg consists

of wrenches that do not belong to Wc. Hence, the actuation wrench of the whole

manipulator dimension 6− c would be:

Wa =Wa
1 ⊕Wa

2 ⊕ ...⊕Wa
n (D.13)

Therefore, the total wrench system of the PM can be found as

W =Wa ⊕Wc (D.14)
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In general configuration, the constraint and actuation wrench systems of parallel

manipulators form a 6-system. It means that by locking the actuators, the moving

platform must be fully constrained, otherwise the manipulator reaches parallel sin-

gularity [Kong and Gosselin, 2007].

Based on the theory of reciprocal screws [Davidson and Hunt, 2004,

Kong and Gosselin, 2007], Joshi and Tsai [Joshi and Tsai, 2002] developed a

methodology to express 6 × 6 Jacobian matrix for lower-mobility PMs that includes

constraint and actuation wrenches. The active joint velocity vector q̇a is related to

the platform twist V p by the following relation.

q̇a =WaV p (D.15)

Further, the constraint wrench system and the platform twish are related.

0 =WcV p (D.16)

Combining Equation D.15 and Equation D.16, one could arrive at the following equa-

tion. [
q̇a

0

]

︸ ︷︷ ︸
q̇o

=

[
Wa

Wc

]

︸ ︷︷ ︸
JE

V p (D.17)

One could notice in the above equation that JE is the concatenation of actuation and

constraint wrenches of the PM and is also referred to as extended Jacobian of a PM.
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