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Abstract

Fact triples are a common form of structured
knowledge used within the biomedical domain.
As the amount of unstructured scientific texts
continues to grow, manual annotation of these
texts for the task of relation extraction be-
comes increasingly expensive. Distant super-
vision offers a viable approach to combat this
by quickly producing large amounts of labeled,
but considerably noisy, data. We aim to reduce
such noise by extending an entity-enriched re-
lation classification BERT model to the prob-
lem of multiple instance learning, and defin-
ing a simple data encoding scheme that signif-
icantly reduces noise, reaching state-of-the-art
performance for distantly-supervised biomed-
ical relation extraction. Our approach further
encodes knowledge about the direction of rela-
tion triples, allowing for increased focus on re-
lation learning by reducing noise and alleviat-
ing the need for joint learning with knowledge
graph completion.

1 Introduction

Relation extraction (RE) remains an important nat-
ural language processing task for understanding the
interaction between entities that appear in texts. In
supervised settings (GuoDong et al., 2005; Zeng
et al., 2014; Wang et al., 2016), obtaining fine-
grained relations for the biomedical domain is chal-
lenging due to not only the annotation costs, but
the added requirement of domain expertise. Distant
supervision (DS), however, provides a meaning-
ful way to obtain large-scale data for RE (Mintz
et al., 2009; Hoffmann et al., 2011), but this form of
data collection also tends to result in an increased
amount of noise, as the target relation may not al-
ways be expressed (Takamatsu et al., 2012; Ritter
et al., 2013). Exemplified in Figure 1, the last two
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Figure 1: Example of a distantly supervised bag of sen-
tences for a knowledge base tuple (neurofibromatosis 1,
breast cancer) with special order sensitive entity mark-
ers to capture the position and the latent relation direc-
tion with BERT for predicting the missing relation.

sentences can be seen as potentially noisy evidence,
as they do not explicitly express the given relation.

Since individual instance labels may be unknown
(Wang et al., 2018), we instead build on the recent
findings of Wu and He (2019) and Soares et al.
(2019) in using positional markings and latent re-
lation direction (Figure 1), as a signal to mitigate
noise in bag-level multiple instance learning (MIL)
for distantly supervised biomedical RE. Our ap-
proach greatly simplifies previous work by Dai
et al. (2019) with following contributions:

• We extend sentence-level relation enriched
BERT (Wu and He, 2019) to bag-level MIL.

• We demonstrate that the simple applications
of this model under-perform and require
knowledge base order-sensitive markings, k-
tag, to achieve state-of-the-art performance.
This data encoding scheme captures the latent
relation direction and provides a simple way
to reduce noise in distant supervision.

• We make our code and data creation pipeline
publicly available: https://github.com/

suamin/umls-medline-distant-re

https://github.com/suamin/umls-medline-distant-re
https://github.com/suamin/umls-medline-distant-re
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2 Related Work

In MIL-based distant supervision for corpus-level
RE, earlier works rely on the assumption that at
least one of the evidence samples represent the
target relation in a triple (Riedel et al., 2010; Hoff-
mann et al., 2011; Surdeanu et al., 2012). Recently,
piecewise convolutional neural networks (PCNN)
(Zeng et al., 2014) have been applied to DS (Zeng
et al., 2015), with notable extensions in selective at-
tention (Lin et al., 2016) and the modelling of noise
dynamics (Luo et al., 2017). Han et al. (2018a) pro-
posed a joint learning framework for knowledge
graph completion (KGC) and RE with mutual atten-
tion, showing that DS improves downstream KGC
performance, while KGC acts as an indirect signal
to filter textual noise. Dai et al. (2019) extended
this framework to biomedical RE, using improved
KGC models, ComplEx (Trouillon et al., 2017) and
SimplE (Kazemi and Poole, 2018), as well as ad-
ditional auxiliary tasks of entity-type classification
and named entity recognition to mitigate noise.

Pre-trained language models, such as BERT (De-
vlin et al., 2019), have been shown to improve the
downstream performance of many NLP tasks. Rel-
evant to distant RE, Alt et al. (2019) extended the
OpenAI Generative Pre-trained Transformer (GPT)
model (Radford et al., 2019) for bag-level MIL
with selective attention (Lin et al., 2016). Sun et al.
(2019) enriched pre-training stage with KB entity
information, resulting in improved performance.
For sentence-level RE, Wu and He (2019) proposed
an entity marking strategy for BERT (referred to
here as R-BERT) to perform relation classification.
Specifically, they mark the entity boundaries with
special tokens following the order they appear in
the sentence. Likewise, Soares et al. (2019) studied
several data encoding schemes and found marking
entity boundaries important for sentence-level RE.
With such encoding, they further proposed a novel
pre-training scheme for distributed relational learn-
ing, suited to few-shot relation classification (Han
et al., 2018b).

Our work builds on these findings, in particular,
we extend the BERT model (Devlin et al., 2019) for
bag-level MIL, similar to Alt et al. (2019). More
importantly, noting the significance of sentence-
ordered entity marking in sentence-level RE (Wu
and He, 2019; Soares et al., 2019), we introduce
the knowledge-based entity marking strategy suited
to bag-level DS. This naturally encodes the infor-
mation stored in KB, reducing the inherent noise.

3 Bag-level MIL for Distant RE

3.1 Problem Definition
Let E and R represent the set of entities and re-
lations from a knowledge base KB, respectively.
For h, t ∈ E and r ∈ R, let (h, r, t) ∈ KB be a
fact triple for an ordered tuple (h, t). We denote all
such (h, t) tuples by a set G+, i.e., there exists some
r ∈ R for which the triple (h, r, t) belongs to the
KB, called positive groups. Similarly, we denote
by G− the set of negative groups, i.e., for all r ∈ R,
the triple (h, r, t) does not belong to KB. The union
of these groups is represented by G = G+ ∪ G− 1.
We denote by Bg = [s

(1)
g , ..., s

(m)
g ] an unordered se-

quence of sentences, called bag, for g ∈ G such that
the sentences contain the group g = (h, t), where
the bag size m can vary. Let f be a function that
maps each element in the bag to a low-dimensional
relation representation [r

(1)
g , ..., r

(m)
g ]. With o, we

represent the bag aggregation function, that maps
instance level relation representation to a final bag
representation bg = o(f(Bg)). The goal of dis-
tantly supervised bag-level MIL for corpus-level
RE is then to predict the missing relation r given
the bag.

3.2 Entity Markers
Wu and He (2019) and Soares et al. (2019) showed
that using special markers for entities with BERT in
the order they appear in a sentence encodes the po-
sitional information that improves the performance
of sentence-level RE. It allows the model to focus
on target entities when, possibly, other entities are
also present in the sentence, implicitly doing entity
disambiguation and reducing noise. In contrast,
for bag-level distant supervision, the noisy channel
be attributed to several factors for a given triple
(h, r, t) and bag Bg:

1. Evidence sentences may not express the rela-
tion.

2. Multiple entities appearing in the sentence,
requiring the model to disambiguate target
entities among other.

3. The direction of missing relation.

4. Discrepancy between the order of the target
entities in the sentence and knowledge base.

To address (1), common approaches are to learn a
negative relation class NA and use better bag ag-
gregation strategies (Lin et al., 2016; Luo et al.,

1The sets are disjoint, G+ ∩ G− = ∅
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2017; Alt et al., 2019). For (2), encoding posi-
tional information is important, such as, in PCNN
(Zeng et al., 2014), that takes into account the rela-
tive positions of head and tail entities (Zeng et al.,
2015), and in (Wu and He, 2019; Soares et al.,
2019) for sentence-level RE. To account for (3) and
(4), multi-task learning with KGC and mutual at-
tention has proved effective (Han et al., 2018a; Dai
et al., 2019). Simply extending sentence sensitive
marking to bag-level can be adverse, as it enhances
(4) and even if the composition is uniform, it dis-
tributes the evidence sentence across several bags.
On the other hand, expanding relations to multiple
sub-classes based on direction (Wu and He, 2019),
enhances class imbalance and also distributes sup-
porting sentences. To jointly address (2), (3) and
(4), we introduce KB sensitive encoding suitable
for bag-level distant RE.

Formally, for a group g = (h, t) and a match-
ing sentence s(i)g with tokens (x0, ..., xL)2, we add
special tokens $ and ˆ to mark the entity spans as:
Sentence ordered: Called s-tag, entities are
marked in the order they appear in the sentence.
Following Soares et al. (2019), let s1 = (i, j)
and s2 = (k, l) be the index pairs with 0 <
i < j − 1, j < k, k ≤ l − 1 and l ≤ L de-
limiting the entity mentions e1 = (xi, ..., xj) and
e2 = (xk, ..., xl) respectively. We mark the bound-
ary of s1 with $ and s2 with ˆ. Note, e1 and e2 can
be either h or t.
KB ordered: Called k-tag, entities are marked in
the order they appear in the KB. Let sh = (i, j)
and st = (k, l) be the index pairs delimiting head
(h) and tail (t) entities, irrespective of the order
they appear in the sentence. We mark the boundary
of sh with $ and st with ˆ.

The s-tag annotation scheme is followed by
Soares et al. (2019) and Wu and He (2019) for
span identification. In Wu and He (2019), each
relation type r ∈ R is further expanded to two
sub-classes as r(e1, e2) and r(e2, e1) to capture di-
rection, while holding the s-tag annotation as fixed.
For DS-based RE, since the ordered tuple (h, t) is
given, the task is reduced to relation classification
without direction. This side information is encoded
in data with k-tag, covering (2) but also (3) and
(4). To account for (1), we also experiment with
selective attention (Lin et al., 2016) which has been
widely used in other works (Luo et al., 2017; Han
et al., 2018a; Alt et al., 2019).

2x0 =[CLS] and xL =[SEP]

Figure 2: Multiple instance learning (MIL) based bag-
level relation classification BERT with KB ordered en-
tity marking (Section 3.2). Special markers $ and ˆ al-
ways delimit the span of head (hs, he) and tail (ts, te)
entities regardless of their order in the sentence. The
markers captures the positions of entities and latent re-
lation direction.

3.3 Model Architecture
BERT (Devlin et al., 2019) is used as our base
sentence encoder, specifically, BioBERT (Lee
et al., 2020), and we extend R-BERT (Wu and
He, 2019) to bag-level MIL. Figure 2 shows the
model’s architecture with k-tag. Consider a bag
Bg of size m for a group g ∈ G representing the
ordered tuple (h, t), with corresponding spans
Sg = [(s

(1)
h , s

(1)
t ), ..., (s

(m)
h , s

(m)
t )] obtained with

k-tag, then for a pair of sentences in the bag and
spans, (s(i), (s

(i)
h , s

(i)
t )), we can represent the

model in three steps, such that the first two steps
represent the map f and the final step o, as follows:

1. SENTENCE ENCODING: BERT is applied to the
sentence and the final hidden state H

(i)
0 ∈ Rd, cor-

responding to the [CLS] token, is passed through
a linear layer3 W(1) ∈ Rd×d with tanh(.) activa-
tion to obtain the global sentence information in
h
(i)
0 .

2. RELATION REPRESENTATION: For the head en-
tity, represented by the span s(i)h = (j, k) for k > j,
we apply average pooling 1

k−j+1

∑k
n=j H

(i)
n , and

similarly for the tail entity with span s(i)t = (l,m)

for m > l, we get 1
m−l+1

∑m
n=l H

(i)
n . The

pooled representations are then passed through a
shared linear layer W(2) ∈ Rd×d with tanh(.)

activation to get h
(i)
h and h

(i)
t . To get the fi-

nal latent relation representation, we concatenate
the pooled entities representation with [CLS] as
r
(i)
g = [h

(i)
0 ;h

(i)
h ;h

(i)
t ] ∈ R3d.

3Each linear layer is implicitly assumed with a bias vector
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3. BAG AGGREGATION: After applying the first
two steps to each sentence in the bag, we obtain
[r

(1)
g , ..., r

(m)
g ]. With a final linear layer consisting

of a relation matrix Mr ∈ R|R|×3d and a bias vec-
tor br ∈ R|R|, we aggregate the bag information
with o in two ways:
Average: The bag elements are averaged as:

bg =
1

m

m∑
i=1

r(i)g

Selective attention (Lin et al., 2016): For a row r
in Mr representing the relation r ∈ R, we get the
attention weights as:

αi =
exp(rT r

(i)
g )∑m

j=1 exp(r
T r

(j)
g )

bg =

m∑
i=1

αir
(i)
g

Following bg, a softmax classifier is applied to pre-
dict the probability p(r|bg; θ) of relation r being a
true relation with θ representing the model param-
eters, where we minimize the cross-entropy loss
during training.

4 Experiments

4.1 Data
Similar to (Dai et al., 2019), UMLS4 (Bodenreider,
2004) is used as our KB and MEDLINE abstracts5

as our text source. A data summary is shown in
Table 1 (see Appendix A for details on the data cre-
ation pipeline). We approximate the same statistics
as reported in Dai et al. (2019) for relations and
entities, but it is important to note that the data does
not contain the same samples. We divided triples
into train, validation and test sets, and following
(Weston et al., 2013; Dai et al., 2019), we make
sure that there is no overlapping facts across the
splits. Additionally, we add another constraint, i.e.,
there is no sentence-level overlap between the train-
ing and held-out sets. To perform groups negative
sampling, for the collection of evidence sentences
supporting NA relation type bags, we extend KGC
open-world assumption to bag-level MIL (see A.3).
20% of the data is reserved for testing, and of the
remaining 80%, we use 10% for validation and the
rest for training.

4We use 2019 release: umls-2019AB-full
5https://www.nlm.nih.gov/bsd/medline.

html

Table 1: Overall statistics of the data.

Triples Entities Relations Pos. Groups Neg. Groups

169,438 27,403 355 92,070 64,448

4.2 Models and Evaluation

We compare each tagging scheme, s-tag and k-tag,
with average (avg) and selective attention (attn) bag
aggregation functions. To test the setup of Wu and
He (2019), which follows s-tag, we expand each
relation type (exprels) r ∈ R to two sub-classes
r(e1, e2) and r(e2, e1) indicating relation direction
from first entity to second and vice versa. For all
experiments, we used batch size 2, bag size 16 with
sampling (see A.4 for details on bag composition),
learning rate 2e−5 with linear decay, and 3 epochs.
As the standard practice (Weston et al., 2013), eval-
uation is performed through constructing candidate
triples by combining the entity pairs in the test set
with all relations (except NA) and ranking the re-
sulting triples. The extracted triples are matched
against the test triples and the precision-recall (PR)
curve, area under the PR curve (AUC), F1 measure,
and Precision@k, for k in {100, 200, 300, 2000,
4000, 6000} are reported.

4.3 Results

Performance metrics are shown in Table 2 and plots
of the resulting PR curves in Figure 3. Since our
data differs from Dai et al. (2019), the AUC cannot
be directly compared. However, Precision@k indi-
cates the general performance of extracting the true
triples, and can therefore be compared. Generally,
models annotated with k-tag perform significantly
better than other models, with k-tag+avg achieving
state-of-the-art Precision@{2k,4k,6k} compared
to the previous best (Dai et al., 2019). The best
model of Dai et al. (2019) uses PCNN sentence
encoder, with additional tasks of SimplE (Kazemi
and Poole, 2018) based KGC and KG-attention,
entity-type classification and named entity recog-
nition. In contrast our data-driven method, k-tag,
greatly simplifies this by directly encoding the KB
information, i.e., order of the head and tail en-
tities and therefore, the latent relation direction.
Consider again the example in Figure 1 where our
source triple (h, r, t) is (neurofibromatosis 1, asso-
ciated genetic condition, breast cancer), and only
last sentence has the same order of entities as KB.
This discrepancy is conveniently resolved (note in
Figure 2, for last sentence the extracted entities

https://www.nlm.nih.gov/bsd/medline.html
https://www.nlm.nih.gov/bsd/medline.html
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Table 2: Relation extraction results for different model configurations and data splits.

Model Bag Agg. AUC F1 P@100 P@200 P@300 P@2k P@4k P@6k

Dai et al. (2019) - - - - - - .913 .829 .753

s-tag
avg .359 .468 .791 .704 .649 .504 .487 .481
attn .122 .225 .587 .563 .547 .476 .441 .418

s-tag+exprels
avg .383 .494 .508 .519 .521 .507 .508 .511
attn .114 .216 .459 .476 .482 .504 .496 .484

k-tag
avg .684 .649 .974 .983 .986 .983 .977 .969
attn .314 .376 .967 .941 .925 .857 .814 .772

sentence order is flipped to KG order when con-
catenating, unlike s-tag) with k-tag. We remark
that such knowledge can be seen as learned, when
jointly modeling with KGC, however, considering
the task of bag-level distant RE only, the KG triples
are known information and we utilize this informa-
tion explicitly with k-tag encoding.

As PCNN (Zeng et al., 2015) can account for the
relative positions of head and tail entities, it also
performs better than the models tagged with s-tag
using sentence order. Similar to Alt et al. (2019)6,
we also note that the pre-trained contextualized
models result in sustained long tail performance.
s-tag+exprels reflects the direct application of Wu
and He (2019) to bag-level MIL for distant RE. In
this case, the relations are explicitly extended to
model entity direction appearing first to second in
the sentence, and vice versa. This implicitly intro-
duces independence between the two sub-classes
of the same relation, limiting the gain from shared
knowledge. Likewise, with such expanded rela-
tions, class imbalance is further enhanced to more
fine-grained classes.

Though selective attention (Lin et al., 2016) has
been shown to improve the performance of distant
RE (Luo et al., 2017; Han et al., 2018a; Alt et al.,
2019), models in our experiments with such an
attention mechanism significantly underperformed,
in each case bumping the area under the PR curve
and making it flatter. We note that more than 50%
of bags are under-sized, in many cases, with only
1-2 sentences, requiring repeated over-sampling to
match fixed bag size, therefore, making it difficult
for attention to learn a distribution over the bag
with repetitions, and further adding noise. For such
cases, the distribution should ideally be close to
uniform, as is the case with averaging, resulting in
better performance.

6Their model does not use any entity marking strategy.

Figure 3: Precision-Recall (PR) curve for different
models. We see that the models with k-tag perform
better than the s-tag with average aggregation showing
consistent performance for long-tail relations.

5 Conclusion

This work extends BERT to bag-level MIL and in-
troduces a simple data-driven strategy to reduce the
noise in distantly supervised biomedical RE. We
note that the position of entities in sentence and the
order in KB encodes the latent direction of relation,
which plays an important role for learning under
such noise. With a relatively simple methodology,
we show that this can sufficiently be achieved by
reducing the need for additional tasks and high-
lighting the importance of data quality.
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A Data Pipeline

In this section, we explain the steps taken to create
the data for distantly-supervised (DS) biomedical
relation extraction (RE). We highlight the impor-
tance of a data creation pipeline as the quality of
data plays a key role in the downstream perfor-
mance of our model. We note that a pipeline is like-
wise important for generating reproducible results,
and contributes toward the possibility of having
either a benchmark dataset or a repeatable set of
rules.

A.1 UMLS processing
The fact triples were obtained for English con-
cepts, filtering for RO relation types only (Dai et al.,
2019). We collected 9.9M (CUI head, relation text,
CUI tail) triples, where CUI represents the concept
unique identifier in UMLS.

A.2 MEDLINE processing
From 34.4M abstracts, we extracted 160.4M unique
sentences. To perform fast and scalable search, we
use the Trie data structure7 to index all the tex-
tual descriptions of UMLS entities. In obtaining
a clean set of sentences, we set the minimum and
maximum sentence character length to 32 and 256
respectively, and further considered only those sen-
tences where matching entities are mentioned only
once. The latter decision is to lower the noise that
may come when only one instance of multiple oc-
currences is marked for a matched entity. With
these constraints, the data was reduced to 118.7M
matching sentences.

A.3 Groups linking and negative sampling
Recall the entity groups G = G+∪G− (Section 3.1).
For training with NA relation class, we generate
hard negative samples with an open-world assump-
tion (Soares et al., 2019; Lerer et al., 2019) suited to
bag-level multiple instance learning (MIL). From
9.9M triples, we removed the relation type and col-
lected 9M CUI groups in the form of (h, t). Since
each CUI is linked to more than one textual form,
all of the text combinations for two entities must
be considered for a given pair, resulting in 531M
textual groups T for the 586 relation types.

Next, for each matched sentence, let P2
s denote

the size 2 permutations of entities present in the
sentence, then T ∩ P2

s return groups which are
present in KB and have matching evidence (positive

7https://github.com/vi3k6i5/flashtext

https://github.com/vi3k6i5/flashtext
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groups, G+). Simultaneously, with a probability of
1
2 , we remove the h or t entity from this group and
replace it with a novel entity e in the sentence, such
that the resulting group (e, t) or (h, e) belongs to
G−. This method results in sentences that are seen
both for the true triple, as well as for the invalid
ones. Further using the constraints that the relation
group sizes must be between 10 to 1500, we find
3548 relation types (approximately the same as Dai
et al. (2019)) with 92K positive groups and 2.1M
negative groups, which were reduced to 64K by
considering a random subset of 70% of the positive
groups. Table 1 provides these summary statistics.

A.4 Bag composition and data splits
For bag composition, we created bags of constant
size by randomly under- or over-sampling the sen-
tences in the bag (Han et al., 2019) to avoid larger
bias towards common entities (Soares et al., 2019).
The true distribution had a long tail, with more than
50% of the bags having 1 or 2 sentences. We de-
fined a bag to be uniform, if the special markers
represent the same entity in each sentence, either
h or t. If the special markers can take on both h
or t, we consider that bag to have a mix composi-
tion. The k-tag scheme, on the other hand, naturally
generates uniform bags. Further, to support the set-
ting of Wu and He (2019), we followed the s-tag
scheme and expanded the relations by adding a suf-
fix to denote the directions as r(e1, e2) or r(e2, e1),
with the exception of the NA class, resulting in 709
classes. For fair comparisons with k-tag, we gener-
ated uniform bags with s-tag as well, by keeping e1
and e2 the same per bag. Due to these bag compo-
sition and class expansion (in one setting, exprels)
differences, we generated three different splits, sup-
porting each scheme, with the same test sets in
cases where the classes are not expanded and a dif-
ferent test set when the classes are expanded. Table
A.1 shows the statistics for these splits.

Table A.1: Different data splits.

Model Set Type Triples Triples (w/o NA) Groups Sentences (Sampled)

k-tag
train 92,972 48,563 92,972 1,487,552
valid 13,555 8,399 15,963 255,408
test 33,888 20,988 38,860 621,760

s-tag
train 91,555 47,588 125,852 2,013,632
valid 13,555 8,399 22,497 359,952
test 33,888 20,988 55,080 881,280

s-tag+exprels
train 125,155 71,402 125,439 2,007,024
valid 22,604 16,298 22,607 361,712
test 55,083 39,282 55,094 881,504

8355 including NA relation


