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Abstract Interpreters are well researched in the field of compiler construction
and program generation. They are typically used to realize program execu-
tion of different programming languages without a compilation step. However,
they can also be used to model complex rule-based simulations: The inter-
preter applies all rules one after another. These can be iteratively applied on
a globally updated state in order to get the final simulation result. Many sim-
ulations for domain-specific problems already leverage the parallel processing
capabilities of Graphics Processing Units (GPUs). They use hardware-specific
tuned rule implementations to achieve maximum performance. However, ev-
ery interpreter-based system requires a high-level algorithm that detects ac-
tive rules and determines when they are evaluated. A common approach in
this context is the use of different interpreter routines for every problem do-
main. Executing such functions in an efficient way mainly involves dealing
with hardware peculiarities like thread divergences, ALU computations and
memory operations. Furthermore, the interpreter is often executed on multi-
ple states in parallel these days. This is particularly important for heuristic
search or what-if analyses, for instance. In this paper, we present a novel and
easy-to-implement method based on thread compaction to realize generic rule-
based interpreters in an efficient way on GPUs. It is optimized for many states
using a specially designed memory layout. Benchmarks on our evaluation sce-
narios show that the performance can be significantly increased in comparison
to existing commonly-used implementations.
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M. Köster
Saarland Informatics Campus, Campus D3.2, Saabrücken, Saarland, Germany

J. Groß
Saarland Informatics Campus, Campus D3.2, Saabrücken, Saarland, Germany

A. Krüger
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1 Introduction

Interpreters are omnipresent in the field of computer science. They are typi-
cally defined in the form of inference rules that are modeled with the help of
imperative programs. Furthermore, they are commonly used to execute pro-
grams in certain languages directly in order to avoid a previous compilation
step. However, the general interpreter concept is also very useful to model
(time-dependent) processes with rule-based simulation logic. In order to exe-
cute the simulation logic, the rules can be iteratively applied to the current
state that contains state-dependent information. After a desired number of
steps the resulting state contains the desired simulation information that was
updated during all iterations. A slightly different use case applies all rules it-
eratively until a fixed-point is reached and the simulation has reached its final
state. Well known examples are real-time position-based simulations of cloth
or fluids, for instance [15].

Regardless of the exact use case, a high-level interpreter is always required.
Its purpose is to find rules that can be applied. It further acts as a driver that
performs the iterative application of all rules and specifies the execution order.
A common problem that always arises in this context is to determine all active
rules that can be applied to a certain state. Active in this scope means that
the precondition of a rule evaluates to true with respect to the current state.
After distinguishing active from inactive rules, the active ones will be executed
afterwards while the inactive ones will be skipped. However, in general it is
not possible to decide when a rule becomes active beforehand. Consequently,
it is necessary to perform this step every time during an interpreter execution,
which is critical for the overall run-time performance.

From a theoretical point of view, this is a well researched task that appears
to be straight forward. However, applying theory to practice reveals that a
high-performance implementation allowing for an efficient execution of such
rules can become very sophisticated. Especially massively parallel architectures
like Graphics Proccesing Units (GPUs, or accelerators) consisting of Single
Instruction Multiple Thread units (SIMT, often referred to as warp [14,18]
or wavefront [1]) require specific methods that take the detailed hardware
specifications into account. Hence, the usual approach is modeling of domain-
specific interpreter algorithms that are problem- and hardware-specific. Such
methods are typically hand crafted and manually tuned for a specific target
platform. An alternative approach is the use of compilers that transform the
underlying interpreter logic to improve performance [13].

In many use cases, it is sufficient to apply the rules to one global con-
text (also referred to as a state). A state contains all required environmental
variable bindings that are necessary for interpretation. In the field of com-
piler construction, a state contains all variable→value bindings in the current
context. However, in other domains (e.g. in the field of heuristic search or op-
timization), it is not sufficient to investigate a single state at a time [10,11].
These states can be tracked in parallel and the interpreter has to be adjusted
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in a way that it can be applied to several states simultaneously. This leads to
additional challenges with respect to interpreter development in general.

In this paper, we present a new generic rule-based interpreter execution
algorithm that is specially designed for GPUs. It is optimized for tracking mul-
tiple states in parallel per thread group while leveraging a specially designed
memory layout to improve coalescing. Furthermore, it uses thread compaction
to enhance the overall occupancy. Our proposed approach performs signifi-
cantly faster on our evaluation scenarios than existing generic state-of-the-art
interpreters for rule-based execution on GPUs.

2 Related Work

There are many papers about thread compaction and parallel simulations that
follow the principle of rule-based interpreters and their applications to a huge
variety of different domains. We present a selection of related papers from
different research fields that use similar principles to improve performance.

Fung et al. [4] use the concept of thread compaction to avoid overhead in
divergent control flow on GPUs. They propose an algorithm that automatically
compacts threads at the hardware level and show that this approach improves
the overall run time of a program. Rhu et al. [20] use permutations to reorder
active threads to a new position in order to maximize utilization of GPU
computing resources. In contrast to the previous approach, they use a software-
based concept that allows for applications to different domains.

The same principle of thread compaction can also be used to perform
parallel stream compaction of data streams. For instance, Billeter et al. [2]
proposed a stream-compaction algorithm based on prefix sums and hardware-
specific operations in CUDA that uses the same concept. They use a prefix
sum to compute the target indices for all elements that remain in the stream.
The major conceptual difference with respect to thread compaction is the fact
that data elements are compacted instead of logical execution threads. Hobe-
rock et al. [6] use a similar method for deferred shading that also relies on
prefix sums in global memory to reduce divergences during rendering. Hughes
et al. [7] also leverage stream compaction to enhance performance in the field
of data visualization. However, they do not require multiple kernel launches to
perform the compaction step. Instead, they perform compaction inside every
thread group while incrementing a counter in global memory via atomic oper-
ations in order to resolve memory locations for active elements and move them
to the final position. In the field of computer graphics, Wald [22] uses tiled
compaction in shared memory on GPUs to improve performance of path trac-
ing. He compares the implementation to naive kernels without this strategy
and shows performance improvements using thread compaction.

Moving on to simulations, Mueller et al. [16] describe the modeling of
particle-based (position-based) simulations using parallel domain-specific con-
straint solving on GPUs. They use several high-level routines to apply different
constraint-solving logic for every constraint consecutively. The same simula-



4 Köster et al.

tion principle is also used in the field of SPH (smoothed particle hydrodynam-
ics) based iterative solvers like the ones from Macklin et al. [15], Kelager [9]
and Köster et al. [12]. However, none of them uses thread compaction dur-
ing processing since they typically do not face a significant amount of thread
divergences in their domain.

Parallel constraint propagation is similar to the constraint-solving approaches
above. Although this is not the primary topic of this paper, it is highly re-
lated since it often follows similar principles. From a high-level point of view,
constraint solvers try to narrow the search space during the propagation step
by iteratively updating the constraint network/problem, which can be seen as
an interpreter execution based on several steps. Ruiz-Andino et al. [21] and
Granvilliers et al. [5] propose parallel propagation algorithms for several con-
straint types. A GPU capable algorithm is the one by Campeotto et al. [3]. It
uses specialized CUDA kernels to realize constraint propagation in the scope
of multiple kernels. To best of our knowledge, none of the currently avail-
able approaches combines constraint propagation with thread compaction or
specialized memory layouts.

3 Rule-Based Interpreter Execution in Theory and Practice

From a theoretical point of view, a common technique to model interpreters is
the definition of operational semantics in the form of inference rules. Thereby,
a rule Ri is defined via

Ri =
Γ ` Pre1 . . . Γ ` Pren

Γ ` Con
,

where Prej (j ∈ [1, . . . , n]) are the different preconditions that have to be
fulfilled in the scope of the current context (or state) Γ . Con refers to the
consequence after applying this rule. For more information about inference
rules and operational semantics we refer to [19].

Applying these rules iteratively using a context Γ results in a derivation
tree that represents the program execution and an updated context Γ ′. As
previously mentioned, a whole program execution can be derived by applying
all rules iteratively until there is no additional rule to apply: once a rule be-
comes active (its preconditions were not fulfilled before), a change has been
detected. The same holds true for the opposite direction: A rule was active
before and does not hold any more. This process is repeated as long as there
is a change regarding the active/inactive state of any rule Ri:

{R1, . . . , Rn}Γ ⇒ {R1, . . . , Rn}Γ 1 ⇒ . . .⇒ ∗ = {R1, . . . , Rn}Γk .

Otherwise, the context does not change anymore, the program has terminated
(or the fixed-point is reached) and the final context Γ k is available. From
a practical point of view, these rules can be modeled via imperative code
fragments that check all preconditions via an if-statement. Furthermore, this
precondition is typically checked against many object instances within a single
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context. Thereby, an instance usually refers to a variable binding in a single
state. The instances, for which the general precondition evaluates to true, will
then be modified by the logic of the conclusion statements. We refer to the
number of possible instances to iterate over by the value range of Ri. In other
words, the value range can be seen as the number of variables to iterate over.
We apply the rule Ri to every variable and check whether the preconditions
are met. In real-world implementations, we iterate over all integer values ∈
[0, . . . , value range− 1] and map the current index to memory locations of the
target object instance. Note that a rule is considered to work on its current
object instance, which gives the opportunity to parallelize rule applications
to different objects. This domain knowledge makes a compiler parallelization
analysis unnecessary.

Common implementations that leverage the processing power of GPUs
apply one rule after another in the scope of distinct kernels. This allows us to
generate specialized kernels that are instantiated for every rule. Different rules
are applied consecutively. This establishes device-wide kernel synchronization
and avoids race conditions between different rules, which may work on the
same object instances. Algorithm 1 applies a rule in the context of multiple
states. Every thread group handles a single state and performs a group-stride
blocked loop over the value range of the first rule R1 in the state s. Within the
loop, every index i is checked against the preconditions of R1. If the conditions
evaluate to true, the consequence will be executed and applied to the state.
In many current systems that rely on a single state, this algorithm is slightly
modified: Instead of multiple thread groups that work on distinct states, they
use a grid-stride loop that iterates over the whole value range.

Algorithm 1: Simple execution algorithm for multiple states
Input: state s
/* Perform a blocked loop over the value range of R1 */

1 for i := group index; i < value range of R1; i += group size do
/* Check rule precondition */

2 if Condition(s, i) then
/* Evaluate rule */

3 Evaluate(s, i);

4 end

5 end

In the presence of multiple states we can execute multiple rules one after
another in the scope of a single kernel (Algorithm 2). We can use group-wide
synchronization primitives on all currently available major accelerators [1,18]:
After execution of the first rule R1 we have to wait for all other threads to
reach this point (Line 6). This ensures that all changes that were made on the
state (that resides in global memory) are visible to all other threads in the
group. We can now execute the next rule R2. Note that we can still generate
specialized loops as we can inline all required functionality of all involved rules.
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Algorithm 2: Simple execution algorithm for multiple states & rules
Input: state information
/* Perform a blocked loop over the value range of R1 */

1 for i := group index; i < value range of R1; i += group size do
/* Check rule precondition */

2 if R1.Condition(i) then
/* Evaluate rule */

3 R1.Evaluate(i);

4 end

5 end
/* Wait for all changes of the previous rule type R1 */

6 group barrier;
/* Perform a blocked loop over the value range of R2 */

7 for i := group index; i < value range of R2; i += group size do
/* Check rule precondition */

8 if R2.Condition(i) then
/* Evaluate rule */

9 R2.Evaluate(i);

10 end

11 end
/* Evaluate additional rules... */

12 . . .

Figure 1 visualizes possible thread divergences and the memory access pat-
tern of both algorithms. The if-statement inside the loop can lead to severe
control-flow divergences if the preconditions lead to different comparison re-
sults on distinct object instances. Consider the simplified control-flow graph
of the if-statement consisting of the precondition block A and the consequence
block B. All threads start by executing the first block A; however, some of
them pass the precondition tests and jump to block B. If these threads are
executed in the same warp, the other threads have to wait until block B has
been executed. This results in a loss of processing resources since these lanes
(threads within a warp) cannot perform other operations as long as a lane is
executing block B. Afterwards, all threads continue with the outer-most loop.
This can also lead to thread divergences with respect to the whole group:
some threads have already finished the iteration over the value range, whereas
others need to perform additional rule application steps (see Section 4).

Fig. 1 General thread divergences (left) and memory accesses (right) of Algorithm 1 and
Algorithm 2. Gray boxes represent threads inside the group. Blue arrows and boxes indicate
control flow. Orange arrows and boxes represent global memory accesses during the first
iteration of a single value-range loop. The red counterparts represent the accesses in the
second iteration of a loop.



MP Rule-Based Interpreter Execution 7

Regarding memory operations, the data layout can be chosen in such a
way that all threads perform coalesced memory accesses, which is highly im-
portant for performance reasons. For example, the different values within Ri’s
value range are mapped to coalesced memory addresses in global memory.
Furthermore, every state has its own contiguous memory region where all re-
quired information is stored. This also holds true for further iterations of the
outer-most loop, which ensures efficient memory operations across all threads
in a group. Since multiple groups are launched that process different states in
parallel, the memory latency can be easily hidden by scheduling other groups
in favor of the currently active one on a multiprocessor.

4 Massively Parallel Rule-Based Interpreter Execution

A well known method to improve the overall occupancy of the simple and
straight-forward approaches (see Section 3) is thread compaction. Figure 2
visualizes the basic principle [4,20]. Assume that some threads in the group
have thread divergences with respect to our rule preconditions. If we leave
everything untouched, this will lead to three active warps that will have to be
scheduled by the warp dispatcher 1. We can ”remove” the inactive threads by
”moving” the active threads to other warps in order to fill all gaps (compaction
step). As shown in the figure, this can lead to fully inactive warps (containing
no active threads) that do not have to be executed and can be replaced by
other active ones from different groups by the warp dispatcher. This results in
an increased occupancy of all units. Moving threads around works by moving
the associated values (from the value range) to another parent thread in our
scenario.

Applying compaction to our domain solves nearly all divergency issues
regarding occupancy. This is due to the fact that most rules we have seen
in practice rely on uniform control-flow inside the consequence code. From
a practical point of view, an additional problem is related to the outer-most
loops in Algorithm 1 and Algorithm 2. Too many threads in comparison to the
variable range will sacrifice performance: Either many threads will not perform
any work since they are out of range or the number of iterations is too small
to achieve an overall reasonable workload per thread. Furthermore, large-scale
problems involving many parallel states typically consume a lot of memory per
state. This often leads to a lower number of states that fit into memory than
the globally available number of threads on a GPU [11]. Hence, a single thread
per state cannot be used without wasting performance. In our experience, all
value ranges are relatively small (< 4096) compared to the overall state size in
such scenarios, since more sophisticated problems use many rules that iterate
over different parts of the state. Consequently, it is not beneficial to launch a
single group per state consisting of many threads as the previously presented

1 A single SIMT unit will be referred to as a warp in the scope of this paper. Furthermore,
every warp will be visualized with the help of eight lanes (threads). Groups will be visualized
with the help of three warps.



8 Köster et al.

Fig. 2 The principle of thread compaction [4,20]. Top: some threads have divergences
(they do not execute the B block) and have to wait for the other threads in the scope of the
same warp. Bottom: threads after the compaction step. Color coding: the different colors
indicate the origin warps the threads were originally from.

algorithms do. As explained above, this would result in either many large
inefficient thread groups or many small ones that will significantly increase
scheduling/dispatching overhead on the device (Figure 3, middle).

Fig. 3 Different approaches to process multiple states in terms of thread groups. The red
borders indicate the launched thread groups. Top: simple approach (see Section 3); one large
thread group for each state consisting of multiple warps. Middle: simple approach adapted
to small variable ranges (see Section 3); one small thread group for every state consisting of
a single warp. Bottom: our approach; large thread groups with logical sub groups for every
state; each warp processes a single state while belonging to a logical thread group that works
on multiple states in parallel.

Instead, we propose large thread groups that process different states in
parallel (Figure 3, bottom). This reduces the number of launched groups and
allows to leverage thread compaction across multiple states to improve effi-
ciency. The downside of this approach is that coalesced memory accesses will
become more sophisticated, as discussed in Section 3. Reconsider the mem-
ory layout of the presented simple algorithms (Algorithm 1 and Algorithm 2)
in the presence of multiple states (Figure 4). It is straight forward to map
individual value ranges to coalesced memory addresses within a single state.
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Other groups access different memory locations that are coalesced with re-
spect to their states. The device scheduler will hide the occurring latencies for
all memory accesses to the first elements of every state. If we apply the same
memory layout to our proposed processing model, this will lead to coalesced
memory accesses in every warp (Figure 5). However, the memory accesses do
not target contiguous locations with respect to the whole group. Although the
device dispatcher can hide much of the latency in many cases, this does not
result in peak performance.

Fig. 4 Memory access pattern of the algorithms 1 and 2 in the scope of multiple states.
Several warps within every thread group access coalesced memory locations in the context
of the group.

Fig. 5 Memory access pattern of our approach using the memory layout from the algo-
rithms 1 and 2. Every warp performs coalesced memory accesses. However, they are not
coalesced with respect to all other warps in the same group.

The optimal memory layout for our approach can be found in Figure 6.
We use an interleaved layout that stores state-dependent information with
a blocking of the size of a single warp. In other words, all data that is ac-
cessed by all threads in every warp in one single value-range iteration is stored
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Fig. 6 Coalesced memory access pattern of our approach using an adapted memory layout.
All threads in the same group access coalesced memory locations although they belong to
different states.

contiguously in memory with a stride of the number of states. This involves ad-
ditional overhead during address computations which require integer modulo
and division operations. However in our experience, the benefit of coalesced
memory accesses often outperforms the overhead of the additional arithmetic
instructions.

Algorithm 3 shows our approach in pseudo-code which represents a single
GPU kernel. The term thread index refers to the index of the i-th thread inside
the group and group index refers to the index of the j-th group. It is designed
in a way that it can be directly converted into application code with minor
adjustments (see Section 5). In the scope of this algorithm, we process a single
state per warp, which results in 32 states per group (= 32·warp size = 32·32 =
1024 threads) on current Nvidia GPUs [18].

First, we initialize a 32 bit integer per thread to store tuples of the current
value index and the state index (both treated as 16 bit integers, Line 1) 2.
Second, we compute the source state index this thread belongs to and the
initial value index to try with this thread (lines 2–3). We then perform the
actual iteration over all values in the range of our first rule R1. Note that this
range is identical in all states, and thus, cannot lead to thread divergences at
this level. Divergent control flow would be problematic at this point as some
threads of the group would not participate in the group-wide barriers later
on. Line 8 performs the actual precondition check of R1 that evaluates either
to true (= 1) or to false (= 0). We refer to threads that have passed the
precondition check as enabled threads.

We follow the commonly used prefix-sum based approach to perform thread
compaction. For this reason, we first compute a group-wide prefix sum based
on the result of the precondition check (Line 9, see Section 5) that uses the
previously allocated shared memory. The prefix sum returns the offset of the
current thread within the group and the group-wide thread offset. The latter
refers to the total number of threads in this group that are enabled (a side
product of the prefix-sum evaluation). Afterwards, every enabled thread writes

2 This perfectly fits to the common bank-size configuration of 4 bytes on common GPUs.



MP Rule-Based Interpreter Execution 11

its current value index and its state index to the computed location in shared
memory (Lines 10–12). Note that we need a group barrier at this point to
ensure that all updates of shared memory are visible to all threads in the
group (Line 13). If the current thread will be active after thread compaction
(its thread index is smaller than the total number of active threads after
compaction), the current index and the state index will be resolved from shared
memory (Lines 14–17). Next, we evaluate the actual rule R1 with the updated
thread information. Finally, we update our next index by adding the current
warp size to it (the number of threads per state) and wait for all threads
to reach this point. This is important to ensure that the values loaded from
shared memory will not be overwritten by other threads in the group that
already perform the next iteration. We process further rules in the same way
by using additional loops for every rule Ri.

Algorithm 3: Our Execution Algorithm
Input: state information, #states per group

1 shared := shared memory int[group size];
2 sourceStateIndex := group index * group size /
3 #states per group + thread index/ warp size;
4 nextIndex := thread index % warp size;

/* Apply rule R1 */

5 while nextIndex < value range of R1 do
6 currentIndex := nextIndex;
7 stateIndex := sourceStateIndex;

/* Check rule precondition */

8 enabled = R1.Condition(currentIndex);
/* Compute prefix sum, as shown in Algorithm 4 */

9 (offset, threadOffset) := prefix sum (enabled, shared);
/* Perform compaction in shared memory */

10 if enabled then
11 shared[offset - 1] := (currentIndex, stateIndex);
12 end
13 group barrier;

/* If we are an active thread... */

14 if thread index < threadOffset then
/* Extract state and value index from shared memory */

15 (currentIndex, stateIndex) := shared[thread index];
/* Evaluate rule with the appropriate state and value index */

16 R1.Evaluate(currentIndex, stateIndex);

17 end
18 nextIndex := nextIndex + warp size;
19 group barrier;

20 end
/* Evaluate additional rules... */

21 . . .
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5 Implementation Details

We have implemented our approach in C++ using CUDA for all GPU com-
puting tasks. In our case, algorithms 3 and 4 are fused to form specifically
tuned GPU kernels. We leverage variadic template specialization to instanti-
ate different loops for every rule. Moreover, we execute every rule after each
other in a sequential manner to ensure that side effects from previous rules
are visible to the upcoming ones.

Algorithm 4 shows further implementation details of the prefix-sum com-
putation. We follow a well known approach that uses warp-shuffle operations
to compute a prefix-sum in every warp (Line 1) [17]. Afterwards, the last lane
of every warp writes its own prefix-sum value into shared memory (lines 2–4).
Next, the first warp uses the same shuffle operations to compute all prefixes for
every warp within the group. We have to adjust all offsets of every warp except
the first one since their left boundary values have been (potentially) updated
(Lines 10–12). Finally, we can resolve the required value for the thread offset
(see Section 4) by loading it from shared memory (Line 13). The last barrier
ensures that no other updates of the shared memory happen in between. Note
that this implementation assumes that the total group size is less or equal
to warp size * warp size.

Algorithm 4: Implementation details of the prefix-sum computation
Input: initialValue, shared
Output: offset, threadOffset

1 offset := WarpPrefixSum (initialValue);
/* Only one lane of a warp writes to shared memory */

2 if LaneId + 1 == warp size then
3 shared[warp index] = offset;
4 end
5 group barrier;

/* Complete prefix sum in the first warp */

6 if warp index == 0 then
7 shared[warp index] := WarpPrefixSum (shared[warp index]);
8 end
9 group barrier;

/* Read results from shared memory */

10 if warp index > 0 then
11 offset := offset + shared[warp index - 1];
12 end
13 threadOffset := shared[warp size - 1];
14 group barrier;
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Load # State Value Range φ Layout 1080 Ti σ Titan X σ

20 2048 1024 2 A 0.36 0.03 0.39 0.07
* * * * B 1.65 0.15 1.38 0.15
* * * * C 0.35 0.03 0.56 0.11
* * * 3 A 0.33 0.04 0.42 0.07
* * * * B 1.64 0.16 1.28 0.12
* * * * C 0.35 0.04 0.5 0.05
* * 4096 2 A 1.47 0.07 1.33 0.13
* * * * B 10.90 0.26 14.21 0.97
* * * * C 1.38 0.07 1.5 0.14
* * * 3 A 1.47 0.07 1.58 0.14
* * * * B 10.96 0.24 13.98 0.89
* * * * C 1.38 0.07 1.54 0.15
* 16384 1024 2 A 2.28 0.13 2.73 0.20
* * * * B 52.08 0.72 42.37 4.21
* * * * C 2.27 0.14 2.72 0.21
* * * 3 A 2.27 0.14 2.72 0.20
* * * * B 52.32 0.7 42.48 3.25
* * * * C 2.27 0.13 2.69 0.22
* * 4096 2 A 8.88 0.49 9.71 0.74
* * * * B 241.38 1.93 513.08 33.89
* * * * C 8.63 0.49 9.59 0.73
* * * 3 A 8.85 0.49 9.69 0.74
* * * * B 243.75 1.32 500.2 38.63
* * * * C 8.61 0.47 9.58 0.73

Table 1 Influence of the number of states, value range, divergency rate and memory layout
on the overall run time in ms with fixed load using Algorithm 1.

Load # State Value Range φ Layout 1080 Ti σ Titan X σ

200 2048 1024 2 A 0.34 0.04 0.49 0.05
* * * * B 1.43 0.23 1.35 0.12
* * * * C 0.34 0.04 0.57 0.04

2000 * * * A 2.06 0.23 3.24 0.12
* * * * B 2.52 0.06 3.81 0.11
* * * * C 2.06 0.05 3.26 0.11

200 16384 * * A 3.06 0.15 4.11 0.22
* * * * B 51.62 0.57 37.15 5.32
* * * * C 2.97 0.14 3.98 0.21

2000 * * * A 12.5 1.21 22.19 0.98
* * * * B 50.85 0.73 36.97 0.73
* * * * C 11.64 1.1 20.78 0.61

Table 2 Influence of the load, number of states, and memory layout on the overall run time
in ms with fixed value range and divergency rate using Algorithm 1.

6 Evaluation

The evaluation section focuses on general performance improvements that can
be achieved using the presented method in combination with our proposed
memory layout. Therefore, we have evaluated the performance of our Algo-
rithm 3 in comparison to the straight-forward Algorithm 1 that is commonly
used (see Section 3). We abstract from detailed rule implementations with the
help of an artificially designed one. Since rule-based interpreters are nowadays
commonly used to model simulation-like behavior in the scope of optimization
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Load # State Value Range φ Layout 1080 Ti σ Titan X σ

20 2048 1024 2 A 0.21 0.13 0.19 0.004
* * * * B 0.35 0.03 0.54 0.02
* * * * C 0.20 0.02 0.20 0.01
* * * 3 A 0.21 0.21 0.19 0.01
* * * * B 0.35 0.02 0.50 0.03
* * * * C 0.21 0.03 0.19 0.008
* * 4096 2 A 0.47 0.12 0.69 0.03
* * * * B 1.01 0.03 1.45 0.1
* * * * C 0.43 0.03 0.62 0.04
* * * 3 A 0.5 0.20 0.71 0.03
* * * * B 0.99 0.05 1.60 0.11
* * * * C 0.43 0.03 0.63 0.02
* 16384 1024 2 A 0.67 0.17 0.94 0.06
* * * * B 2.42 0.03 5.71 0.11
* * * * C 0.66 0.02 0.98 0.07
* * * 3 A 0.67 0.21 1.07 0.07
* * * * B 2.38 0.02 5.76 0.1
* * * * C 0.67 0.02 0.87 0.02
* * 4096 2 A 2.53 0.14 3.16 0.09
* * * * B 8.33 0.06 20.29 0.19
* * * * C 2.45 0.03 3.12 0.08
* * * 3 A 2.56 0.17 2.93 0.11
* * * * B 8.14 0.07 20.91 0.15
* * * * C 2.45 0.02 3.11 0.09

Table 3 Influence of the number of states, value range, divergency rate and memory layout
on the overall run time in ms with fixed load using Algorithm 3.

Load # State Value Range φ Layout 1080 Ti σ Titan X σ

200 2048 1024 2 A 0.33 0.23 0.48 0.03
* * * * B 0.36 0.02 0.51 0.02
* * * * C 0.33 0.02 0.57 0.04

2000 * * * A 2.03 0.25 2.95 0.11
* * * * B 1.42 0.03 2.54 0.11
* * * * C 2.06 0.02 3.08 0.07

200 16384 * * A 0.96 0.19 1.77 0.11
* * * * B 2.42 0.02 5.73 0.09
* * * * C 0.99 0.12 1.94 0.1

2000 * * * A 7.06 0.19 13.87 0091
* * * * B 6.55 0.02 13.01 0.08
* * * * C 7.27 0.03 13.63 0.07

Table 4 Influence of the load, number of states, and memory layout on the overall run time
in ms with fixed value range and divergency rate using Algorithm 3.

problems [11], they often have to execute machine-learning models. These are
used to realize heuristics that guide the surrounding optimization system [10].
Therefore, our actual implementation of a rule consists of matrix-matrix mul-
tiplications to mimic the execution of such a machine-learning model:

A×B, (1)

where A ∈ RM×N and B ∈ RN×O. This computation requires 2MNO −MO
floating-point operations in our evaluation benchmarks [8,11]. We have intro-
duced a loop to perform multiple matrix-matrix multiplications in the same
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rule. Thereby, the load factor refers to this number of iterations to simulate
more and less computationally expensive interpreter rules. This allows us to
make a statement about the general scaling behavior in terms of computational
effort.

We used two GPUs from NVIDIA (a GeForce GTX Titan X and a GeForce
GTX 1080 Ti) for all benchmarks. Every performance measurement is the me-
dian execution time in milliseconds of 100 algorithm executions. The CUDA
code was compiled with nvcc v10.1.105 with all compiler optimizations en-
abled. We refer to the presented memory layouts as follows:

– A corresponds to the default memory layout from Figure 4,
– B corresponds to the transposed memory layout of A,
– C corresponds to the optimal memory layout for our method from Figure 6.

We have included the transposed layout B to demonstrate the effect of using
a non-coalesced memory layout, which leads to the worst performance.

Tables 1 and 3 show the main evaluation results of the simple algorithm
and our approach. They demonstrate the impact of the number of states, the
value range, the divergency rate (φ) and the memory layout on the overall
run time. We start with a value range of 1024 in order to have a reasonable
number of values per rule. Furthermore, φ describes that every φ-th thread
will have a divergence on average. We initialize every value in every state
with a random integer number ∈ [0, . . . φ− 1], where 0 means this thread will
not pass the precondition checks. We chose φ to be either 2 or 3 to reflect
our real-world experience regarding typical divergencies that often occur in
optimization problems [11]. In this case, the load was set to 20 in order to have
a reasonably expensive approximation of a rule performing some computations.

The simple algorithm scales linearly with respect to the value range and
the number of states. As expected, the worst memory layout is layout B.
Memory layout C performs slightly faster in most of the cases, even though
layout A should be fastest for this algorithm. Our approach scales much better:
increasing the value range by 4× while having a small number of states yields
≈ 2× to ≈ 3.5× run-time increase. Fixing the value range and increasing the
number of states by 8× will increase the run time by ≈ 3× to ≈ 5×. Memory
layout C performs fastest in all cases on the more recent GPU architecture.
This can increase performance by additional 14% compared to layout A. A
change of φ does not produce significantly different results for both algorithms.
However, our approach performs up to ≈ 4× faster regarding all evaluation
cases.

Tables 2 and 4 visualize the impact of the load, the number of states and
the memory layout, while fixing the value range and φ. Increasing the load by
a factor of 10× leads to an increase of the run time of up to ≈ 7× for both
algorithms.
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7 Conclusion

We present a new approach (Algorithm 3 and Algorithm 4) to realize generic
rule-based interpreters for many states on GPUs. In order to achieve high
occupancy without creating too much dispatcher overhead, we execute mul-
tiple states within the same group. Thread compaction improves efficiency
even across multiple states within the same group. A specially chosen memory
layout (Figure 6) ensures coalesced memory accesses within each group and
results in better performance.

Our approach scales very well with the value range and the number of
states. For instance, an execution of an interpreter on 2048 states, in which ev-
ery rule fails with a probability of 33%, requires only 0.21 milliseconds on cur-
rent hardware to complete. Comparing the performance to existing straight-
forward implementations on GPUs yields significant speedups of up to ≈ 4×.
Furthermore, using our proposed memory layout improves performance by up
to 14% compared to a thread-compaction based implementation with a non-
optimal memory layout.

Probably the main disadvantage of our method is the address-computation
overhead. Multiple additional arithmetic instructions are required to compute
the final memory address. Although we have not seen any major degradation
in terms of performance, it may be possible that rules using many loads and
stores might be negatively affected.

In the future we would like to relax the association of a single warp to a
single state. This provides the opportunity to have a variable number of states
per group depending on the actual state information. In addition, we want
to experiment with locally cached state information in shared memory and
applications to multiple GPUs in order to improve rule evaluation in general.

Acknowledgements The authors would like to thank Wladimir Panfilenko and Thomas
Schmeyer for their suggestions and feedback regarding our method. Furthermore, we would
like to thank Gian-Luca Kiefer for additional feedback on the paper. This work was funded
by the German Ministry of Education and Research: Project Hybr-iT: Hybrid and Intelligent
Human-Robot Collaboration (grant number 01IS16026A).



MP Rule-Based Interpreter Execution 17

References

1. AMD: AMD Vega Instruction Set Architecture (2019)
2. Billeter, M., Olsson, O., Assarsson, U.: Efficient stream compaction on wide simd many-

core architectures. In: Proceedings of the Conference on High Performance Graphics
2009, HPG ’09, p. 159–166. Association for Computing Machinery, New York, NY, USA
(2009)
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