
Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/s10846-020-01234-9

Online Reconfiguration of Distributed Robot Control Systems
for Modular Robot Behavior Implementation

Malte Wirkus1 · Sascha Arnold1 · Elmar Berghöfer1

Received: 20 December 2019 / Accepted: 7 July 2020
© The Author(s) 2020

Abstract
The use of autonomous robots in areas that require executing a broad range of different tasks is currently hampered by
the high complexity of the software that adapts the robot controller to different situations the robot would face. Current
robot software frameworks facilitate implementing controllers for individual tasks with some variability, however, their
possibilities for adapting the controllers at runtime are very limited and don’t scale with the requirements of a highly
versatile autonomous robot. With the software presented in this paper, the behavior of robots is implemented modularly by
composing individual controllers, between which it is possible to switch freely at runtime, since the required transitions are
calculated automatically. Thereby the software developer is relieved of the task to manually implement and maintain the
transitions between different operational modes of the robot, what largely reduces software complexity for larger amounts of
different robot behaviors. The software is realized by a model-based development approach. We will present the metamodels
enabling the modeling of the controllers as well as the runtime architecture for the management of the controllers on
distributed computation hardware. Furthermore, this paper introduces an algorithm that calculates the transitions between
two controllers. A series of technical experiments verifies the choice of the underlying middleware and the performance
of online controller reconfiguration. A further experiment demonstrates the applicability of the approach to real robotics
applications.

Keywords Robot programming · Robot control architectures · Robot autonomy · Model-based development ·
Model-driven engineering · Robot control

1 Introduction

Autonomous robotic systems, that are versatile in their
application areas, will at some point face the problem that a
change in control policy is needed in order to account for a
new situation or task. There can be numerous reasons for a
required adaption of the controller. For example; a sensor-
equipped robot might need to switch its data processing
pipeline to make use of different sensing hardware to cope
with changes in the environment. The robot also might be
confronted with a task requiring interacting with specific
objects, which can only be recognized with a certain sensor-
processing algorithm. A further example would be that for
a legged system, a change in the ground properties might

� Malte Wirkus
malte.wirkus@dfki.de

1 Deutsches Forschungszentrum für Künstliche Intelligenz
(DFKI), Robert-Hooke-Str. 1, 28359 Bremen, Germany

require exchanging the gait control subsystem. With an
increasing number of possible controller configurations for
a robot, also the software complexity of the coordination
layer increases when the possible controller transitions have
to be implemented manually. For a software developer it can
be difficult to grasp all possible permutations of controller
reconfiguration for robots that are truly versatile in their
capabilities.

A usual approach to handle complexity in computer
science is to modularize, i.e. to divide the software into
smaller, manageable parts that are independent from each
other. The robotics community largely adopted the idea to
modularize software with the advent of component-based
software development frameworks like the well-known
Robot Operating System (ROS) [1], the Robot Construction
Kit (Rock) [2], or Yet Another Robot Platform (YARP) [3].

The frameworks aim to achieve two main goals: On
one hand, they simplify developing software components
by providing tools or automatizing certain parts of the
implementation, such as inter-process communication or

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-020-01234-9&domain=pdf
http://orcid.org/0000-0003-3780-1031
mailto: malte.wirkus@dfki.de

J Intell Robot Syst

data visualization. The frameworks provide a common
structure and interfaces for software components, and
thereby unburden the software developers with many
design decisions, while enforcing a common software
structure ensures technical compatibility between different
components. The second main goal of the development
frameworks is achieved by using a software-package
management system that allows simple retrieval and
installation of required components: The frameworks
provide access to a large selection of working software
components that can be used in different applications
and robotic systems. The robot controller is eventually
created by interconnecting the interfaces of the individual
components and adapting component properties to the given
hardware or environment.

The component-based software development frameworks
contributed largely to the ability of research groups to
prototype individual technology demonstrations - we see the
robotics community growing and increasingly producing
output of robots solving a multitude of individual tasks.
For example, the Video Friday1 blog-articles from the
IEEE Spectrum Automation blog, nowadays often links
to more than a dozen new videos weekly of different
robots mastering different individual task. The amount of
individual technology demonstrations is astonishing, but
demonstrations of robots that can autonomously cope with
a broad range of different situations are rarely shown. We
believe that this evolution of the robotics community is
influenced by the current robotics software development
frameworks, which are good tools for implementing static
robot controllers for individual technology demonstrations,
but provide little support for developing flexible control
solutions as needed by highly versatile robots. In ROS,
for example, the robot application often consists of a
static component network, usually described by a XML-file
(launch file), which specifies the different components that
are to be started and also assigns configuration values to
the components [4]. Different behaviors are then triggered
by altering some of the component properties at runtime
or by injecting data into the control network. The single
static control network must therefore take into account all
the different behaviors of the robot, which is contrary to
the idea of modularity. Of course, further launch file can
represent additional component networks, but an online
transition between these control networks is not possible,
so the complete robot controller must be switched off if
another network is needed.

As an improvement over the current state, we propose
that the individual robot behaviors should be modeled
independently of each other. During the development of

1Video Friday in IEEE Spectrum Automation blog: https://spectrum.
ieee.org/tag/videofriday (last checked September, 2019)

the individual controllers, no assumptions should have to
be made about which sequences of controllers are allowed
and which are not, or what the robot’s range of functions
will ultimately be. Furthermore, no rigid architecture should
prescribe certain approaches such as plan-based or reactive
control, which would then have to be used to implement all
the different behaviors.

We therefore present a software for modular modeling
of robotic controllers, as well as their execution and
online switching. To allow calling the individual controllers
any time and in any order, the calculation of the
necessary operations for transitioning between them is
accomplished automatically at runtime. To account for the
high computational effort, especially of complex sensor
processing routines, the controllers can be executed on
distributed hardware.

This is an extension of the known component develop-
ment frameworks. The pool of available software compo-
nents provided by the frameworks is used to model the
controllers, but a runtime management layer is added for
coordinating their execution. The proposed workflow and
software simplify the development of the robot software to
such an extent that a robot system can cover any number
of different tasks without the need for additional develop-
ment effort to implement transitions between tasks or to
consider any dependencies between them. Although ROS
provides many more available software components, we
base our implementation on Rock for the reasons explained
in Section 2.

After giving an overview about the related work
and the model-driven software development methodology,
we present the metamodels for controllers, individual
software components and controller transitions in Section 2.
The software architecture that allows to coordinate the
distributed control networks at runtime and an algorithm
that computes the transition between two controllers
is explained afterwards in Section 3. To validate the
proposed approach, a series of experiments was conducted,
which are presented and discussed in Section 4. The last
section concludes the work and discusses possible future
work.

1.1 RelatedWork

The design of modern robotic software development
frameworks was already envisioned back in the mid-
nineties by Steward and Khosla [5]. As others (e.g. [6])
before they proposed to use software components that
provide communication ports to let individual software
parts exchange data. The crucial difference to previous
work is that Steward and Khosla highlighted the possibility
for component re-use, when general software components
provide well-defined interfaces. In [5] they outlined how

https://spectrum.ieee.org/tag/videofriday
https://spectrum.ieee.org/tag/videofriday

J Intell Robot Syst

research groups could share software components with
standardized interfaces using the internet, and assemble
robot controllers from these components without the need
of programming them manually. Nowadays, this idea has
become a reality with the modern robot development
frameworks mentioned in the previous section. This
has significantly changed the general technical situation
compared to the mid-1990s. Nevertheless, another central
point is missing in today’s robotics frameworks, which
has already been described in [5], so we will transfer
it in our work to the today’s situation: In [5], the
need for reconfiguring robot controllers to adapt to
different situations was anticipated. The authors identified
that for this purpose at a higher-level of control, full
control over the software component’s runtime state
and interface-connections is required, e.g. to replace
components and redirect the data flow accordingly. While
ROS [1] components lack this level of control, components
for the Orocos Real-Time Toolkit (RTT) [7, 8] or the
Rock framework [2] (which is based on RTT), allow for
external coordination. The work presented in this paper
is based on the possibility of coordinating components
from outside. Therefore we use Rock as a basis for our
implementation. In addition, Rock components provide
an offline readable component interface specification, the
model of the component. This means that without running
it, the data connection interfaces (and other interfaces) of
a component are readable for humans and software. This
makes it easier to model controllers, since the interfaces can
be presented to the developer as a reference e.g. with the
help of graphical or text-based tools. However, these tools
are out of scope of this paper.

A model-driven software engineering (MDE), or model-
driven development (MDD) process [9] is based on abstract
representations (models) of certain aspects of a given system
or problem domain. As shown in Fig. 1, the models can
be result of, or input to numerous different computational
or manual processes. These processes generate, interpret
or modify models, or transform them to a different
representation that focuses a different concern of the
system. Compatibility between individual processes is

Fig. 1 Example model-driven development process

ensured by the use of metamodels that specify all relevant
properties of the system and thus define the language for
creating valid models. By focusing on the representation
of the problem domain, MDD highlights a representation
of knowledge about a domain rather than the algorithmic
solution to a problem.

In the robotics community, e.g. the BRICS - Best prac-
tice in robotics [10] and RobMoSys2 research initiatives
promote the rigorous use of model-driven software develop-
ment to cope with the complexity for system integration and
the generation of individual algorithmic solutions.

In this spirit, with [11] and [12], software ecosystems
were introduced, that provide a model-based workflow
for developing robotic control software. Both works allow
to a certain extent the online adaptation of the modeled
controllers. In [12] however, this is limited to the variation
of configuration values for software components without
allowing a complete change of the controller topology. Both
systems also have in common that they are designed to
solve several different problems, such as real-time control
system, high-level coordination and controller design at
once. Thereby [12] offers clearer defined metamodels and
interfaces between the individual modules, whereas [11]
impedes the extensibility or integration of external tools
by relying on a Ruby-embedded model representation and
having a very tight integration between the individual
software parts for model representation, control and
modeling. This compromises one of MDD’s potential
strengths that, through the use of well-defined models
representations, independent development tools can work
together regardless of their technical realization.

A growing fraction of the robotics research community
seems to recognize the advantages of MDD: Nordman
et al. identified in a survey on domain specific modeling
for robotics [13] an increasing number of publications
regarding model-driven development for robotics in recent
years. Of the publications included in the survey, the
majority are in the field of modeling individual robot
capabilities. With our work we provide a representation that
could be used for such modeling tools for individual robot
capabilities as the resulting common runtime representation.

Another earlier example for reconfigurable controllers
is [14]. To better account for post-implementation changes
of machine controllers, the authors propose to model
the controllers using pre-installed software components
that are loaded at system startup and interconnected
according to the model. Their approach supports only
offline reconfiguration, i.e. the controller needs to be shut
down completely in order to load a new configuration.
Nevertheless, they argue that modeling the controllers
reduces development efforts when compared to traditional

2RobMoSys-website: https://robmosys.eu/

https://robmosys.eu/

J Intell Robot Syst

programming. Adaption of a robot controller at runtime
is supported by the work presented in [15] and [16].
The focus in this work is the specification of constraints
that define when a controller adaption has to take place
rather than the representation of effect of the adaption. The
reaction is thus limited to an adjustment of properties of
the presently running components. Both examples have in
common, that a single language specifies the conditions
under which a change in behavior occurs, and also how
the controller is reconfigured. In [17] Klotzbücher et. al
argue that these two mechanisms: (a) Detection of the
need of adaption and selecting the appropriate reaction
(Coordination) and (b) applying the change on a particular
system (Configuration), should be treated separately. They
provide a language that allows specifying transitions of
runtime states of components to enable the reconfiguration
of the robot controller. However, no changes in the topology
of the component network are possible, so that ultimately
all controllers for all different robot behaviors must fit into
a single rigid architecture.

We agree with the argumentation in [17] to provide
separated models for coordination and configuration.
Both processes represent system dynamics at different
abstractions. Coordination is concerned with the high-level
dynamics of a task. Its modeling primitives are semantic
entities that are valid for a certain application domain, such
as specific object or world conditions. The conditions are
mapped to events and discrete representations of actions
that manipulate the world state. These events and actions
can be valid for different robots when they are acting in the
same environment, even though the different robots might
be very different in their technical implementation. Thus,
implementation details should be kept at a minimum when
describing high-level dynamics of a task. Configuration on
the other hand, describes how to implement a certain action
and thus is inherently technical. Its modeling primitives are

implementation details, e.g. software components and their
interconnection or operations that are applied to them.

Following this terminology, this paper addresses the
Configuration: In the next section, we introduce models
for expressing dynamically changing control systems. The
dynamics include adjusting component properties, runtime
states, as well as changes of the overall controller topology.
Afterwards, in Section 3, we propose a software architecture
and implementation to carry out the modeled controller
transitions on distributed hardware.

2Modeling Online-Reconfigurable
Distributed Software Systems

In MDD, metamodels define the modeling domain by
specifying certain entities that exist in the domain and
their relevant properties and relationships. This section
introduces the metamodels that we use to model controllers
and modify them.

A controller is described by a network consisting of
interconnected pre-implemented software components. The
components are computation units (named Tasks), that
provide data ports for communicating with other Tasks.
Task Networks can be manipulated by a discrete set of
operations acting on the network’s Tasks. A sequence of
these operations specifies a procedural transition between
two Task Networks. A declarative controller reconfiguration
is realized by deriving the transition from the currently
present controller to a given target configuration, where
both controller configurations are represented as Task
Networks. The following sub-section will introduce the
meta-models for valid Tasks, Task Networks and Transitions
in detail. Afterwards, Section 3 introduces an algorithm
for the automatic derivation of a Transition, between two
arbitrary Task Networks.

Table 1 Legend for UML class diagrams that describe the metamodels

Classes

Meta-model Yellow classes denote the metamodel of the system represented by the figure.
Attribute Meta-models comprise of different attributes. These attributes are denoted as white classes.

Assoc. meta-model An attribute can be associated to a model conforming to a different metamodel. The referred
metamodel is visualized with a gray class.

Assoc./Attribute When an attribute is associated with an attribute of a different metamodel, this is represented
by using the name pattern: “metamodel name/attribute”.

Aggregations/Associations

conformsTo The attribute is a model that conform the associated metamodel.

refersTo The attribute contains a reference to another model by storing a unique identifier of the
referred model.

instanceOf The attribute is an instance of the model that conforms to the associated metamodel.

For aggregations and associations where no multiplicity is given, the multiplicity 1 is assigned.

J Intell Robot Syst

Task

Input Port Output Port Property Default Activity Nominal State Error State

Port

name : String

Data Type

Default Value Activity State

name : String

0..*
0..* 0..* 1..*

refersTo

conformsTo

Operation

name : String

Return Value Argument

1..*

6..*

0..1 0..*

conformsTo

refersTo

refersTo
refersTo

Fig. 2 Meta-model of a Task

We use UML class diagrams to represent the metamodels
in this paper. Table 1 summarizes the semantics of
the different class- and association-types we use for
representing the metamodels.

2.1 Component-Based Controller Modeling

Tasks represent the atomic processing units of a Task
Network. They are re-usable software components such as
hardware drivers, control- or data processing algorithms,
etc.. The Task-model captures information about the
external interfaces of the software component, serving two
purposes:

1. Provide technical interfaces to allow external software
to control the software components.

2. Provide the knowledge about the presence of the
interfaces without the need to execute the component,
i.e., to present the interfaces to the user or software
tools.

To represent software components and data types, that
can be used on the component’s external interface, the
models that are used in the Rock framework3 are adopted.
For completeness, the metamodel for Rock Tasks, Data
Types and Deployments are briefly described here. For
further details on the Rock framework and the underlying
technology for developing real-time software components,
Orocos-RTT4, the interested reader is invited to read [2] and
[7].

As shown in the graphical representation of the
metamodel Tasks in Fig. 2, Tasks consist of the following
parts:

– Port: To interact with other software components, a
Task can read incoming data from its Input Ports and
write data to its Output Ports. Each port is associated
with a Data Type (cf. Fig. 3) specifying the only valid
type that can be exchanged over the port.

3Rock-Website: https://www.rock-robotics.org/
4Orocos-RTT Website: http://www.orocos.org/rtt/

– Operation: Tasks can provide Operations, i.e. proce-
dures, which can be called from remote processes and
systems. With a name, a return value and arguments, the
model an Operation provides similar information as a
normal function header. At runtime, calling of an opera-
tion leads to the synchronous execution of an associated
function with the same header.

– Property: Tasks can optionally define a set of typed
configuration parameters. Each property is identified by
a name that is unique within the component, a data type
and a default value.

– Nominal State/Error State: Each Tasks execution
is controlled with a state machine implementing a
common life cycle. Each component contains certain
pre-defined states and permissible state transitions
that can be used to start or stop data processing,
apply configuration values, and execute standardized
fault recovery methods. The state transitions between
the predefined states are triggered by calling specific
operations.

More details on the life cycle will be given in
Section 3.2 and Table 4.

– Activity: Runtime characteristics (Activity, cf. Figure 5)
of a Task such as it’s triggering mechanism (e.g.
on retrieval of new data or periodic triggering) are
relevant for the deployment of a Task. Nevertheless it
is foreseen, that the component developer already pre-
initializes them with a sane default value, such that a
working default deployment can be generated.

Properties and ports of a Task are associated with
a Data Type. For modeling the data type, we use the
typelib5 metamodel that Orocos-RTT [8] and Rock [2]
use. The model of a data type is used for framework
features such as data serialization and de-serialization,
conversion to CORBA IDL format or translating values
from configuration files to the runtime data types and
vice versa. For (de-) serialization, typelib assumes a rigid
mapping of the individual type models to runtime types

5Typelib Source Code and Documentation: https://github.com/
orocos-toolchain/typelib

https://www.rock-robotics.org/
http://www.orocos.org/rtt/
https://github.com/orocos-toolchain/typelib
https://github.com/orocos-toolchain/typelib

J Intell Robot Syst

Fig. 3 Meta-model of a Data
Type

Data Type

size : Integer

Numeric

Numeric Type

SInt

Compound

Field

offset : Integer

refersTo

Container

size : Integer

refersTo Enum

Value

symbol : String
value : Integer

UIntFloat

0..*
0..*

0..*

Task Network

Deployment
Connection

Sink Source Policy

Port Reference Data Buffer

buffer_size : Integer

Task Instance Task/Port

refersTorefersTo

Circular Buffer

buffer_size : Integer

Task Instance

Property Assignment
0..*

Prototype Activity Instance Runtime State

TaskTask/PropertyValue

Task/Data Type

Activity Task/State

refersTorefersTo conformsTorefersTo

instanceOf

Fig. 4 Meta-model of a Task Network

Activity

Triggering Mechanism

Port Driven
File Descriptor Driven

file_descriptor : String

Periodic

periodicity : Integer
newAttr : Integer

Port Reference

Task/Input Port

refersTo

Deployment

process_name : String
host : String

Deployed Task
1..*

Task Instance

refersTo

Scheduling Policy

priority : Integer

Non-Real Time Real Time

Host

refersTo

Host

ip : String

Process Server

Fig. 5 Meta-models for deployment information

J Intell Robot Syst

in the target language (e.g. C++). The Data Type model
describes four different categories of types:

– Numeric: This represents the primitive types. Three
sub-categories of numeric types are discriminated:
floating-point numbers, signed integers and unsigned
integers.

– Container: Represent array-like structures. A container
always refers to a Data Type indicating the type for
every element stored inside the container.

– Enum: Relates the numeric value of a enumeration type
(as in C/C++) with its symbolic representation.

– Compound: Represents complex data structures with
different members (Fields) of different Data Types.

To model a controller for a robot, a Task Network
is composed. To achieve this, instances of Tasks are
created, configured, interconnected and deployed to target
hardware. As illustrated in Fig. 4, for each instantiated
Task (Task Instance) in the Task Network, the properties
are explicitly configured with Property Assignments. The
state in the life cycle of the Task is specified with the
Runtime State attribute and certain runtime characteristics
are assigned with the Activity Instance (cf. Figure 5). The
Prototype specifies which model the instantiated component
conforms to. Note that several instances of the same
Task can exist, which is used, for example, when the
same driver component is instantiated several times for
redundant hardware devices. The individual instances are
distinguished from each other by a unique name.

The connections between the ports of the individual
Task Instances form the topology of the Task Network.
In addition to the data source and sink, a Connection
also describes the connection policy, which can be either
unbuffered (Data), buffered or via a ring buffer.

The implementations of individual Tasks are compiled
into libraries. With the Deployment, any number of Task

Instances are combined to form executable programs that
link against the respective libraries containing the Task
implementations. The Deployments are assigned to a
specific execution hardware (Host) and an RTT-scheduler
(real-time or non-real-time) with a specific scheduling
priority. Each Host is associated with a Process Server,
a program in charge of handling the processes on the
particular execution hardware.

When two Task Instances of the same Deployment
communicate with each other (intra-process communica-
tion), a more performant data transfer method can be used
compared to communication between two different pro-
cesses (inter-process) or between two different computers
(remote). The Rock Framework automatically ensures that
the most suitable communication method is used.

Implementation details on the Process Server and the
overall runtime architecture are given in the Section 3.

2.2 TransitionModelling

To dynamically reconfigure the robot controller, the
structure of the running Task Network is altered. Since all
components conform the Task metamodel, a set of actions,
that is common for all components, can be defined, to
describe a complex restructuring of a component network
when the actions are chained sequentially.

Figure 6 illustrates the metamodel for Transitions, which
can contain any sequences of the following Actions:

– Deploy/Undeploy: The Deploy action represents the
instruction to execute a specific Deployment, which
corresponds to starting a new process. The Undeploy
action, on the other hand, is the instruction to end the
process of the referenced Deployment.

– Call Operation: Represents a call to an Operation of
a Task Instance. A value must be assigned for each
argument specified for the referred Operation.

Transition

Action
0..*

Call Operation

Connect PortsDeploy

Disconnect PortsTask State Transition

UndeployTask Instance

Task/Operation

ConnectionDeployment

Start

Stop

Configure

Recover

Cleanup

Tast/State

Apply Config

Property Assignment

refersTo

refersTo

refersTo refersTo

instanceOf refersTo

refersTo refersTo
instanceOf

refersTo

Value Data TypeinstanceOf0..*

Fig. 6 Meta-model of a Transition

J Intell Robot Syst

– Task State Transition: The different Task State Transi-
tions refer the initiation of a runtime state transition of
a Task Instance.

– Connect/Disconnect Ports: Refers to the action of
establishing or removing a connection between two
ports.

For the different metamodels presented in this section,
we implemented runtime-representations in C++, Python
and/or Ruby and defined text-based serializations in YAML
or XML. The serialization formats are used for persistent
storage and data exchange between the tools described in
the next section. Examples for YAML representations for a
Task Network and a Transition are given in Appendix A.

3 Implementation

In model-based development, metamodels, like the ones
from the previous section, allow to model certain aspects
of a specific problem, but not necessarily restrict the
processing that is conducted on them. In contrary, as
indicated by Fig. 1, there can exist independent tools that
focus on different aspects of the modeled system and
process the models in various ways. This section now
introduces a software that is responsible for the execution
and runtime management of the modeled controllers
as well as for the automatic calculation of transitions
between them. Thereby, the software makes use of all
metamodels from the previous section with Component
Network and Transition being the central representations
in the implementation. Table 2 and later Table 3 formally
describe some operations on the model representations that
are used in the implementation of the software rock-runtime.

The following sub-section gives an overview about the
overall system architecture, followed by a detailed descrip-
tion of the Network Operation Solver (NetOpSolver), an
algorithm that generates a sequence of actions that reconfig-
ure a controller network, in the subsequent subsection.

3.1 Distributed Runtime Architecture

The task of rock-runtime is to manipulate system processes,
TaskContexts and data connections in such a way that the
running control system is reconfigured in correspondence
with Task Networks which can be requested at any
time, e.g. by a high-level mission coordination or plan
execution software. Figure 7 illustrates the architecture
of rock-runtime comprising of the following software
parts:

– Network Operation Solver (NetOpSolver): an algorithm
to determine the Transition φmin consisting of the
minimum set of operations that reconfigure the
currently running controller Cact to match the desired
controller Cset (both represented as Task Networks).

– RTTTaskManager: A software module handling all
interactions with RTT components, represented by the
Task Instance model. This module’s task is to realize a
particular action a ∈ φmin on the respective component.

– ProcessServer: Manages the processes on a specific
runtime platform. On each computer involved in a
Task Network, a ProcessServer runs which takes care
of starting and stopping processes on this computer
when the RTTTaskManager requests this by calling the
corresponding operations.

– TaskNetworkHandler: The central software part, pro-
viding the interface to higher-level software. The
TaskNetworkHandler coordinates the system-wide run-
time state by invoking the other mentioned software
parts. Requests of the a new Cset or requests for apply-
ing certain Transitions can be issued to the TaskNet-
workHandler.

The ProcessServer and TaskNetworkHandler are imple-
mented as individual Rock components (cf. Figure 7). The
RTTTaskManager and NetOpSolver are provided as C++
classes in libraries that are linked to the TaskNetworkHan-
dler component.

Table 2 Definition of operations on Task Network and Transition models

Definition 1 Each model conforming to any of the metamodels can uniquely be identified by an id.

Definition 2 Two Task Instances x and x∗ are equal (x = x∗), if all their attributes are equal. They are similar (c ≈ c∗), if at least their id
and Prototype are equal. For two Connections e, e∗, two Deployments d, d∗, and Task Networks C, C∗ the equality operator = is
defined analogically.

Definition 3 The operator ⊕ applies a Transition φ to a Task Network. The operation C ⊕φ �→ C∗ predicts the effect of a transition. The result
is a Task Network C∗, where C∗ �= C, if φ is not empty (φ �= ∅) and minimal.

Definition 4 The operator |φ| can be applied to a Transition φ and returns the number of Actions within the Transition. A Transition φmin is
minimal, if there exists no other transition φ with |φ| < |φmin| that has the same effect, when applied to the same Task Network C.

J Intell Robot Syst

Table 3 Definition of set-operations on Task Networks

Definition 5 A Task Network can be seen as a set composed by its Task Instances x, Connections e and Deployments d.

Definition 6 The existence ∈ of a Connection e or a Deployment d in a Task Network C is given, if C contains a Connection eA = e or
Deployment dA = d. The existence of a Task Instance x in a Task Network CA (x ∈ C) is given, if C includes a Task Instance
xA ≈ x.

Definition 7 The set difference of two Task Networks CA and CB (or complement of CA with respect to CB) is defined by CA�CB =
{x|(x ∈ CA) ∧ (x /∈ CB)}.

Definition 8 The intersection of two Task Networks CA and CB are those components xa ∈ CA and xb ∈ CB, that are similar (xa ≈ xb)
and present in both Task Networks.

Each computer system involved in the distributed control
system runs a ProcessServer that takes care of execut-
ing or terminating the processes specified by the Deploy
and Undeploy actions. The Task Manager and the Process
Servers on the individual runtime systems communicate
with each other using RTT operation calls. All additional
Actions (such as Start, Apply Config, Connect Ports, etc.)
are implemented in the by RTTTaskManager directly by
using the standardized Rock interfaces of the components
referred by the actions. For interacting with external soft-
ware, like a plan execution program, the TaskNetworkHan-
dler provides input ports and RTT-operations, on which
TaskNetworkHandler listens for Task Network and Tran-
sition requests. When a certain controller configuration
is requested, the TaskNetworkHandler calls the NetOp-
Solver in order to generate the required Transition. The
TaskNetworkHandler keeps tracks of all TaskNetwork- and
Transition-requests and maintains a Task Network Cbelief

that represents the current state of the controller, which
is also passed to the NetOpSolver (Ccur = Cbelief). The
TaskNetworkHandler provides an input port that allows
resetting Cbelief by passing the actual running component
network Cact.

Fig. 7 Architecture of the rock-runtime software

3.2 Network Operation Solver

By using Definition 1 – 4, Eq. 1 describes the Network
Operation Solver (NetOpSolver) as a function that finds the
minimal set of Actions that will establish a desired target
configuration Cset when they are executed.

solve(Ccur, Cset) �→ φ,

where Ccur ⊕ φ = Cset, and |φ| is minimized. (1)

We implemented the NetOpSolver as a special purpose
algorithm that is shown in detail in Algorithm 1. The
algorithm identifies the differences between Cdes and Ccur,
and for each mismatching item selects a predefined partial
Transition, that eliminates the mismatch. The following
paragraphs give details of the NetOpSolver, that makes
use of set-operation on Task Networks that are defined in
Table 3.

Line 2-4 of Algorithm 1 identify topological differences
between Ccur and Cset:

– C− contains the Task Instances, Connections and
Deployments of Ccur , that need to be removed, because
they are no longer exist in Cdes .

– C+ contains the sub-network of Cdes , that newly needs
to be created, because it was not present in Ccur .

– C∩ contains the sub-network that is present in Ccur

and Cdes , but where the components are not equal
but similar. Here a state change in the individual
components life-cycle or a reassignment of properties is
required (cf. line 17-26).

Fig. 8 Valid state transitions of the common life cycle for Task
Instances

J Intell Robot Syst

Algorithm 1 Network Operation Solver (NetOpSolver).

Input: Initial network Ccur and the target component network
Cset

Output: Minimal Transition φ where Ccur ⊕ φ = Cset

Initialize empty Transitions :
1: φ ← ∅

Determine required topological changes by creating comple-
ments and the intersection of Ccur and Cset

2: C+ ← Cset�Ccur

3: C− ← Ccur�Cset

4: C∩ ← Ccur ∩ Cset

Generate shutdown sequences for components in C−
5: for each TaskInstance x ∈ C− do
6: φ
 genStateTransition(x, stateOf(x), PRE OP)
7: end for

Generate Disconnect and Undeploy actions
8: for each Connection e ∈ C− and Deployment d ∈ C− do
9: φ
makeDisconnect(e)
10: φ
makeUndeploy(d)

11: end for

Generate actions to add new Deployments and Connections
specified in C+

12: for each Connection e ∈ C+ and Deployment d ∈ C+ do
13: φ
makeConnect(e)
14: φ
makeDeploy(d)

15: end for
Generate startup transitions for all Tasks in C+

16: for each x ∈ C+ do
17: φ
 genStateTransition(x, PRE OP, stateOf(x))
18: end for

Handle potential state or configuration changes in C∩
19: for each TaskInstance x∩ ∈ C∩ do
20: xcur ← find x ∈ Ccur,where x ≈ x∩
21: xset ← find x ∈ Cset,where x ≈ x∩
22: φ
 genStateTransition(x∩, stateOf(xcur), stateOf(xset))

If property assignment is required, also generate the needed
life cycle state transitions

23: if propertyAssignmentOf(xcur) �= propertyAssignmentOf
(xset) then

24: φ
 genStateTransition(x∩, stateOf(xcur), PRE OP)
25: φ
 makeApplyConfig(x∩, propertyAssignmentOf

(xset))
26: φ
 genStateTransition(x∩, PRE OP, stateOf(xcur))
27: end if
28: end for

Sort individual actions in φ according to their applicability:
(1. Recover, 2. Stop, 3. Disconnect, 4. Cleanup, 5. Undeploy,
6. Deploy, 7. Apply Config, 8. Connect, 9. Start)

29: φ ← sortByApplicability(φ)
30: return φ

The functions propertyAssignmentOf(TaskInstance) and
stateOf(TaskInstance) return the corresponding attribute
(Property or State) of the TaskInstance given as param-

eter. The functions makeApplyConfig(TaskInstance,
PropertyAssignment), makeConnect(Connection), makeDe-
ploy(Deployment) etc. create Actions for a Transition, that
modify a Task Network such that the entity which is given
as argument is either created or removed.

It was already mentioned in Section 2 that every running
Task contains a state machine, implementing a uniform life
cycle for all software components. Figure 8 illustrates the
allowed transitions (italics) between the individual states
(bold) within this life-cycle. Based thereon, Table 4 lists
the sequences of actions required to transition between
any given constellation of initial and target state of a
Task. The ERROR state can only be triggered within the
component and not by calling an operation. The function
genStateTransition(TaskInstance, State init, State target)
generates the correct sequence of TaskStateTransition-
actions to setup the state target on the given TaskInstance
based on this state chart.

Lines 23-27 of Algorithm 1 account for the convention
present in Rock, that the assignment of configuration
parameters are applied to a component when it is in the
PRE OP-state. Realizing a reconfiguration of a running
component thus requires generating a state transition
to PRE OP before applying a Apply Config-action and
afterwards a full state transition to the RUNNING-state
again.

Line 29 of the Network Transition Solver ensures
the correct order of actions and removes duplicate state
transitions. In general, actions that regress the lifecycle of a
component or reduce the component network (components
or connections are removed) are executed before actions
that advance runtime states or extend the component
network.

4 Experimental Results

The overhead caused by the framework for data exchange
and for interaction with the software components influences
the feasibility of using the software framework for real-time
control tasks. To validate the choice of using Rock/Orocos-
RTT, and the dynamic controller reconfiguration perfor-
mance, various performance parameters of the system were
measured in an experimental evaluation. A first experiment
series acquires data about the middleware’s performance in
relation to data sample and component network sizes. A sec-
ond series investigates times for starting or reconfiguration
controllers with changing component network sizes.

These theoretical experiments are supplemented by
another practical experiment which examines the perfor-
mance under realistic conditions. In this experiment, dif-
ferent controllers created with the proposed framework are
executed on a real robot system and the reconfiguration

J Intell Robot Syst

Table 4 Operations required to transition between runtime states

Start

Target
PRE OP STOPPED RUNNING ERROR

PRE OP – ApplyConfig, Configure ApplyConfig, Configure, Start x

STOPPED Cleanup – Start x

RUNNING Stop, Cleanup Stop – x

ERROR Recover, Stop, Cleanup Recover, Stop Recover –

times between them are determined. Thereby the applicabil-
ity of the framework to real robotic problems as well as the
performance of the adaptation for real controllers is shown.

The experiments are executed on two different computers
that are connected with a commercial Gigabit Ethernet
switch from D-Link:

– System A: Mini-ITX (mITX) board with Intel Core i7-
3610QE CPU@ 2.30GHz, 16GiB memory and a SATA
connected SSD from Samsung (550 MB/s seq. read,
520 MB/s seq. write).

– System B: COM Express (COMe) Compact Pin-
out Type 6 embedded system with Intel Core i7-
7600U CPU @ 2.80GHz, 16GiB memory and a SATA
connected SSD from Samsung (550 MB/s seq. read,
520 MB/s seq. write).

On both systems the operation system Ubuntu 18.04 is
installed with no significant adaptions compared to its
standard configuration.

For all experiments we composed different Task Net-
works from the three Tasks shown in Fig. 9. The Message-
Producer produces data samples χout of the type DataSam-
ple (cf. Listing 1).

The size of the data sample depends on the length of
the string stored in the payload variable. To create the data
sample, MessageProducer generates a random string with
a configurable length for the payload variable and stores a
timestamp in microsecond resolution after constructing the
DataSample object and immediately before writing it to the
output port.

Component networks used in the experiments create
a processing chain by connecting the output port of
MessageProducer to a varying number of MessageRelay
components that simply read samples from their input port
and forward them to the output port. The last component in

a processing chain is the MessageConsumer that calculates
the duration between the creation of the data sample in the
MessageProducer and its retrieval in the MessageConsumer,
by comparing the timestamp stored in χin to the current
time. The transport duration for all received sample is
written to a file.

The experiments also investigate the effect that different
deployment configurations induce. We distinguish the
following three cases:

1. Intra-process communication: Each two directly con-
nected Tasks are running in the same process.

2. Inter-process communication: Each two directly con-
nected Tasks are running in different processes, but the
processes run on the same system.

3. Remote communication: Each two directly intercon-
nected Tasks are running on different systems, thus,
network communication is required to exchange data.

In the following, we will use a simplified notation
to describe the topology of Task Networks. We refer to
MessageProducer, MessageRelay and MessageConsumer
components with the symbols P, R and C. The computer
system (A, B) and the process, where the Task is deployed
to, is indicated by a prefixed superscript. An arrow denotes
a data connection between two components (since there
is no component involved with multiple input or output
ports this notation is for the present case unambiguous). For
example, A1P refers to a Message Producer that is deployed
to process 1 on systemA. The processing chain A1P →B1 C

shows a case of remote communication where a data sample
is sent from a MessageProducer running on system A to a
MessageConsumer running on systemB. In all experiments,
the MessageProducer are triggered periodically and the
other two components are triggered upon receiving a new
data sample.

Fig. 9 Software components
used in evaluation experiments MessageProducer MessageRelay MessageConsumer

J Intell Robot Syst

Listing 1 C++ type definitions for data samples χ

4.1 Data Transfer Times

In the first experiment (E1.1), we investigate how the size of
a data sample influences it’s transmissions times in different
deployment cases. We measure the time for the two-way
transmission of a data samples χ between components.
The experiment is repeated with changing sizes of χ and
different deployment cases. The following Eqs. 2–4 show
the used component networks.

A1P →A1 R →A1 C (2)
A1P →A2 R →A3 C (3)
A1P →B2 R →A1 C (4)

The payload size of χ varies between 10 B and 100 MB
in multiple steps. Small sizes (< 1 kB) are included, as
they are usually used for real-time control task such as joint
control. Larger sizes that often find use in sensor processing
(< 10 MB) are included as well, and with payload size of
100 MB we also test a data sample size that is so large, that
it is of no practical use in most robotics control applications.

Figure 10 shows a plot with the mean data transfer
times collected over a period of 15 seconds for the
different versions of the experimental setup. As expected,
the result of the experiment shows that the performance
of intra-process communication is better than that of inter-
process communication, and that remote communication
causes the highest overhead. The question the experiment
aims to answer is whether the communication overhead is
sufficiently low to use the framework for robot control.

The data shows that for sample sizes up to multiple kB,
the communication overhead is not the limiting factor to
achieve control frequencies with 1 kHz in the intra-process
case.

For the inter-process case the communication overhead
is also still less than 1 ms, but for a 1 kHz controller
there is not much time left for the actual calculation, which
would be needed in a real control application. In the remote
communication case, the overhead alone prevents a control
frequency of 1 kHz. However, control frequencies of 500

Hz or 100 Hz can be achieved even with sample sizes larger
than 100 kB respectively 1 MB in the intra-process case.

This however is a theoretical statement. In practice, it is
likely that larger data sizes will require also more time for
processing the data. For example, it usually takes longer to
process a FullHD image than multiplying a joint position
vector. Thus for larger sample sizes it is more likely that the
actual processing is actually the limiting factor to achieve
high control rates.

The second experiment (E1.2) investigates the impact of
an increasing number of data processing components on
the theoretically achievable control rate. We measure the
time for sending a data sample of a fixed size (100 B)
through component networks that vary in the number of
MessageRelay components. The network topologies used
for the experiment are given in Eqs. 5–7.

A1P →A1 R1 → . . .A1 Rn → A1C (5)
A1P →A2 R1 → . . .An+1 Rn → A1C (6)

A1P →B1 R1 →A2 R2 → . . .Bk Rn → A1C (7)

Similar to the first experiment, again the dura-
tion between the creation of χ in P and its arrival
in C is measured. The data collection is repeated
for different number of Relay components (n =
5, 10, 25, 50, 100, 150, 200, 250) and different deployment
cases. With n = 5 and n = 10, typical processing chain
sizes are considered. Component networks composed from
25 or 50 individual components still appear as realistic sizes,
but a chained interconnection of such a number of com-
ponents is a rare case in robotics. In the real experiment,
which will be presented in more detail in the next subsec-
tion, we show, for example, a controller that implements
an autonomous exploration behavior on a rover utilizing a
LiDAR sensor for self-localization and mapping (SLAM) of
the environment (cf. Section 4.3.1 and Appendix B.1). The
longest processing chain in that controller contains 13 com-
ponents consisting of the sensor and actuator drivers (3),
sensor processing of the point cloud data (2), slam and pose
filtering (2), setpoint generation and trajectory planning (2),
trajectory and motion control (2) sample dispatching and
device I/O (2).

Even though the larger values of n seem not of practical
use for robotics applications, we include these values to
the experiment to investigate the potential for controllers
with more fine-granular component decomposition or
significantly more complex systems than those that are
currently common.

As in E1.1, the data of E1.2 (shown in Fig. 11) reflects the
expectation that the intra-process deployment case performs
better compared to the other deployment cases. For each

J Intell Robot Syst

Fig. 10 Data transfer times of
data samples with increasing
sizes

10.0 B 0.1 kB 1.0 kB 10.0 kB 0.1 MB 1.0 MB 10.0 MB 0.1 GB

Data sample size (Bytes)

0.1

1.0

10.0

100.0

1000.0

Tw
o
w
ay

tr
an
sf
er

tim
e
(m

s)

0.140 0.147 0.163
0.216

0.432

6.444

201.557

0.524 0.641 0.738
1.070

2.578

32.322

1000.598

1.000 1.010
1.465

3.267

23.434

245.794

2868.672

Intra-Process

Inter-Process

Remote

deployment case, the transfer time is increasing nearly-
linearly with the number of components, but with different
slopes of approx. 0.02, 0.14 and 0.22 ms

transport .
The experiment shows that if processing chains are kept

short (< 10), a 1 kHz control frequency could be achieved
in the intra-process case. For a control frequency of 100
Hz, the communication overhead play no significant role
for any practically relevant processing chain in the intra-
process case. In a real robotics application a deployment
case like the inter-process or especially the remote case,
where each single data connection crosses process or system
boundaries, are quite unconventional. Nevertheless, the
results show that the 100 Hz target can be achieved for
longer processing chains, if the processing times inside the
components remain moderate.

4.2 Task Network Operation Times

The second series of experiments examines the controller
startup and reconfiguration times. The experiment E2.1
investigates how the number of interconnected components
influences start-up/shutdown times of a Task Network. We
again use networks from Eqs. 5 – 7 that were also used
for E2.1. For the individual component networks, that vary
in network sizes and deployment case, we measure the
duration to setup the running component network, and to
completely shut it down again. For a component network
with n MessageRelay components, 1 + n data connections
have to be established or removed respectively. For starting
a component network, (n + 2) ∗ 3 Task State Transitions
and two property assignments have to be applied. To shut

Fig. 11 Data transfer times with
increasing length of the
processing pipeline

0 50 100 150 200 250

Length of processing chain

0

10

20

30

40

50

60

T
im

e
fo
r
pr
oc
es
si
ng

of
10
0
B
yt
e
(m

s)

0.39 1.68 2.38 3.58 4.24 5.44 6.255.22

10.54

18.31

23.36

29.19

36.09

2.80

10.73

18.30

25.99

36.01

46.51

57.88Intra-Process

Inter-Process

Remote

J Intell Robot Syst

it down again, (n + 2) ∗ 2 Task State Transitions are
needed. The amount of Deploy/Undeploy actions varies
with the deployment case: While only one deployment must
be started (or terminated) for the intra-process case, n + 1
Deploy/Undeploy actions are required for the other two
cases.

For each component network, the measurement of
startup/shutdown times was repeated 5 times. Figure 12
shows two plots with the mean execution times. Both
plots show the same data but differ in the visual section
of the horizontal axis, such that the plot on the left
only shows the data for smaller networks. The data
shows that shutting down component networks is generally
faster than starting them, in part due to the less required
Task state transitions. In addition, the performance varies
dramatically for different deployment cases. While a
controller consisting of 25 components grouped into a
single deployment can be started in milliseconds, it takes
more than 1s if all components are deployed locally into
individual processes, or more than 1.5 s in the remote case.

These observations already indicate that the Deploy
action is rather costly, and that it makes a noticeable
difference, if a deployment is started locally or remotely.
An additional experiment (E2.2) confirms this observation.
E2.2 examines the execution time for individual action types
by repeatedly executing them while taking the time for their
completion. For example, to measure the average time of a
Start action, it is ensured in advance that a Task Instance is
currently running and is in the state STOPPED. A Transition
is then requested that contains only a single Start-action for
this Task Instance, and the time until the Transition was
completed successfully is measured. Similar procedures are
followed for the other action types. Figure 13 summarizes
the resulting average execution time for each action type.

0 20 40

Components in Network

0 0

0 5

1 0

1 5

2 0

2 5

3 0

T
im

e
(s
)

Intra-Process

Inter-Process

Remote

Start-up

Shut-down

0 100 200

Components in Network

0

5

10

15

20

25

T
im

e
(s
)

Intra-Process

Inter-Process

Remote

Start-up

Shut-down

Fig. 12 Time measurements for starting and shutting down component
network with different sizes and deployment constellations

This test identifies which operations are more costly than
others and how the local and remote execution of the actions
differ. The State Transition Actions except Configure all
need around 0.5ms with an overhead of 1.3ms when
network communication is involved. The action Configure
is much slower, because in addition to the operation call, the
handle of the Task Context is refreshed by the CNDHandler
afterwards. This is necessary because additional ports can
be created during the configuration of the component,
which can only be accessed after the Task Context handle
has been renewed. This is a rather costly operation
and also necessary for the “Deploy” action, which is
likewise relatively slow. However, terminating Deployments
with the Undeploy action takes even longer that starting
them.

A further experiment (E2.3) is concerned with the time
needed to reconfigure controllers. A processing chain with
n relay components R (cf. Eqs. 8 and 10) is reconfigured
online such that half of its MessageRelay components are
replaced with different instances R′ of the MessageRelay
component (cf. Eqs. 9 and 11).

A0P →B1 R1 → . . .Bn Rn → A0C (8)
A0P →B1 R1 → . . .Bn R n

2
→Bn+1 R′

1 → . . .
Bn+ n

2 R′
n
2

→ A0C (9)

A0P →A0 R1 → . . .A0 Rn → A0C (10)
A0P →A0 R1 → . . .A0 R n

2
→A0 R′

1 → . . .A0 R′
n
2

→ A0C (11)

The experiment compares two different cases:

1. The transition of Eqs. 8 to 9 is the worst case.
Since each component is running in a separate
Deployment, and all deployments that are subject to the
reconfiguration are on a remote system, many costly
remote Deploy and Undeploy actions are required to
perform the transition.

2. The transition of Eqs. 10 to 11 is the best-case scenario.
Here all components are running on the same computer
within the same process.

While the worst-case scenario requires n/2 Deploy and
Undeploy actions of remote processes in the transition, no
Deploy or Undeploy actions are needed in the best case
scenario, since all involved components are part of a single
large Deployment, which is already started with Eq. 10 and
may not be terminated as long there are still components
from the deployment running.

Both cases are compared to the case where a static con-
troller reconfiguration (restart) is performed, i.e. between
Eqs. 8 and 9 a transition to an empty network is carried out.

The experiment was executed multiple times for each
alternative while measuring the time for completing the
reconfiguration. Figure 14 shows the mean execution times

J Intell Robot Syst

Fig. 13 Time to perform an
individual operation of a
component

De
plo
y

Ap
ply
Co
nfi
g

Co
nfi
gu
re

St
art St

op

Cl
ea
nu
p

Un
de
plo
y

Co
nn
ec
t

Di
sc
on
ne
ct

1.0

10.0

M
ea
n
T
im

e
lo
g(
m
s)

2.6

1.2

12.9

0.5 0.4
0.5

4.3

1.6

0.6

7.7

3.4

16.7

1.8 1.9
1.7

10.2

3.4

2.1

Local

Remote

for each reconfiguration alternative. The worst-case online-
reconfiguration can be carried out in less than two second
for usual component network sizes with less than 50
components. In the best-case scenario, this value is reduced
to 320ms.

In particular, the Deploy/Undeploy and Configure
actions have execution times that make it impossible to
achieve network reconfiguration in a single control cycle for
the control frequencies common in robotics (i.e. 10-1000
Hz). While the data suggests that a complete reconfiguration
at a low control frequency for simpler controllers could
theoretically be performed in one cycle, it should be noted
that there is no guarantee that no real-time violations will
occur. In some cases, however, these violations may cause
problems with system stability.

0 10 20 30 40 50

Number of components

0 0

0 5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

T
im

e
(s
)
to

ex
ch
an
ge

ha
lf
of

co
m
po
ne
nt
s

Dynamic, worst case

Static, worst case

Dynamic, best case

Static, best case

0 50 100 150 200 250

Number of components

0

5

10

15

20

25

30

35

40

T
im

e
(s
)
to

ex
ch
an
ge

ha
lf
of

co
m
po
ne
nt
s

Dynamic, worst case

Static, worst case

Dynamic, best case

Static, best case

Fig. 14 Time to reconfigure a component network by exchanging
half of its components compared to stopping and starting the new
component network

4.3 Case Study with a Real Robot

The validation tests from Sections 4.1 and 4.2 examine the
theoretically expected runtime performance of the proposed
system through abstract experiments. The components in
the experiments intentionally do not do significant compu-
tational operations, so that only the framework’s overhead
is measured. A further experiment investigates how the
runtime performance scales to real robot application sce-
narios. For this purpose we implemented the following
four different controllers for a real robot and measured the
reconfiguration times between all different controllers:

– Search & Explore (S&E): An area exploration behavior
with simultaneous object detection.

– Goal Navigation (GNav): Navigation to a goal which is
detected by camera.

– Manipulation (Manip): A visual servoing controller to
guide the arm towards an object.

– Manipulator Tele-Operation (MTele): Control of the
manipulator with a 3D mouse.

As target platform we chose the system Artemis [18]
which is depicted in Fig. 15. Artemis is a six-wheeled rover,
with the wheels mounted on passive rockers to compensate
for ground irregularities. It is equipped with a sensor mast
that holds a LiDAR, an IMU and three Full HD USB
cameras. A 6 DOF manipulator with a under-actuated and
sensorized gripper is attached to the front of the robot, where
also a tilting laser scanner and two further cameras USB
cameras are mounted.

All onboard computation is realized on System A,
that was introduced earlier: an Intel i7-3610QE CPU @
2.30Ghz with 16Gb RAM, hosted on a mini-ITX board
from Kontron. The operating system Ubuntu 18.04 and
the software subject to testing are installed on a Samsung

J Intell Robot Syst

Fig. 15 The robot Artemis

SSD. The robot is controlled through an SSH connection
established via WiFi using an ASUS router that creates a 2.4
GHz and 5 GHz WiFi network specifically for the robot.

The upcoming paragraphs first introduce the individual
controllers followed by the statistical evaluation of this
experiment. We use a graphic representation to explain the
controllers (see Fig. 16). The Task Instances are shown
as boxes with rounded corners, with the unique ID of the
Task Instance written in bolt letters in the upper part of
the component. Below, the prototype of the component
is shown (e.g. example::Task). To allow a more compact
representation of complex Task Networks, several Task
Instances can be grouped in a single box. In this case,
the number of Task Instances within the group is written
instead of the prototype (e.g. 5 Components). Input ports of
a component are always displayed on the left side, output
ports always on the right side and data connections are
displayed as an arrow between an output and an input port.
In most cases, we do not show ports of a component that are
not connected. Additional information of the Task Network

group
(5 Components)

state: RUNNING

input_port output_port

task_instance
example::Task

state: RUNNING

input_port output_port

Fig. 16 Example of a graphical notation for a Task Network

model, such as task or connection properties or deployment
information, is not included in the visual representation.

This paper is not concerned with evaluating the
performance of the implemented controllers, but with the
framework that manages these controllers. However, for
illustration we have executed them all in an informal
experiment and show in Fig. 17 some impressions from the
real-life execution of the four different controllers on the
robot Artemis.

4.3.1 Search & Explore

This controller (see Fig. 18) controls the robot in such a
way that it explores and maps an unknown area and at the
same time searches for a specific object. To achieve this, the
component area explorer generates target coordinates at the
borders of the currently known map as input for a navigation
planner (ugv nav planner). The map is provided by a graph-
based SLAM solution6 based on the g2o library [19] using
the LiDAR and IMU on the sensor mast. By continuously
generating target coordinates at the outer borders of the
known area, the map is extended to previously unknown
regions.

During the exploration, the images from the frontal
camera mounted on the sensor mast are processed by a
component that executes the ArUco algorithm [20, 21] on
the camera images to detect the red box with the cup on
top, which is visible in Fig. 17. (arcuco detector). For this
purpose, the box has been specially prepared with an ArUco
marker so that it can be detected.

6https://github.com/dfki-ric/slam3d

https://github.com/dfki-ric/slam3d

J Intell Robot Syst

Fig. 17 Pictures taken while
executing the different
controllers

The Search & Explore controller consists in total of 33
Task Instances that are distributed over 8 Deployments.
There are 49 port connections between the components. The
full controller is shown in Appendix B.1.

4.3.2 Goal Navigation

The Goal Navigation controller is depicted in
Fig. 19. When executed, a data processing pipeline

manipulator
(10 Components)

aruco_detector
(2 Components)

pose

slam
(7 Components)

map
pose

rover
(8 Components)

motion_command joint_state

area_explorer
ugv_nav4d::AreaExploration

map

goal_out_bestpose_samples

planner_state

ugv_nav_planner

map

trajectory

goal_pose_relat
ive

start_pose_samp
les

state

ugv_nav4d::PathPlanner

trajectory_follower
trajectory_follower::Task

trajectory

motion_commandrobot_pose

others
(3 Components)

Fig. 18 Simplified visual representation of the Search & Explore controller

J Intell Robot Syst

aruco_detector
(2 Components)

pose

rover_waypoint_following
(6 Components)

marker_pose

navigation_goaljoint_state

ugv_nav_planner
(2 Components)

map command

goal_pose_relat
ive

start_pose_samp
les

manipulator
(10 Components)

others
(6 Components)

slam
(7 Components)

map
pose

rover
(8 Components)

motion_command joint_state

Fig. 19 Simplified visual representation of the Goal Navigation controller

(rover waypoint following) computes goal coordinates in
front of the object detected by the arcuo detector. The data
processing pipeline adds an offset to the detected object
pose and converts it from the camera coordinate system
to the body frame of the robot, which is located at the
bottom of the sensor mast, because the navigation planner
expects its input values in that frame. A trajectory controller
ensures that the generated trajectory is followed and the
motion controller converts euclidean motion commands
into drive velocities and steering angles for the wheels.

To ensure that the planner is not steadily flooded with
new goal pose request every time the object is repeatedly
detected on a new camera image, a special component filters

repeated samples and allows only to pass a single sample of
the object coordinates.

The Goal Navigation controller consists in total of 41
Task Instances that are distributed over 17 Deployments.
There are 58 port connections between the components. The
full controller is shown in Appendix B.2.

4.3.3 Manipulation

The manipulation controller is shown in Fig. 20. It
implements an eye-in-hand 3D visual servoing controller for
the manipulator. A camera in the gripper is used for ArUco
recognition, and a filter component updates the recognized

aruco_detector
(2 Components)

pose

waypoint_following
(8 Components)

joint_state cart_cmd

marker_pose

manipulator_control
(4 Components)

command joint_state

rover_and_slam
(17 Components)

others
(4 Components)

joint_limit_avoidance
ctrl_lib::JointLimitAvoidance

feedback control_output

wbc
(4 Components)

jnt_state jnt_cmd

limit_cmd

cart_cmd

Fig. 20 Simplified visual representation of the Manipulation controller

J Intell Robot Syst

Fig. 21 Simplified visual
representation of the
Manipulator Tele-Operation
controller

spacemouse_driver
(3 Components)

state: RUNNING

manipulator_cmd

gripper_cmd

manipulator_control
(4 Components)

command

joint_stategripper_cmd

joint_limit_avoidance
ctrl_lib::JointLimitAvoidance

feedback control_output

wbc
(6 Components)

jnt_state jnt_cmd

limit_cmd

jnt_cmd

pose with the movements of the manipulator since the last
recognition result, based on the forward kinematics of the
manipulator, which is computed with the KDL7 library at
high frequency. In this manner, a sequence of waypoints
expressed in the reference system of the detected object is
traced and are transformed into the reference system of the
robot’s manipulator, so that they can be used as setpoints
for the Cartesian controller controlling the manipulator
(waypoint following). Besides the Cartesian controller, a
joint limit avoidance controller prevents getting stuck in
joint limits. The output of both simultaneously executed
controllers is merged in a constraint-based programming
approach similar to [22] (wbc).

The Manipulation in total consists of 40 Task Instances
that are distributed over 16 Deployments and contains 60
connections. The full controller is shown in Appendix B.3.

4.3.4 Manipulator Tele-Operation

The Manipulator Tele-Operation controller is shown in
Fig. 21. Here an operator uses a 3D mouse (SpaceMouse
from 3Dconnexion) to create reference twists for the end
effector of the manipulator. The resulting reference motion
is again merged within the wbc component, with the results
of the joint limit avoidance controller.

The Manipulator Tele-Operation controller in total
consists of 14 TaskInstances that are distributed over
6 Deployments and contains 25 connections. The full
controller is shown in Appendix B.4.

4.3.5 Results

Each possible transition between two different controllers
was executed 10 times while measuring the time from

7https://www.orocos.org/kdl

requesting the controller until the reconfiguration was
carried out completely. Table 5 summarizes the mean
reconfiguration times and Table 7 shows the numbers of
actions required to realize each controller reconfiguration.
Finally Table 6 shows for each transition the three most time
consuming actions.

The mean transition times between the controllers range
from 0.11s to 4.16s with the transition GNav to S&E
being by the quickest and all transitions to MTele being
by far the slowest. When comparing the actions required
for the transition from GNav to S&E (see Table 7) with
the expected execution times under ideal conditions from
Fig. 13, one can see that the actual transition takes about
1.6 times longer, with most of the time spent configuring
the area explorer component (cf. Table 6). Transitioning to
the MTele controller is drastically slowed down by stopping
the driver components for the robot’s USB cameras, which
stops frame grabbing and closes the devices and its device
file descriptor.

The additional time required for a real operation com-
pared to an ideal operation from Fig. 13 results mainly from
the calculations that have to be performed within the com-
ponent implementation. However, it is also apparent from
Table 6 that for some different applications of the same
actions, there is a large discrepancy in their execution time.
A particularly drastic case is the time for the ApplyConfig

Table 5 Controller reconfiguration times

From

To
S&E GNav Manip MTele

S & E - 0.52s 0.55s 4.08s

GNav 0.11s - 0.59s 4.06s

Manip 0.18s 0.62s - 4.16s

MTele 2.01s 2.29s 2.23s -

https://www.orocos.org/kdl

J Intell Robot Syst

Table 6 Most time-consuming actions for each transition

From→To Action Type TaskInstance(s) Time

S&E→ GNav ApplyConfig gnav FK 0.333s
Configure gnav FK 0.024s
Configure gnav SP 0.010s

S&E→ Manip ApplyConfig manip FK 0.324s
Configure manip FK 0.020s
Configure wbc 0.018s

S&E→ MTele Stop usbcam tower front 1.294s
Stop usbcam front 1.290s
Stop usbcam gripper 1.278s

GNav→ S&E Configure area explorer 0.032s
ApplyConfig area explorer 0.005s
Start area explorer 0.004s

GNav→ Manip ApplyConfig manip FK 0.317s
Configure wbc 0.025s
Configure manip FK 0.017s

GNav→ MTele Stop usbcam gripper 1.242s
Stop usbcam front 1.238s
Stop usbcam tower front 1.221s

Manip→ S&E Configure area explorer 0.028s
Configure wbc 0.024s
Stop wbc solver 0.006s

Manip→ GNav ApplyConfig gnav FK 0.325s
Configure gnav FK 0.020s
Configure wbc 0.015s

Manip→ MTele Stop usbcam gripper 1.276s
Stop usbcam tower front 1.876s
Stop usbcam front 1.186s

MTele→ S&E ApplyConfig area explorer 0.708s
Start usbcam gripper 0.276s
Start usbcam tower front 0.252s

MTele→ GNav ApplyConfig aruco detector 0.958s
Start usbcam gripper 0.276s
Start usbcam tower front 0.255s

MTele→ Manip ApplyConfig aruco detector 0.953s
Start usbcam tower front 0.189s
Start usbcam gripper 0.184s

action on the area explorer component in the MTele→S&E
transition. In this transition, 708ms are required for the actions,
instead of 28ms during theManip→S&E transition. All tran-
sitions to or from MTele require a large number of actions,
because the Task Network is much smaller than the others,
which are more similar to each other. In addition, during
the execution of the numerous actions, many components
will continue to run, thereby consuming resources. Using
the htop tool, we have seen a significant increase in CPU
load during the reconfiguration process from/to MTele and
suspect this to be the cause of the discrepancy.

In summary, the experiment shows that the system can
switch between completely different behaviors such as
manipulation or autonomous exploration in about half a se-

cond, which for an outside observer is perceived as an instan-
taneous response to the request. But of course, costly
operations that, e.g. involve interaction with slow hardware
devices, or sub-optimal implementations within the compo-
nents can considerably delay the reconfiguration process.

5 Conclusions and FutureWork

This paper introduced a software system to model robot
controllers from software components, execute them on
distributed hardware and switch between them dynamically.
The proposed software facilitates the modular development
of various behaviors by providing a declarative description
of the corresponding robot controllers, thereby relieving
the developer of the task of implementing procedures for
switching between the behaviors. The proposed method
allows to implement different behaviors of the robot
independently and to call them at any time regardless of the
current state of the robot, thus enabling the development of
robots with a wide range of different capabilities.

We presented the metamodels of the model-driven deve-
lopment approach, the runtime architecture for distributed
controller execution and an algorithm for generating transi-
tions between arbitrary controller networks. The performance
of the system was analyzed with a series of experiments. In
an additional experiment with a real robot, for which several
controllers were implemented with the proposed method,
the feasibility for real robot control problems was shown.

The experiments show that the overhead caused by the
component development and communication framework
Rock/RTT is in an area that does not significantly impede
complex real-time controllers composed of numerous com-
ponents on distributed hardware. Reconfiguring the com-
ponent network, on the other hand, requires several control
cycles, and there are no framework-side means to ensure
system stability during this process. This problem was also
identified in [5], and the authors suggest implementing a
locally stable mode in key software components.

In the locally stable mode, the components ignore all data
input from other components and instead execute internally
coded feedback loops that maintain the integrity of the
system [5].

If a component is running and is not the subject of
a reconfiguration action, its execution is not affected
by reconfiguration activities on other components in the
component network. Because of this property, which results
from RTT scheduling, we suggest that instead of activating
a locally stable mode in selected components, a basic
stability control subsystem that ensures system integrity
should be kept running all the time. This is achieved
by integrating the subsystem into each of the component
networks used. In our practical example with Artemis,

J Intell Robot Syst

Table 7 Number of actions required for transitioning between controllers

From

To
S&E GNav Manip MTele

S & E − 0 Undeploy 0 Undeploy 5 Undeploy
4 Disconnect 4 Disconnect 32 Disconnect
9 Deploy 8 Deploy 3 Deploy
9 Apply config 12 Apply config 5 Apply config
13 Connect 15 Connect 8 Connect
20 State changes 34 State changes 58 State changes
55 Total 73 Total 111 Total

GNav 9 Undeploy − 9 Undeploy 14 Undeploy
13 Disconnect 13 Disconnect 41 Disconnect
0 Deploy 8 Deploy 3 Deploy
1 Apply config 12 Apply config 5 Apply config
4 Connect 15 Connect 8 Connect
20 State changes 50 State changes 74 State changes
47 Total 107 Total 145 Total

Manip 8 Undeploy 8 Undeploy − 13 Undeploy
15 Disconnect 15 Disconnect 43 Disconnect
0 Deploy 9 Deploy 3 Deploy
5 Apply config 13 Apply config 6 Apply config
4 Connect 13 Connect 8 Connect
34 State changes 50 State changes 76 State changes
66 Total 108 Total 149 Total

MTele 3 Undeploy 3 Undeploy 3 Undeploy −
8 Disconnect 8 Disconnect 8 Disconnect
5 Deploy 14 Deploy 13 Deploy
24 Apply config 32 Apply config 32 Apply config
32 Connect 41 Connect 43 Connect
58 State changes 74 State changes 76 State changes
130 Total 172 Total 175 Total

The sum of all individual actions for each transition is shown in bold face

system stability is ensured by an online trajectory generation
component (trajectory generation, cf. Appendixs B.1–B.4)
that is connected upstream of the joint controllers. This
component permanently calculates dynamically executable
motion commands at control rate, even if the setpoints are
only sporadically generated by the higher-level controller
[23]. The permanent presence of the online trajectory
generator ensures that the robot joint movement remains
jerk-free, even if the real-time conditions are violated during
setpoint generation, e.g. because the setpoint generator
is replaced due to a reconfiguration of the component
network. In addition, the system will come to a standstill
if the setpoints are not renewed for a longer, configurable
time span, by generating zero velocities when the joint
controllers are driven speed-controlled. By integrating
additional safety-relevant components into the stability
subsystem, such as a collision avoidance component, even
longer reconfiguration time spans could be bridged.

While the experiments showed satisfactory performance,
a further reduction of the processing costs caused by the

framework overhead would be desirable. An easy way to
achieve a performance gain for reconfiguring controllers
on multi-CPU systems is to parallelize the application of a
Transition.

Currently rock-runtime only supports x86 architectures
as execution platform. In principle all execution platforms
could be targeted, that are supported by the underlying
communication framework, as long as the ProcessServer
can be compiled and executed or re-implemented for that
platform. There are first results in porting the Rock system
to ARM architectures as well (cf. [24]), but for rock-runtime
this was not yet done so far.

An interesting addition is the off- and online validation
of the modeled controllers. For example, a semantic
analysis to identify invalid or suboptimal patterns in the
data flow or deployment setup could be used to detect
errors in the controller modeling process earlier. The
framework already measures the execution time for all
reconfiguration actions. This data could be analyzed by
additional tools to give component developers hints on how

J Intell Robot Syst

to optimize their components further, or to provide offline
estimates of expected reconfiguration times. Furthermore,
the framework could be extended by the acquisition of
execution speeds in normative operation of the components,
e.g. to determine mean and worst case execution times
for individual software components, on the basis of which
an offline estimation of the processing time for entire
processing chains within a controller is possible.

With a permanent comparison of the current component
network with the last requested one, an online integrity
check can be performed. For this purpose, the underlying
framework must provide information about all running com-
ponents and their data connections (runtime introspection).
The TaskNetworkHandler module could then be extended
accordingly to detect differences between the expected and
the actual system state and as a reaction display the error
or perform extended safety and error handling operations.
With the latest developments in Rock, a runtime intro-
spection of the running component network can already be
performed, so that the requirements for the framework for
online integrity checking are already fulfilled.

Furthermore, it is possible to improve accessibility
and usability by providing additional tools for composing
controller networks such as GUIs or domain-specific
scripting languages.

Acknowledgements The authors would like to thank all developers
of the Rock and Orocos RTT framework and especially Sylvain
Joyeux and JanoschMachowinski for their fundamental work on Rock.
Furthermore, we thank the members of the student project THORO
for their support in the validation tests on the robot Artemis and Prof.
Hendrik Wöhrle for his valuable input in writing the paper.

This work on this paper was performed within the project D-
Rock and Q-Rock, funded by the Federal Ministry of Education
and Research (BMBF) under grant number 01-IW-15001 and 01-IW-
18003.

Funding Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

Appendix A: Examples for Serialized
Transition and Task NetworkModels

Listing 2 Example Transition in YAML format

Listing 3 Example Task Network in YAML format

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

J Intell Robot Syst

Appendix B Example Applications

B.1 Search & Explore Controller

bogie_right_driver
ndlcom_wheelmodules::WheelModuleTask

ndlcom_message_
out

ndlcom_message_
in

joints_command joints_status

bogie_right_task_serial
serial_ndlcom::Task

ndlcom_message_
out

ndlcom_message_
in

bogie_dispatcher
joint_dispatcher::Task

bogie_left bogie_right_com
mand

bogie_front motion_status

bogie_right bogie_left_comm
and

command_in bogie_front_com
mand

manipulator_dispatcher
joint_dispatcher::Task

manipulator_dri
ver_in arm_status

arm_command manipulator_com
mand_out

manipulator_driver
ndlcom_aila_joints::AILAJointTask

ndlcom_message_
in

ndlcom_message_
out

joints_command joints_status

wbc
wbc::WbcVelocityTask

ref_gripper_car
t_pos_ctrl

status_joint_po
s_ctrl

ref_joint_pos_c
trl hierarchical_qp

joint_state status_joint_li
mits

solver_output

ref_joint_limit
s

trajectory_generation
trajectory_generation::RMLVelocityTask

joint_state command

target

area_explorer
ugv_nav4d::AreaExploration

map goal_out_best

pose_samples

planner_state

pose_estimation
simple_pose_integrator::Task

pose_samples_in pose_samples

dynamic_transfo
rmations

ugv_nav_planner
ugv_nav4d::PathPlanner

map trajectory2D

goal_pose_absol
ute state

start_pose_samp
les

waypoint_provider
waypoint_provider::JointWaypointProvider

current_positio
n current_target joint_control

ctrl_lib::JointPositionController

setpoint control_output

feedback

manipulator_serial
serial_ndlcom::Task

ndlcom_message_
in

ndlcom_message_
out

aruco_detector
aruco::MarkerBoardDetector

image

joint_limit_avoidance
ctrl_lib::JointLimitAvoidance

feedback control_output

wbc_solver
wbc::HierarchicalLSSolverTask

hierarchical_qp solver_output

motion_controller
motion_controller::Task

motion_command actuators_comma
nd

actuators_statu
strajectory_follower

trajectory_follower::Task

trajectory motion_command

robot_pose

cartesian_control
ctrl_lib::CartesianPositionController

control_output

odometry
odometry::LatOdom

actuator_sample
s

odometry_sample
s

dynamic_transfo
rmations

xsens
imu_xsens::Task

orientation_sam
ples

bogie_front_driver
ndlcom_wheelmodules::WheelModuleTask

ndlcom_message_
out

ndlcom_message_
in

joints_command joints_status

bogie_front_task_serial
serial_ndlcom::Task

ndlcom_message_
out

ndlcom_message_
in

pointcloud_filter
slam3d::PointcloudFilter

input output

slam
slam3d::PointcloudMapper

scan mls

dynamic_transfo
rmations robot2map

depth_map_converter
slam3d::ScanConverter

depth_map cloud

velodyne
velodyne_lidar::LaserScanner

laser_scans

bogie_left_task_serial
serial_ndlcom::Task

ndlcom_message_
out

ndlcom_message_
in

bogie_left_driver
ndlcom_wheelmodules::WheelModuleTask

ndlcom_message_
out

ndlcom_message_
in

joints_command joints_status

usbcam_tower_front
camera_usb::Task

frame

others
(3 Components)

J Intell Robot Syst

B.2 Goal Navigation Controller

pointcloud_filter
slam3d::PointcloudFilter

input output

slam
slam3d::PointcloudMapper

scan mls

dynamic_transfo
rmations robot2map

ugv_nav_planner
ugv_nav4d::PathPlanner

map trajectory2D

goal_pose_relat
ive

start_pose_samp
les

trajectory_follower
trajectory_follower::Task

trajectory motion_command

robot_pose

depth_map_converter
slam3d::ScanConverter

depth_map cloud

velodyne
velodyne_lidar::LaserScanner

laser_scans

waypoint_provider
waypoint_provider::JointWaypointProvider

current_positio
n current_target joint_control

ctrl_lib::JointPositionController

setpoint control_output

feedback

manipulator_dispatcher
joint_dispatcher::Task

manipulator_dri
ver_in arm_status

arm_command manipulator_com
mand_out

manipulator_driver
ndlcom_aila_joints::AILAJointTask

ndlcom_message_
in

ndlcom_message_
out

joints_command joints_status

wbc
wbc::WbcVelocityTask

ref_gripper_car
t_pos_ctrl

status_joint_po
s_ctrl

ref_joint_pos_c
trl hierarchical_qp

joint_state status_joint_li
mits

solver_output

ref_joint_limit
s

trajectory_generation
trajectory_generation::RMLVelocityTask

joint_state command

target

manipulator_serial
serial_ndlcom::Task

ndlcom_message_
in

ndlcom_message_
out

s_st

ma
joint_limit_avoidance

ctrl_lib::JointLimitAvoidance

feedback control_output

wbc_solver
wbc::HierarchicalLSSolverTask

hierarchical_qp solver_output

cartesian_control
ctrl_lib::CartesianPositionController

control_output

bogie_right_driver
ndlcom_wheelmodules::WheelModuleTask

ndlcom_message_
out

ndlcom_message_
in

joints_command joints_status

bogie_right_task_serial
serial_ndlcom::Task

ndlcom_message_
out

ndlcom_message_
in

bogie_dispatcher
joint_dispatcher::Task

bogie_left bogie_right_com
mand

command_in bogie_left_comm
and

bogie_right motion_status

bogie_front bogie_front_com
mand

drive_to_aruco_FK
robot_frames::ChainPublisher

input robot_interacti
on_fk

sensor_fk

control_chain_f
k

drive_to_aruco_T
transformer::TransformationMonitor

dynamic_transfo
rmations setpoint

sp_feedback

drive_to_aruco_filter
filter_lib::MovingSensorFilter

sensor_sample estimated_senso
r_sample

sensor_transfor
m

pose_estimation
simple_pose_integrator::Task

pose_samples_in pose_samples

dynamic_transfo
rmations

drive_to_aruco_sp
waypoint_provider::CartesianWaypointProvider

dynamic_transfo
rmations current_target

dr
_pro

dy

drive_to_aruco_proxy
transformer::TransformationProxy

input output

t

ck

o_
W

tr

drive_to_aruco_obj_FK
robot_frames::ChainPublisher

input interaction_fra
me

aruco_detector
aruco::MarkerBoardDetector

image pose

motion_controller
motion_controller::Task

motion_command actuators_comma
nd

actuators_statu
s

odometry
odometry::LatOdom

actuator_sample
s

odometry_sample
s

dynamic_transfo
rmations

xsens
imu_xsens::Task

orientation_sam
ples

bogie_front_driver
ndlcom_wheelmodules::WheelModuleTask

ndlcom_message_
out

ndlcom_message_
in

joints_command joints_status

bogie_front_task_serial
serial_ndlcom::Task

ndlcom_message_
out

ndlcom_message_
in

bogie_left_task_serial
serial_ndlcom::Task

ndlcom_message_
out

ndlcom_message_
in

bogie_left_driver
ndlcom_wheelmodules::WheelModuleTask

ndlcom_message_
out

ndlcom_message_
in

joints_command joints_status

usbcam_tower_front
camera_usb::Task

frame
others

(6 Components)

J Intell Robot Syst

B.3 Manipulation

switch_up_cs_sp_conv
transformer::RBSToCSConverter

input output

cartesian_control
ctrl_lib::CartesianPositionController

setpoint control_output

feedback

pointcloud_filter
slam3d::PointcloudFilter

input output

slam
slam3d::PointcloudMapper

scan mls

dynamic_transfo
rmations robot2map

ut

m
ointcl

waypoint_provider
waypoint_provider::JointWaypointProvider

current_positio
n current_target

joint_control
ctrl_lib::JointPositionController

setpoint control_output

feedback

bogie_right_driver
ndlcom_wheelmodules::WheelModuleTask

ndlcom_message_
out

ndlcom_message_
in

joints_command joints_status

bogie_right_task_serial
serial_ndlcom::Task

ndlcom_message_
out

ndlcom_message_
in

bogie_dispatcher
joint_dispatcher::Task

bogie_left bogie_right_com
mand

bogie_front motion_status

bogie_right bogie_left_comm
and

command_in bogie_front_com
mand

manipulator_dispatcher
joint_dispatcher::Task

manipulator_dri
ver_in all_status

arm_command arm_status

manipulator_com
mand_out

manipulator_driver
ndlcom_aila_joints::AILAJointTask

ndlcom_message_
in

ndlcom_message_
out

joints_command joints_status

wbc
wbc::WbcVelocityTask

ref_gripper_car
t_pos_ctrl

status_joint_po
s_ctrl

ref_joint_pos_c
trl hierarchical_qp

joint_state status_joint_li
mits

solver_output

ref_joint_limit
s

switch_up_FK
robot_frames::ChainPublisher

input robot_interacti
on_fk

sensor_fk

control_chain_f
k

switch_up_obj_FK
robot_frames::ChainPublisher

input interaction_fra
me

trajectory_generation
trajectory_generation::RMLVelocityTask

joint_state command

target

ugv_nav_planner
ugv_nav4d::PathPlanner

map trajectory2D

start_pose_samp
les

pose_estimation
simple_pose_integrator::Task

pose_samples_in pose_samples

dynamic_transfo
rmations

trajectory_follower
trajectory_follower::Task

trajectory motion_command

robot_pose

manipulator_serial
serial_ndlcom::Task

ndlcom_message_
in

ndlcom_message_
out

switch_up_T
transformer::TransformationMonitor

dynamic_transfo
rmations setpoint

sp_feedback

ctrl_feedback

switch_up_sp
waypoint_provider::CartesianWaypointProvider

dynamic_transfo
rmations current_target

Mo

oin

switch_up_cs_fb_conv
transformer::RBSToCSConverter

input output

up
ma

se

ck

aruco_detector
aruco::MarkerBoardDetector

image pose

switch_up_filter
filter_lib::MovingSensorFilter

sensor_sample estimated_senso
r_sample

sensor_transfor
m

joint_limit_avoidance
ctrl_lib::JointLimitAvoidance

feedback control_output

wbc_solver
wbc::HierarchicalLSSolverTask

hierarchical_qp solver_output

motion_controller
motion_controller::Task

motion_command actuators_comma
nd

actuators_statu
s

ef_jo
t

rol
ntro

odometry
odometry::LatOdom

actuator_sample
s

odometry_sample
s

dynamic_transfo
rmations

depth_map_converter
slam3d::ScanConverter

depth_map cloud

usbcam_gripper
camera_usb::Task

frame

xsens
imu_xsens::Task

orientation_sam
ples

bogie_front_driver
ndlcom_wheelmodules::WheelModuleTask

ndlcom_message_
out

ndlcom_message_
in

joints_command joints_status

bogie_front_task_serial
serial_ndlcom::Task

ndlcom_message_
out

ndlcom_message_
in

velodyne
velodyne_lidar::LaserScanner

laser_scans

bogie_left_task_serial
serial_ndlcom::Task

ndlcom_message_
out

ndlcom_message_
in

bogie_left_driver
ndlcom_wheelmodules::WheelModuleTask

ndlcom_message_
out

ndlcom_message_
in

joints_command joints_status

ul

s

s

others
(6 Components)

B.4 Manipulator Tele-Operation Controller

waypoint_provider
waypoint_provider::JointWaypointProvider

current_positio
n current_target joint_control

ctrl_lib::JointPositionController

setpoint control_output

feedback

spacemouse_driver
controldev::Mouse3DTask

raw_command

spacemouse_gripper_controller
arm_control::GripperTeleOp

raw_command gripper_control
spacemouse_converter

arm_control::RawToCartesianState

raw_command cartesian_contr
ol

joint_control_gripper
ctrl_lib::JointPositionController

manipulator_dispatcher
joint_dispatcher::Task

gripper_command arm_status

manipulator_dri
ver_in

manipulator_com
mand_out

arm_command

trajectory_generation
trajectory_generation::RMLVelocityTask

target command

joint_state

wbc
wbc::WbcVelocityTask

ref_gripper_car
t_pos_ctrl

status_joint_po
s_ctrl

joint_state hierarchical_qp

ref_joint_pos_c
trl

status_gripper_
cart_pos_ctrl

solver_output status_joint_li
mits

ref_joint_limit
s

weight_joint_li
mits

manipulator_driver
ndlcom_aila_joints::AILAJointTask

ndlcom_message_
in

ndlcom_message_
out

joints_command joints_status

manipulator_serial
serial_ndlcom::Task

ndlcom_message_
in

ndlcom_message_
out

wbc_solver
wbc::HierarchicalLSSolverTask

hierarchical_qp solver_output

cartesian_control
ctrl_lib::CartesianPositionController

setpoint control_output

feedback

joint_limit_avoidance
ctrl_lib::JointLimitAvoidance

feedback activation

control_output

s_sta

ma

J Intell Robot Syst

References

1. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs,
J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source Robot
Operating System. In: ICRA workshop on open source software,
vol. 3, pp. 1–5 (2009)

2. Joyeux, S., Schwendner, J., Roehr, T.M.: Modular software for an
autonomous space rover. In: Proceedings of the 12th International
Symposium on Artificial Intelligence, Robotics and Automation
in Space (i-SAIRAS, 2014), (Montreal, Québec, Canada), pp. 1–8
(2014)

3. Metta, G., Fitzpatrick, P., Natale, L.: YARP – yet another robot
platform, Version 2.3.20. Int. J. Adv. Robot. Syst. 3(1), 43–48
(2013)

4. Santos, A., Cunha, A., Macedo, N., Arrais, R., dos Santos,
F.N.: Mining the usage patterns of ROS primitives. In: in 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), (Vancouver, BC), pp. 3855–3860. IEEE, Sept
(2017)

5. Stewart, D.B., Khosla, P.: The chimera methodology: Designing
dynamically reconfigurable and reusable real-time using port-
based objectssoftware. Int. J. Softw. Eng. Knowl. Eng. 6(2),
249–277 (1996)

6. Lyons, D.M., Arbib, M.A.: A formal model of computation for
sensory-based robotics. IEEE Trans. Robot. Autom. 5, 280–293
(June 1989)

7. Soetens, P., Bruyninckx, H.: Realtime hybrid task-based control
for robots and machine tools. In: Proceedings of the 2005 IEEE
International conference on robotics and automation, (Barcelona,
Spain), pp. 259–264 (2005)

8. Soetens, P.: A Software framework for real-time and distributed
robot and machine control. PhD thesis, Issue: May ISBN:
9056826875 (2006)

9. Bézivin, J.: On the unification power of models. Softw. Syst.
Modeling 4(2), 171–188 (2005). ISBN: 1619-1366, 1619-1374

10. Bischoff, R., Guhl, T., Prassler, E., Nowak, W., Kraetzschmar,
G., Soetens, P., Haegele, M., Pott, A., Breedveld, P., Broenink,
J., Brugali, D., Tomatis, N.: BRICS - Best Practice in Robotics.
In: ISR 2010 (41st International symposium on robotics) and
ROBOTIK 2010 (6th german conference on robotics), (Munich,
Germany), VDE, pp. 968–975 (2010)

11. Joyeux, S., Albiez, J.: Robot Development: from Components to
Systems. In: 6Th national conference on control architectures of
robots, (Grenoble, France), INRIA Grenoble Rhône-Alpes May,
pp. 1–15 (2011)

12. Schlegel, C., Lotz, A., Lutz, M., Stampfer, D., Inglés-Romero,
J.F., Vicente-Chicote, C.: Model-driven software systems engi-
neering in robotics: covering the complete life-cycle of a robot.
Inform. Technol. 57(2), 85–98 (2015). ISBN: 1611-2776

13. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A
survey on domain-Specific modeling and languages in robotics. J.
Softw. Eng. Robot. 7, 75–99 (2016)

14. Wang, S., Shin, K.: Reconfigurable software for open architecture
controllers (2001)

15. Inglés-Romero, J.F., Lotz, A., Chicote, C.V., Schlegel, C.: Dealing
with run-Time Variability in Service robotics: Towards a DSL
for non-Functional Properties arXiv:1303.4296 [cs], pp. 1–8, Mar
(2013)

16. Fleurey, F., solberg, A.: A domain specific modeling language
supporting specification, simulation and execution of dynamic
adaptive systems. In: Schürr, A., Selic, B. (eds.) Model Driven
Engineering Languages and Systems, vol. 5795, pp. 606–621.
Springer, Berlin (2009)

17. Klotzbücher, M., Biggs, G., Bruyninckx, H.: Pure Coordina-
tion using the coordinator–Configurator Pattern, ArXiv, vol.
abs/1303.0066, pp. 11–4, Feb arXiv:1303.0066 (2013)

18. Schwendner, J., Roehr, T.M., Haase, S., Wirkus, M., Manz, M.,
Arnold, S., machowinski, J.: The artemis rover as an example for
model based engineering in space robotics (2014)

19. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard,
W.: G2O: A General Framework for Graph Optimization. In:
2011 IEEE International Conference on Robotics and Automation,
(Shanghai, China), IEEE, May, pp. 3607–3613 (2011)

20. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.,
Medina-Carnicer, R.: Generation of fiducial marker dictionaries
using mixed integer linear programming. Pattern Recogn. 51,
481–491 (2016)

21. Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.:
Speeded up detection of squared fiducial markers. Image Vision
Comput. 76, 38–47 (2018). ISBN: 0262-8856

22. Schutter, J.D., Laet, T.D., De Schutter, J., De Laet, T., Rutgeerts,
J., Decré, W., Smits, R., Aertbeliën, E., Claes, K., Bruyninckx,
H.: Constraint-based task specification and estimation for sensor-
based robot systems in the presence of geometric uncertainty. Int.
J. Robot. Res. 26(5), 433 (2007). Publisher: SAGE Publications

23. Kroger, T.: Opening the door to new sensor-based robot
applications - the reflexxes motion libraries. In: 2011 IEEE
International Conference on Robotics and Automation, (Shanghai,
China), pp. 1–4, IEEE May (2011)

24. Roehr, T.M., Willenbrock, P.: Binary packaging for the robot
construction kit (2018)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Malte Wirkus received his Diploma in Computer Science at the
University of Bremen in 2010. He joined the Robotics Innovation
Center (RIC) of the German Research Center for Artificial Intelligence
(DFKI GmbH) in 2010. In different research and industry projects, he
gained experiences in the fields of robotic mobile manipulation, multi-
agent architectures, human-robot collaboration and space robotics.
With his current scientific research interest in control architectures and
frameworks for robot application development, he works as researcher
and project leader at DFKI-RIC.

Sascha Arnold received the Dipl.-Inf. degree in computer science
from the University of Bremen, Bremen, Germany, in 2014. His
thesis was about robust 3-D environment modeling using pose graph
optimization on LiDAR data. He is currently with German Research
Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany, as
a Researcher. His research interests include localization and mapping
in challenging domains, digital signal processing, and sensor fusion,
and their application in space and underwater robotics.

Elmar Berghöfer received his Diplom (masters degree) in computer
science from the University of Bielefeld, Germany, in 2011. His thesis
concerns object recognition based on multi-modal sensor information.
He joined the German Research Center for Artificial Intelligence
DFKI, in Germany in 2011. He gained here experience in research,
project management and acquisition. His research interests include,
the field of machine learning, in particular object classification, sensor
fusion, and on-line learning and currently focuses on the field of data
stream mining.

http://arxiv.org/abs/1303.4296
http://arxiv.org/abs/1303.0066

	Online Reconfiguration of Distributed Robot Control Systems for Modular Robot Behavior Implementation
	Abstract
	Introduction
	Related Work

	Modeling Online-Reconfigurable Distributed Software Systems
	Component-Based Controller Modeling
	Transition Modelling

	Implementation
	Distributed Runtime Architecture
	Network Operation Solver

	Experimental Results
	Data Transfer Times
	Task Network Operation Times
	Case Study with a Real Robot
	Search & Explore
	Goal Navigation
	Manipulation
	Manipulator Tele-Operation
	Results

	Conclusions and Future Work
	Appendix A: Examples for Serialized Transition and Task Network Models
	Appendix B Example Applications
	B.1 Search & Explore Controller
	B.2 Goal Navigation Controller
	B.3 Manipulation
	B.4 Manipulator Tele-Operation Controller
	References

