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Abstract: One of the main challenges of human-image generation is generating a person along with pose and clothing
details. However, it is still a difficult task due to challenging backgrounds and appearance variance. Re-
cently, various deep learning models like Stacked Hourglass networks, Variational Auto Encoders (VAE), and
Generative Adversarial Networks (GANs) have been used to solve this problem. However, still, they do not
generalize well to the real-world human-image generation task qualitatively. The main goal is to use the Spec-
tral Normalization (SN) technique for training GAN to synthesize the human-image along with the perfect
pose and appearance details of the person. In this paper, we have investigated how Conditional GANs, along
with Spectral Normalization (SN), could synthesize the new image of the target person given the image of the
person and the target (novel) pose desired. The model uses 2D keypoints to represent human poses. We also
use adversarial hinge loss and present an ablation study. The proposed model variants have generated promis-
ing results on both the Market-1501 and DeepFashion Datasets. We supported our claims by benchmarking
the proposed model with recent state-of-the-art models. Finally, we show how the Spectral Normalization
(SN) technique influences the process of human-image synthesis.

1 INTRODUCTION

The idea of generating realistic human images has
been of great value in recent times due to their varied
applications in e-commerce for fashion shopping and
also in synthesizing training data for person detection,
person identification (Chen et al., 2019). Due to ad-
vances in Artificial Intelligence (AI), we can see the
rapid growth of integrating every aspect into AI. The
human-image generation has been one of the most
crucial tasks over the past few decades. There exist
two problems that need to be dealt with while gener-
ating human images, one is the representation of the
human pose, and the other is the generation of the ap-
pearance details like clothing textures.

We have various ways to represent the poses like
2D skeletons (stick figures), segmentation masks, 3D
pose skeletons, dense pose, as shown in Figure 1. For
generating the clothing textures, we can use warping
and clothing segmentation techniques. A wide range
of deep learning models like PG2 (Ma et al., 2017),
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(a) 2D Skeleton (b) Segmented Map

(c) Dense Pose (d) 3D Skeleton

(e) Dense Pose (f) 3D Skeleton
Figure 1: Different pose representations.

Pix2pixHD (Wang et al., 2018), Deformable GANs
(Siarohin et al., 2018) has been used for generating



the human poses along with the clothing. However,
these models still suffer to generate human images
with accurate pose and clothing due to many varia-
tions in the textures, appearance, and shape.

Figure 2: The conditional pose generation task. The input
image source: DeepFashion. (Liu et al., 2016b)

Data availability to train a deep learning model is
very scarce in both 2D and 3D domains. By using the
proposed models, we can generate the human-images
in rare poses, which can be used as synthetic datasets
for humans for further research purposes. For gen-
erating the human-image with accurate pose and ap-
pearance details, the model needs to know informa-
tion about the human body poses. To avoid the ex-
pensive annotations for poses, we represent the pose
related information using the 2D keypoints represent-
ing the 2D coordinates for each joint in the image.
We use the HumanPoseEstimator (HPE) (Cao et al.,
2017) to estimate the 2D coordinates for all the joints,
and the number of keypoints is 18. Using these key
points, the model learns the positions of joints in the
human body. We can also use other pose representa-
tions depending on the application.

We have used Conditional GANs along with SN to
deal with the problem of generating humans with pose
and clothing details. The main aim can be seen from
Figure 2, that given an input image of a person, the
pose of that person, and a target pose to a Generator to
output an image (target image) of the person in the tar-
get pose. However, training these networks requires
high computational power and a sufficient amount of
training data to achieve the desired results (Stewart,
2019). In this paper, we do not make any assumptions
about the backgrounds, objects, etc. and we do not
use any representations to denote the clothing infor-
mation like segmentation, which makes the network
to learn different clothing textures by itself.

2 RELATED WORK

Recently deep learning models have shown sub-
stantial improvement in the neural image synthesis
(Isola et al., 2017), providing numerous applications
in the field of virtual reality and gaming. One such
an emerging class of models that are being vastly re-
searched and well studied in recent years are Gen-
erative Adversarial Networks (GANs) (Goodfellow
et al., 2014). GANs are aimed to generate novel data
that has similar characteristics to that of real-world
data. The main idea of our proposed models is to
guide the generation process explicitly by an appro-
priate pose representation like 2D stick figures to en-
able direct control over the generation process.

There have been many deep models that have been
proposed to deal with the task of human image gen-
eration. The most commonly used deep learning ar-
chitectures are AlexNet (Krizhevsky et al., 2012),
ResNet (He et al., 2016), etc. We use Generative Ad-
versarial Network architecture to solve the problem
related to human-image generation. GANs (Good-
fellow et al., 2014) are a particular class of artificial
intelligence algorithms that comprise mainly two neu-
ral networks Generator G and Discriminator D, which
play a zero-sum game. The applications of GANs
include neural image synthesis, image in-painting,
super-resolution, semi-supervised learning, and more.
For our problem, we have chosen image-to-image
translation in which GANs take the human image as
input from one domain and translate it into another
domain without any alignment between the domains.
Conditional pose generation helps to synthesize a new
image of a person, given a reference image of the per-
son and a target pose. Most of the models focus on
detection, pose, and shape estimation of people from
images. The most critical task would be to trans-
fer the one pose of person to another person or the
same person in a different pose. The subjects can
have different deformable objects in the foreground
and the background, thus making the model difficult
to learn. It is also challenging to learn the pose and
the clothing details simultaneously. Isola et al. (Isola
et al., 2017) proposed a conditional GAN for image-
to-image translation, where a given scene representa-
tion from one domain is translated into another repre-
sentation.
Recently Siarohin et al. (Siarohin et al., 2018) pro-
posed a person image generation method conditioned
on a given image of the person and the novel (tar-
get) pose of the person to synthesize the new image
of that same person in the novel pose. Jetchev et al.
(Jetchev and Bergmann, 2017) proposed the Condi-
tional Analogy Generative Adversarial Network (CA-



GAN), which learns to swap the clothing of the per-
son and paint realistically looking images with a tar-
get cloth article, given pairs of humans and clothes.
In contrast, in our case, we focus on human image
generation along with pose and clothing. Neverova
et al. (Neverova et al., 2018) adopted DensePose
(Alp Güler et al., 2018) as its pose representation for
human pose transfer. Ma et al. (Ma et al., 2017) pro-
posed a more general approach to synthesize person
images in any arbitrary (random) pose. Similarly, a
conditioning image of the person and a target new
pose defined by 18 joint locations is the input to our
proposed models. The generation process is divided
into two different stages as pose generation and tex-
ture refinement. Horiuchi et al. (Horiuchi et al., 2019)
addressed the problem of human image generation
by using deformable skip connections, self-attention,
and spectral normalization in GAN. Inpainting mod-
ules are used in the recent models to achieve a con-
siderable level of detail in both image resolution and
texture of cloth. There are 3D clothing models which
automatically captures real clothing to estimate body
shape, pose, and to generate new body shapes. Specif-
ically, we have U-Net based architectures that are
commonly used for pose-based person-image gener-
ation tasks (Ma et al., 2017), (Lassner et al., 2017).
Because of local information in input and the output
images is not aligned, the skip connections are not
well-suited to handle large spatial deformations. Con-
trary to this, the proposed models use deformable skip
connections to deal with this misalignment problem
and to share the local information from the encoder to
the decoder.

3 PROPOSED MODELS

We address the problem of transferring the per-
son’s appearance from a given pose to the desired tar-
get pose using a Deformable GAN (Siarohin et al.,
2018) architecture with Spectral Normalization (SN)
and adversarial hinge loss in the generator and dis-
criminator. We also use warping in the discriminator
and skip connections in the generator. We discuss the
effect of architectural changes on the performance of
human-image generation by comparing different vari-
ants.

3.1 Approach

With the inspiration from neural image synthesis
(Isola et al., 2017), the proposed human-image gen-
eration technique uses Deformable GAN (DGAN)
(Siarohin et al., 2018) architecture as the base model

and has a similar architecture of DGAN as shown
in Figure 3. We discuss in detail the different vari-
ants of our proposed architecture. In variant-1, the
Spectral Normalization (SN) is integrated into both
Generator G and Discriminator D. In the variant-
2, the Generator G and Discriminator D losses are
modified by adding the hinge adversarial loss along
with Spectral Normalization (SN). In variant-3, the
Generator G with skip connections, Discriminator D
with Warping (W) along with RMSprop optimizer are
used. In variant-4, all three variants are combined to
observe their combined effect on the overall genera-
tion of the target image. The models need to preserve
the appearance details like texture from the input im-
age along with the pose information from the target
pose. The model first extracts the pose of the person
in the 2D skeleton with an HPE (Cao et al., 2017)
model. All the four variants of the model are evalu-
ated on the Market-1501 and DeepFashion datasets,
and results are reported in the next section to show
how the proposed model performs comparatively to
existing state-of-the-art approaches PG2 (Ma et al.,
2017), DGAN (Siarohin et al., 2018) in conditional
image synthesis.

3.2 Variants

3.2.1 Variant-1: Spectral Normalization (SN)

GANs are well known to be unstable during their
training and more sensitive to the choice of hyper-
parameters. One of the challenges in the training of
GANs is controlling the performance of the discrimi-
nator. In higher dimensional spaces, the density ratio
estimation by the discriminator is often inaccurate and
unstable while training the model. Therefore, the gen-
erator networks fail to learn the multi-modal structure
of the target data distribution. A novel weight nor-
malization technique known as Spectral Normaliza-
tion (SN) is used to stabilize the training of the gen-
erator and discriminator of GAN. SN has been one of
the recent popular normalization techniques (Miyato
et al., 2018), which stabilizes the training and avoids
unwanted gradients preventing the parameters from
exploding. To ensure that the generated image has
better resolution without loss of texture details, we
need to use SN (Miyato et al., 2018) in adversarial
training. Spectral normalization (Miyato et al., 2018)
normalizes the spectral norm of the weight matrix W
of a convolution layer such that it satisfies the Lips-
chitz constraint σ(W ) = 1.

W SN(W ) =W/σ(W ) (1)

where σ(W ) = uTWv. For each layer, the vectors u
and v are randomly initialized. So, it replaces every



weight W by W/σ(W ), and the task is to compute the
value of σ(W ) efficiently. By applying singular value
decomposition naively at each step to compute σ(W )
might be computationally expensive. So, the power
iteration method is used to estimate the σ(W ) spectral
norm of each layer. The value of Lipschitz constant is
the only hyperparameter that needs to be tuned, and
the model does not require intensive tuning of the hy-
perparameter for improving performance. This tech-
nique is computationally cheap and easy to incorpo-
rate into existing implementations. Spectrally Nor-
malized GANs (SN-GANs) (Miyato et al., 2018) are
capable of generating images of better or equal qual-
ity in comparison to the previous training stabilization
techniques. In the proposed model, for a given input
image of a person and a target pose, DGAN (Siarohin
et al., 2018) initially extracts the pose of the person
in the form of a 2D skeleton with a Human Pose Esti-
mator (HPE) (Cao et al., 2017). The data is then pro-
cessed with a fully convolutional network encoder to
obtain a feature representation of the input image, the
extracted pose, and the target pose. Later, using the
pose information for each specific body part, an affine
transformation is computed and applied to move the
feature-map content corresponding to that body part.
The spectral normalization is used in both the encoder
and decoder of the discriminator and the generator
networks, as shown in Figure 3. It improves the re-
sults by decreasing the degradation of the error sig-
nal during back-propagation. As the weights change
slowly, only a single power iteration for each step
of learning needs to be performed. Therefore, spec-
tral normalization for GANs is more computationally
efficient than other regularization techniques such as
weight clipping (Arjovsky et al., 2017) and gradient
penalty (Gulrajani et al., 2017).

3.2.2 Variant-2: Spectral Normalization with
Hinge Loss (SN + H)

A discriminator is trained with conditional adversar-
ial losses to classify whether the given input is real or
fake with negative log-likelihood. Adversarial hinge
losses are used to optimize the probability that a given
real data is realistic than a randomly sampled gener-
ated (fake) data and vice versa. It leads to more stable
and robust training. The variant-2 makes use of an
additional loss called as adversarial hinge loss. The
adversarial hinge losses for the Generator G and Dis-
criminator D can be calculated as follows:

LH
G(G,D) = Ex∈XI max(0,1−D(x̂))

+Ex∗∈XT max(0,1+D(x∗)) (2)

Figure 3: Simple architecture of the proposed model. SN
represents Spectral Normalization after each Convolutional
layer. LH : adversarial Hinge loss, LNN : Nearest Neighbour
loss.

LH
D(G,D) = Ex∗∈XT max(0,1−D(x∗))

+Ex∈XI max(0,1+D(x̂)) (3)
These adversarial hinge loss functions are integrated
into the generator and discriminator of the model
along with nearest-neighbour loss and minimize the
overall objective function. The relativistic hinge loss
(Jolicoeur-Martineau, 2018), which modifies the out-
put of the discriminator is not used in our proposed
model. Relativistic adversarial losses (Jolicoeur-
Martineau, 2018) optimize the probability that a given
real data is highly realistic than randomly generated
fake data and vice versa. The relativistic average
hinge loss used in (Horiuchi et al., 2019) leads to
a min-min problem instead of the normal min-max
problem of adversarial training. The proposed model
is trained with spectral normalization along with ad-
versarial hinge loss on the Market-1501 and Deep-
Fashion datasets.

3.2.3 Variant-3: Discriminator with Warping
(W)

In variant-3, the architecture of the Discriminator D
is modified. The discriminator uses an affine transfor-
mation layer between the first two convolution layers.
We performed an ablation study to analyze the var-
ious effects of the different components of the pro-
posed model. We used our proposed model for eval-
uating all the methods by amputating the parts of the



full model similar to the base model (Siarohin et al.,
2018).
The qualitative and quantitative results are found to
be better than the benchmark model (Siarohin et al.,
2018) by using this architecture for Discriminator D,
which are reported in the next section.

3.2.4 Variant-4: Spectral Normalization with
Hinge loss and Discriminator with
Warping (SN + H + W)

In variant-4, the variants SN + H and W are combined
in order to know the effectiveness of these variants
for the human-image generation. The use of SN with
adversarial hinge loss stabilizes the training, whereas
the use of discriminator with Warping (W) in the Full
model helps to generate the human-images with ap-
pearance details close to the target image. The model
is trained with both the Nearest-neighbour LNN and
adversarial Hinge LH losses. The SN is used after ev-
ery convolution and fully connected layers in both the
Generator G and Discriminator D. The layers in the
Generator G and Discriminator D are the same as in
the variant-3 with SN and adversarial hinge loss. The
model is trained on both the Market-1501 and Deep-
Fashion datasets. Both the qualitative and quantitative
results of the model, in comparison to other variants
and benchmark models DGAN (Siarohin et al., 2018),
PG2 (Ma et al., 2017) have been described in detail in
the next section.

3.3 Loss functions

Recently with advances in Generative Adversarial
Framework, different loss functions are used to tackle
different optimization problems. The Generator G
and Discriminator D are trained using the standard
conditional adversarial loss LcGAN along with the
nearest-neighbour loss LNN similar to the base model
(Siarohin et al., 2018).

We have integrated the hinge adversarial loss to
the variant-2. We train the model using the nearest-
neighbour loss LNN in conjunction with the adversar-
ial hinge loss LH by minimizing the final objective
function as given below:

G∗ = argmin
G

max
D

LCGAN(G,D)+λLNN(G)+

LH
G(G,D)+LH

D(G,D) (4)

where we use λ as 0.01 in all our experiments. Based
on the behavior of λ value leading to the generation of
artifacts and blurry results, the value of λ is kept small
(Ma et al., 2017). In detailed description of LNN and
other losses can be found in (Siarohin et al., 2018).

4 EXPERIMENTS AND RESULTS

In this Section, we present both quantitative and
qualitative evaluation results on publicly available
Market-1501 and DeepFashion datasets. We also
compare our proposed models with other state-of-the-
art methods. We describe in detail about the datasets,
evaluation metrics used along with the implementa-
tion details for the proposed model.

4.1 Datasets

We used the most commonly available public datasets
for humans like Market-1501 (Zheng et al., 2015) and
DeepFashion (Liu et al., 2016b) datasets. Person Re-
identification dataset: Market-1501 This dataset
contains images of 1,501 persons captured from 6 dif-
ferent surveillance cameras totaling to 32,668 images.
It is a very challenging dataset as it contains low-
resolution images of size 128× 64 with the high di-
versity in illuminations, poses, and backgrounds. The
data is divided into train and test sets with 12,936 and
19,732 images, respectively. In the train set, we have
439,420 pairs, each of which is composed of images
of the same person with different poses. Then, ran-
domly 12,800 pairs are selected from the test set for
testing. The DeepFashion dataset (In-shop Clothes
Retrieval Benchmark) comprises of 52,712 clothes
images, leading to 200,000 pairs of same clothes with
two different poses and scales of the persons wear-
ing these clothes. These images have a resolution of
256×256 pixels, and the images are less noisy com-
pared to the Market-1501 dataset. The dataset con-
tains images with no background, where the clothing
patterns can contain text, graphical logos, etc. Ran-
domly 12,800 pairs are selected from the test set for
testing.

4.2 Evaluation Metrics

For benchmarking the performance of the proposed
model, widely-used evaluation metrics for human im-
age generation like Structural Similarity (Wang et al.,
2004) (SSIM), Inception Score (IS) (Salimans et al.,
2016) (based on the entropy of classification neu-
rons), m-SSIM (masked SSIM), m-IS (masked IS),
(Detection Scores) DS scores are calculated. Though
these measures are widely accepted, we like to show
the qualitative results of the generator with adver-
sarial training that are visually appealing compared
to present state-of-the-art approaches. The masked
scores are obtained by masking out the background
of the images and feeding it to the Generator G. An-
other metric DS (Detection Score) that is based on the



detection outcome of the object detector SSD (Single
Shot multi-box Detector) (Liu et al., 2016a) is used. It
is trained without fine-tuning to the datasets on chal-
lenging Pascal VOC 2007 (Everingham et al., 2007).
During testing, scores of SSD are computed on each
generated image and averaging the SSD score of each
generated image; the final DS is obtained. Therefore,
DS gives the confidence that a person is present in the
image.

4.3 Implementation details

In all the four variants of the proposed model, both
the G and D are trained with the RMSprop opti-
mizer (learning rate:0.0002 and ρ:0.9). Because of
the higher resolution of the DeepFashion dataset, the
generator for the DeepFashion dataset of all the four
variants has one extra convolution block of 512 ker-
nels and a stride of 2 both in encoder and decoder.
The ReLU of the last layer in Discriminator D for all
the four variants is replaced with the sigmoid activa-
tion function. The dropout is used only at the time of
training.

4.4 Quantitative Results

We present the results of the ablation study for
the variant-3 (W) on Market-1501 and DeepFashion
datasets. We also show the comparison of the four
variants of our proposed model with other state-of-
the-art models DGAN (Siarohin et al., 2018), PG2

(Ma et al., 2017).

4.4.1 Ablation study

We have four different methods in variant-3, which
are obtained by removing the parts from the Full
method described earlier to see the impact of each
part. The architecture of the Discriminator D includes
warping and is the same for all the four methods.
The results in Table 1 report the evaluation metrics
like SSIM, IS, m-SSIM, m-IS for the Market-1501
dataset and SSIM, IS, DS scores for the DeepFashion
dataset. Table 1 gives the results in comparison to the
base model (Siarohin et al., 2018). Table 1 gives the
respective scores of the base model (Siarohin et al.,
2018) and the proposed model for the four different
methods. From Table 1, the scores show that there is
a significant progressive improvement from the Base-
line method to the Full method. We can observe that a
combination of all the components gives a large boost
in IS and improves SSIM scores. The bold scores
represent the highest values obtained for that partic-
ular score in comparison with all the models. For ex-
ample, on the Market-1501 dataset, the SSIM value

observed is 0.293, which is highest when compared
to all the other SSIM scores of 4 different methods.
The highest scores for all the four methods in the case
of DeepFashion are obtained by the proposed model
when compared with their respective methods, as re-
ported in Table 1. The DS scores for all four different
methods on DeepFashion are 0.97, which are close
to real data scores that are computed on ground truth
images from datasets.

4.4.2 Comparison of the Model with other
State-of-the-Art Models:

All the four variants of the proposed model are com-
pared with the other state-of-the-art models like PG2

(Ma et al., 2017) and Siarohin et al. (Siarohin et al.,
2018) in Table 2. The scores for model PG2 (Ma
et al., 2017) were taken from the benchmark paper
(Siarohin et al., 2018) that are computed using the
code and the network weights released by PG2 model
(Ma et al., 2017). From Table 2, the variant SN
has improved the IS scores when compared to De-
formable GAN (DGAN) model proposed by Siaro-
hin et al. (Siarohin et al., 2018), whereas the SSIM
scores are slightly less. Therefore, the use of SN in the
generator and discriminator has increased the IS and
m-IS scores, whereas the SSIM scores have slightly
decreased. When compared to the PG2 model (Ma
et al., 2017), except for the IS score, all the other
scores have been improved. These scores show that
the variant SN has outperformed the PG2 model.

The second variant, SN + H, has outperformed the
DGAN model (Siarohin et al., 2018), whereas only
the IS score was less than the PG2 model (Ma et al.,
2017). It can be noticed that the use of SN has signif-
icantly increased the DS scores in the first and second
variants. The inclusion of adversarial hinge loss along
with SN in the GAN framework has improved the re-
sults, and this proves the importance of adversarial
hinge loss for the human-image generation. The third
variant (W), which represents the Full model of the
ablation study, has the highest scores than the DGAN
model (Siarohin et al., 2018) except for the DS score.
In comparison to the PG2 model (Ma et al., 2017),
this variant reports the highest performance than the
benchmark PG2 model with all metrics except the IS
metric. Conversely, on the DeepFashion dataset, the
full model significantly improves the IS and DS val-
ues than the other two benchmark models PG2 (Ma
et al., 2017), DGAN (Siarohin et al., 2018) but re-
turns a slightly lower SSIM value. The fourth variant,
which is SN + H + W has obtained better quantita-
tive results than PG2 model (Ma et al., 2017) except
for the IS metric on the Market-1501 dataset. In the
case of the DeepFashion dataset, it has significantly



Table 1: Quantitative results: Ablation study results on the Market-1501 and the DeepFashion datasets for the variant-3 of the
proposed model. The best results are highlighted in bold. For all the measures, higher is better.

Models Market-1501 DeepFashion
SSIM IS m-SSIM m-IS DS SSIM IS DS

Baseline (Siarohin et al., 2018) 0.256 3.188 0.784 3.580 0.595 0.754 3.351 0.96
Ours-Baseline 0.265 3.232 0.787 3.631 0.625 0.759 3.452 0.97

DSC (Siarohin et al., 2018) 0.272 3.442 0.796 3.666 0.629 0.754 3.352 0.96
Ours-DSC 0.277 3.433 0.797 3.684 0.599 0.764 3.385 0.97

PercLoss (Siarohin et al., 2018) 0.276 3.342 0.788 3.519 0.603 0.744 3.271 0.96
Ours-PercLoss 0.279 3.318 0.802 3.537 0.671 0.762 3.400 0.97

Full (Siarohin et al., 2018) 0.290 3.185 0.805 3.502 0.720 0.756 3.439 0.96
Ours-Full 0.293 3.354 0.805 3.540 0.571 0.759 3.584 0.97
Real-Data 1.00 3.86 1.00 3.36 0.74 1.000 3.898 0.98

Table 2: Quantitative results: Comparison of four variants of the proposed model with other state-of-the-art models on Market-
1501 and the DeepFashion datasets. SN represents Spectral Normalization, and H represents Adversarial Hinge loss. For all
the measures, higher is better.

Models Market-1501 DeepFashion
SSIM IS m-SSIM m-IS DS SSIM IS DS

(Ma et al., 2017) 0.253 3.460 0.792 3.435 0.39 0.762 3.090 0.95
(Siarohin et al., 2018) 0.290 3.185 0.805 3.502 0.72 0.756 3.439 0.96

Ours SN 0.280 3.300 0.797 3.528 0.64 0.764 3.461 0.97
Ours SN + H 0.291 3.239 0.804 3.592 0.69 0.763 3.444 0.97

Ours W 0.293 3.354 0.805 3.540 0.57 0.759 3.584 0.97
Ours SN + H + W 0.291 3.192 0.805 3.551 0.72 0.756 3.473 0.97

Real-Data 1.00 3.86 1.00 3.36 0.74 1.000 3.898 0.98

higher values for IS and DS than the PG2 model (Ma
et al., 2017). When compared to the DGAN model
(Siarohin et al., 2018) on the Market-1501 dataset, the
values for SSIM, m-SSIM are the same for both the
models. Whereas all the other scores are higher for
Siarohin et al. (Siarohin et al., 2018) on the Market-
1501 dataset. It can be seen that the DS score has
increased rapidly by using SN + H along with the
Full model of variant-3 (W) when compared to all the
other variants. On the DeepFashion dataset, the val-
ues for IS and DS are higher for SN + H + W when
compared to the benchmark models PG2 (Ma et al.,
2017), DGAN (Siarohin et al., 2018). The fourth vari-
ant SN + H + W obtained a higher score for IS than
all the other models except for the Full model. Apart
from this, the proposed model has reported better re-
sults than the two benchmark models PG2 (Ma et al.,
2017), DGAN (Siarohin et al., 2018).

From Table 3, the comparison of the two variants
with the state-of-the-art model proposed by (Horiuchi
et al., 2019) can be seen. The scores SSIM and L1 are
computed based on the generated and ground truth
images. It shows that the SSIM values are slightly
lower than the SSIM scores of the variants SN and
SN + RH proposed by (Horiuchi et al., 2019). The
IS scores are comparatively higher than the proposed

Table 3: Quantitative results: Comparison of variants SN
and SN + H with the state-of-the-art model (Horiuchi et al.,
2019) on the Market-1501 dataset. SN: Spectral Normal-
ization, H: Adversarial Hinge loss, RH : Relativistic Hinge
Loss. For all the measures, higher is better.

Models Market-1501
SSIM IS L1

Horiuchi et al.-SN 0.289 3.066 0.289
Ours SN 0.280 3.300 0.289

Horiuchi et al.-SN + RH 0.296 2.973 0.288
Ours SN + H 0.291 3.239 0.288

Real-Data 1.00 3.86 0.00

model (Horiuchi et al., 2019). It can be observed that
the reported IS is 3.300 for SN, and that of the bench-
mark model (Horiuchi et al., 2019) is 3.066. In the
case of SN with adversarial hinge loss, the value of
IS has been 3.239, which is higher than the SN + RH
variant of Horiuchi et al. (Horiuchi et al., 2019).

4.5 Qualitative Results

Not only the quantitative measures are enough to
show how good is the model, but the qualitative re-
sults are equally important to see how realistic they
are from a human point of view.
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Figure 4: Qualitative results: Comparison of all the four variants SN, SN + H, SN + H + W, W and the benchmark model
(Siarohin et al., 2018) on the DeepFashion dataset.

Condition Target Siarohin et al. Ours Ours
image image 2018 SN SN+H

Figure 5: Qualitative results: Comparison of some of the
challenging results for SN, SN + H and the benchmark
model (Siarohin et al., 2018) on the DeepFashion dataset.

4.5.1 Comparison of Four Variants with
Benchmark Model (Siarohin et al., 2018) :
DeepFashion

From Figure 4, the comparison of the qualitative re-
sults for all the four variants SN, SN + H, SN + H
+ W, W with the benchmark model (Siarohin et al.,
2018) on the DeepFashion dataset can be found. The
results from the four variants are qualitatively bet-
ter and sharper than the benchmark model (Siarohin
et al., 2018).

In the first row, the result from Siarohin et al.
(Siarohin et al., 2018) lacks the texture details, and
the generated image is blurry, whereas the result from
the four variants looks sharper in texture and appear-
ance details. Even the color of the shirt is similar to

that of the target image for all the four variants. In the
third and fourth rows, the generated results from the
benchmark model (Siarohin et al., 2018) miss the tex-
ture details and output the empty spaces when com-
pared to our proposed four variants, which produce
crisp appearance details. This shows the inclusion of
SN, which has generated realistic images with sharper
texture and appearance details.

4.5.2 Comparison of SN and SN+H with
Benchmark Model (Siarohin et al., 2018) :
DeepFashion

Figure 5 shows the qualitative comparison of the re-
sults for the benchmark model (Siarohin et al., 2018)
and the first two variants SN, SN + H on the Deep-
Fashion dataset. The images in Figure 5 represent
the challenging images where (Siarohin et al., 2018)
failed to generate the images which look similar to the
target image. In the first row, the benchmark model
(Siarohin et al., 2018) generates the image with a
black patch for the shirt instead of generating it only
for the hands, as seen in the images from the SN and
SN + H. In the second row, the texture of the cloth
is generated with gaps. In contrast, the variants SN
and SN + H generate the texture similar to the target
image. These results show how our variants are qual-
itatively better than the benchmark model (Siarohin
et al., 2018).
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Figure 6: Qualitative results: Ablation study results of Baseline, DSC, PercLoss, Full methods of the benchmark model
(Siarohin et al., 2018) on the DeepFashion dataset.

Condition Target Ours Ours Ours Ours
image image Baseline DSC PercLoss Full

Figure 7: Qualitative results: Ablation study results of Baseline, DSC, PercLoss, Full methods of variant-3 of the proposed
model on the DeepFashion dataset.

4.5.3 Ablation Study Results: DeepFashion
Dataset

Figures 6 and 7 depict the qualitative results of the ab-
lation study for the benchmark model (Siarohin et al.,
2018) and the variant-3 of the proposed model, re-
spectively, on the DeepFashion dataset. In both Fig-
ures, there is a progressive improvement of the results
from Baseline to the Full model. When the Baseline
results are compared from both Figures, the baseline
model (Siarohin et al., 2018) does not capture all the
appearance details of the target. The clothing tex-
ture is blurred for the baseline model (Siarohin et al.,
2018). In contrast, the images generated by the Ours-
Baseline model in Figure 7 are better in texture and
appearance details than the Baseline model (Siarohin
et al., 2018). The results of DSC are better when
compared to Baseline as the images are sharper, and
texture details are improved in both Figures 6 and 7.
When the DSC results are compared in both Figures 6

and 7, the facial features of the Ours-DSC model ap-
pears to be sharper. In PercLoss, the results are more
refined than the DSC model. The results from the
Ours-DSC model show the generation of shoes which
are missing in DSC (Siarohin et al., 2018). In most
of the cases, the results obtained by the Full model
are better than the PercLoss model in both Figures 6
and 7. The generated results for the Ours-Full model
are better than the Full model (Siarohin et al., 2018),
which can be seen from the texture generated for the
images in the last row.

4.5.4 Comparison of Four Variants with
Benchmark Model (Siarohin et al., 2018) :
Market-1501

Figure 8 shows the comparison of the results between
the four variants SN, SN + H, SN + H + W, W,
and the Siarohin et al. (Siarohin et al., 2018) model.
As already known that the images in the Market-1501
dataset have challenging backgrounds and are of low-
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Figure 8: Qualitative results: Comparison of all the four variants SN, SN + H, SN + H + W, W and the benchmark model
(Siarohin et al., 2018) on the Market-1501 dataset.

resolution, the generated images are still blurry. From
the images, the results of Siarohin et al. (Siarohin
et al., 2018) differ in the color of the shirt from the tar-
get image. In contrast, the variants with SN generate
the color appropriate to the target. The background
of the generated images for the SN variants seems to
be better than the base model (Siarohin et al., 2018).
However, the results generated are still not sharper in
facial features and the texture details in comparison to
the target image when the Baseline results are com-
pared from both the Figures.

4.5.5 Ablation Study Results: Market-1501
Dataset

Figures 9 and 10 depict the qualitative results of the
ablation study for the benchmark model (Siarohin
et al., 2018) and the variant-3 of the proposed model
respectively on the Market-1501 dataset. In both Fig-
ures, there is a progressive improvement of the results
from Baseline to the Full model. The baseline model
(Siarohin et al., 2018) does not capture all the texture
detail of the target. This can be observed from the first
and second rows of Figure 9 as the color of the shirt
has not been generated correctly. The results of DSC
are better when compared to Baseline as the appear-
ance details are improved in both Figures 9 and 10.
When the DSC results are compared in both Figures
9 and 10, the appearance details, including the color
of the clothing of the Ours-DSC model, appear to be
better as seen in the images. In PercLoss, the results

Condition Target Baseline DSC PercLoss Full
image image image image image image

Figure 9: Qualitative results: Ablation study of Baseline,
DSC, PercLoss, Full methods of the benchmark model
(Siarohin et al., 2018) on the Market-1501 dataset.

are more refined than the DSC model, but since the
improvements are minor, it is very challenging to dif-
ferentiate the images.
In most of the cases, the results obtained from the Full
model are better than the PercLoss model in both Fig-
ures 9 and 10, and the pose information is generated
well by all the methods. The generated results of the
Ours-Full model are better than the Full model (Siaro-
hin et al., 2018), which can be observed from the gen-
erated images in Figure 10. From the condition image
in the second row, the image is too blurry, which gives
vague information for training the model.



Condition Target Ours Ours Ours Ours
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Figure 10: Qualitative results: Ablation study of Baseline,
DSC, PercLoss, Full methods of variant-3 of the proposed
model on the Market-1501 dataset.

Condition Target Si Horiuchi Ours Ours Ours
image image et al. et al. SN SN + H W

Figure 11: Qualitative results: Results of SN, SN+H, W
variants of the proposed model in comparison with the
benchmark models (Siarohin et al., 2018), (Horiuchi et al.,
2019) on the Market-1501 dataset. Here Si et al. represents
(Siarohin et al., 2018).

4.5.6 Comparison of SN, SN+H and W with
Benchmark Models (Siarohin et al., 2018),
(Horiuchi et al., 2019) : Market-1501

Figure 11 shows the qualitative results of Siarohin et
al. (Siarohin et al., 2018), Horiuchi et al. (Horiuchi
et al., 2019), SN, SN + H, and W models. The cloth-
ing color and the shoes of the person in the second
row seems to be not generated correctly by Siarohin
et al. (Siarohin et al., 2018) and Horiuchi et al. (Hori-
uchi et al., 2019) when compared to the target image.

5 CONCLUSION

We presented the conditional generative models
which exploit the power of deep neural networks for
transferring various poses from one person to the

same person along with appearance and clothing tex-
ture details. The model uses the novelties like Spec-
tral Normalization (SN) and adversarial hinge loss.
The use of SN would stabilize the training of GANs
and helps to generate images with high quality. The
use of adversarial hinge loss has shown to improve
the generation of images with sharper details. This
model has been divided into four variants as a part
of the ablation study to know the importance of each
component of the model for the human-image gener-
ation. We showed how the four variants differ from
each other both qualitatively and quantitatively on
the Market-1501 and DeepFashion datasets. With-
out any data augmentation, the proposed models con-
verge faster and also generalize well to never seen test
data. We showed how the proposed model outper-
forms recent state-of-the-art models for person image
generation with pose and clothing details by provid-
ing benchmark results on publicly available Market-
1501 and DeepFashion datasets. It can be concluded
that the previous state-of-the-art models generated the
results with loss of appearance and clothing details
based on our experiments. We have also reported
results that depict that the proposed models have a
qualitative improvement over other methods. We pre-
sented that generative modeling with SN for person
image generation conditioned on pose and appearance
in a supervised setting provides good generalization
capabilities.

5.1 Future Work

There are many models for GANs which are designed
to tackle the problem of human image generation
along with pose and clothing. Different models fo-
cus on different pose representations, but the combi-
nation of a good pose representation along with objec-
tive function would improve the person-image gener-
ation. In future work, we would like to focus on using
other pose representations like 3D keypoints along
with existing Spectral Normalization (SN) and hinge
loss, which we believe would make better improve-
ments in this area of research. Also, self-attention
(Zhang et al., 2018) modules could be integrated into
the GAN architectures along with different pose rep-
resentations for the person-image generation. These
attention modules would attend to all the important
features of the person to generate accurate appearance
details with high quality. We can use a multi-stage
model with SN and attention mechanisms to further
improve the human-image generation.



REFERENCES
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