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ABSTRACT

In this paper, we propose a new template fitting method that
can capture fine details of garments in target 3D scans of
dressed human bodies. Matching the high fidelity details of
such loose/tight-fit garments is a challenging task as they ex-
press intricate folds, creases, wrinkle patterns, and other high
fidelity surface details. Our proposed method of non-rigid
shape fitting – FoldMatch – uses physics-based particle dy-
namics to explicitly model the deformation of loose-fit gar-
ments and wrinkle vector fields for capturing clothing de-
tails. The 3D scan point cloud behaves as a collection of
astrophysical particles, which attracts the points in template
mesh and defines the template motion model. We use this
point-based motion model to derive regularized deformation
gradients for the template mesh. We show the parameteriza-
tion of the wrinkle vector fields helps in the accurate shape
fitting. Our method shows better performance than the state-
of-the-art methods. We define several deformation and shape
matching quality measurement metrics to evaluate FoldMatch
on synthetic and real data sets.

Index Terms— Shape Matching, Wrinkle Vector Field,
Cloth Simulation, Deformation Gradient, N-body Problem.

1. INTRODUCTION AND RELATED WORK

Modeling 3D human body with clothes is a primary research
domain in 3D computer vision for its exhaustive application
in virtual and augmented reality, gaming, and other areas.
In this important discipline, statistical models from [1, 2]
can reproduce realistic body shapes and poses but without
clothes. These models require a large amount of input laser
scan data of different subjects with a wide range of motion
variation to encode the shape-pose correlation weights. Real-
istic body shape and pose generative model SMPL [3] extends
the boundary with full supervision. Appropriate Linear Blend
skinning (LBS) for soft body deformation is the underlying
objective of these models. The problem of modeling soft
body deformation, especially for clothes and garments, is dif-
ficult because such deformation has high degrees of freedom.
Conformal changes in clothes not only depend on the shift

This work was partially supported by the project VIDETE (01IW18002)
of the German Federal Ministry of Education and Research (BMBF).

Fig. 1. FoldMatch: A template mesh (middle) fitting, as a
set of upper and lower garment segments, on a target 3D scan
(left) of a dressed human body. High fidelity surface details of
the registered template are expressed as color-mapped magni-
tude of wrinkle-vector field v (right).

in the underlying pose and shape of the body but also on the
physical attributes of the clothing materials. The statistical
model of clothing [4] animates well on synthetic bodies, but
incomprehensible for realistic body shapes. Recent methods
ClothCap [5] and DeepWrinkles [6] advance this field with
convolutional neural networks (CNNs) based supervision.
These methods [5, 6] require accurate registration of plane
garment templates to 4D (3D + time) scan point cloud se-
quences. In [5], the body-pose, shape-identity and kinematic
dependent registration method fits a body model to the scans,
whereas the garment priors extract the offset information on
the clothing. In [6], variants of non-rigid ICP [7] performs
the registration and clothing details are mapped separately
via surface normal maps.

In this paper, we introduce a new physics-based confor-
mal registration method, FoldMatch, for loose apparels which
can match complex folding and pleating patterns of clothes
on the target 4D scans as shown in Fig. 1. The proposed
method can be more accurate and easy replacement for the
non-rigid registration methods applied in [5, 6]. The body of
related research works in cloth animation, simulation, defor-
mation analysis, to name a few, is quite vast [8, 9, 10, 11, 12].
Previous deformable shape matching methods like [13, 14]
estimate optimal rigid transformation per vertex establishing
true point-to-point correspondences. The idea has been fur-
ther extended in [10] to model deformation as a combination



of linear and quadratic transformations. Similarly, a simula-
tion method for elastoplastic materials with large deformation
was addressed in [9]. NRGA [15] is the first physics-based
method which applies locally coherent linear transformation
per point and the method is robust against noisy target scans.
This method works purely on point clouds and consider no
vertex connectivity information similar to other widely used
methods – CPD [16], non-rigid ICP [7].
Contributions. (1) We identify that NRGA does not have
an explicit shape deformation model. It defines a local sub-
space for every point in the source point cloud, and then a
physics based motion model displaces the points indepen-
dently towards the target point cloud. The displacement field
per point is parameterized by rigid rotation R and transla-
tion t. FoldMatch substantially alters NRGA and defines a
deformation model and wrinkle-vector field (WVF) for repro-
ducing drape patterns of a target on a source (a template),
which is a mesh. The target mesh can be noisy scans or re-
constructed meshes [17] of dressed human bodies. (2) Our
wrinkle-vector field is parameterized by a stretch coefficient
for capturing the drape geometry of the target. (3) The trans-
formation parameters (rotation and translation) for every tem-
plate point are optimally estimated directly from the regular-
ized deformation gradient, which contains additional cues of
the desirable drapes. (4) We propose several error metrics to
quantitatively evaluate the matching accuracy of FoldMatch
against SoA registration methods and analyze the WVF for
different spreads of local subspace.

2. NON-RIGID GRAVITATIOINAL APPROACH

Given a template Y and a reference X, The gravitational ap-
proach for non-rigid point set registration – NRGA [15] de-
fines the Gravitational Potential Energy (GPE) of the system:

E(R, t) = −
M∑
k=1

∑
j∈ΓX

k

ωk

(‖RkYk + tk −Xj‖+ ε)
, (1)

which is the weighted (ωk) sum of the inverse of the eu-
clidean distances (‖.‖ denotes `2 norm) between the vertices
Y = [Y1,Y2, . . . ,YM ] and their neighboring vertices from
X = [X1,X2, . . . ,XN ]. From the definition of GPE, the
weight ωk stands as the product of the gravitational constant
G and the masses (m(Yk),m(Xj)) of interacting vertex pair
(Yk,Xj). The above energy in eq. (1) is minimized to es-
timate the optimum transformation parameters, i.e., M rota-
tions R = [R1, . . . ,RM ] and translations t = [t1, . . . , tM ]
for the template vertices. By applying the rigid transforma-
tions, Y deforms to match the underlying shape of X.
Optimization Technique. NRGA uses distributed N-body
system as an inverse-problem toolbox to minimize the energy
in Eq. (1). The method applies some constraints as – (A) there
are no interactions among the particles from same class, i.e.,
X or Y, (B) only X induces gravitational forces to attract Y,

and (C) interactions are collisionless. First, K-d trees are built
independently on source Y and target X which help obtain-
ing the nearest neighbors of every source vertex Yk. Every
Yk fetches a number of nearest neighbors from Y and tar-
get X as a proportion ρ (typically 0.02− 0.2%) of their total
points. These neighbors form local regions ΓY

k , ΓX
k , respec-

tively. This generates a number of corresponding region-pairs
((ΓY

1 , ΓX
1 ), . . . , (ΓY

M , ΓX
M )) equal to the number of points in

Y. Next, the method iterates over all region-pairs and com-
putes the cumulative sum of relativistic gravitational force
(RGF) [18, 19] Fk on every Yk ∈ ΓY

k from all Xj ∈ ΓX
k ,

velocity vt+∆t
k , and displacement dt+∆t

k as:

Fk = −
∑
j∈ΓX

k

ωk(Ykαkj −Xj)

(‖Yk −Xj‖2 + ε2)
3/2

α
3/2
kj

− ηvtk, (2)

vt+∆t
k = vtk +

Fk
m(Yk)

∆t and dt+∆t
k = vt+∆t

k ∆t. (3)

Fk is parameterized by the Gaussian curvature [20] κj of Xj

as the term αkj = 1− 1
2κj‖Yk −Xj‖2. The phase-space of

Y is defined by M position (Yk) and velocity (vk) vectors at
time-step t. A fraction, η, of velocity is dissipated to stop the
endless oscillation due to second-order ordinary differential
equations (ODEs) of motion in Eq. 2 and 3. The rotations R
and translations t are estimated from the previous and updated
positions of vertices in the regions. The method terminates
when number of iterations exceeds a threshold ξ.

3. THE PROPOSED GARMENT FITTING METHOD

The template cloth in our proposed method is a mesh con-
taining a set of vertices and triangular faces T . Next, Us-
ing the positional dynamics of template points (particles with
masses) defined in Eq. 2, we derive deformation gradient and
introduce wrinkle-vector field.
Smooth Deformation Gradient. The vertices under the re-
gion ΓX

k are a set of bρNc nearest neighbors from X, whereas
vertices under ΓY

k are a set of distinct vertices connected in-
side 2 or 3-path distance from Yk. Fig. 2 describes how the
current state (Yt

k,v
t
k) and next state (Yt+∆t

k ,vt+∆t
k ) of the

vertices enclosed by any ΓY
k reflect subspace deformation.

The continuum deformation gradient:

Hk = (
∑
j∈ΓY

k

βj(Y
t+∆t
j − ¯Yt+∆t

j )⊗δYt
j)(
∑
j∈ΓY

k

βjδY
t
j⊗δYt

j)
−1

(4)
of Yk is formulated using the principle of molecular dynam-
ics [21] with βj = 1

|j| . The determinant of Hk is non-singular
when the term (

∑
j∈ΓY

k
βjδY

t
j ⊗ δYt

j)
−1 exists, i.e, when a

non-linear or non-flat stretch occurs inside ΓY
k . First we ob-

tain Hk for all Yk ∈ Y using Eq. (4). Thereafter, we regu-
larize Hk using tensor interpolation [22] scheme:

Hk = H
1
2
k exp

(∑
j∈ΓY

k

βj log(H
−1
2

k HjH
−1
2

k )

)
H

1
2
k . (5)



Fig. 2. Geometric deformation is captured for every vertex
Yk (in red) of the template mesh Y. Deformation gradient
Hk of Yk quantifies the gradient of motion locally around
Yk. The relative change in the position of Yk with respect to
the adjacent points in its subspace (enclosed by green circles)
at time-steps t and t + ∆t of simulation are used to compute
Hk. These Hk are broadcast to those nearest neighbor points
( enclosed by the blue polygon) to be interpolated for final
update. Yk selects n-ring neighborhood vertices, reachable
from Yk with the shortest-path-length ≤ n, to define ΓY

k .

A more convenient deformation measure is the Right Cauchy-
Green Deformation (RCGD) tensor C as Ck = HT

kHk. The
RCGD tensor is related to the stretch tensor Uk as:

Ck = HT
kHk = (RkUk)T (RkUk) = UT

kR
T
kRkUk = U2

k.
(6)

Wrinkle-Vector Field. Thanks to the smoothly interpolated
Hk in Eq. (5), polar decomposition of Hk results to a smooth
Rigid Rotation Tensor Rk and a smooth Stretch Tensor Uk.
The eigen value decomposition of Uk =

∑3
i=1 λieie

T
i gives

principal stretch λ1 (as Ck =
∑3
i=1 λ

2
i eie

T
i ) and its direc-

tion e1. Some methods [23, 8] influence the stretch-tensor in
cloth-simulation by clamping or trimming its principal eigen
value λ1. We add a stretch coefficients ψ along the principal
direction e1 and reduce proportionately from other two direc-
tions e2, e3 to increase the proportion drape cues. The modi-
fied eigen become: λ̂1 = 1

s (λ1 + ψ), λ̂2 = 1
s (λ2 − ψ

2 ), and

λ̂3 = 1
s (λ3 − ψ

2 ), where s = (
(λ1+ψ)2+(λ2−ψ2 )2+(λ3−ψ2 )2

3 )
1
2 .

Hence our modified stretch tensor is Ûk =
∑3
i=1 λ̂ieie

T
i .

Next, We define the wrinkle-vector field v as:

v =

(
λ1 + ψ

s

)
e1 = λ̂1e1. (7)

Resolving Transformation Per-Point. The final step of
FoldMatch is to resolve the rotation by optimizing the fol-
lowing constrained co-rotational problem:

R∗k = arg min
R̂k

‖Hk − R̂kÛk‖2F , s.t R̂T
k R̂k = I, (8)

where ‖.‖F denotes Frobenius norm. Once the optimal ro-
tation R∗k for Yk is obtained, the optimal translation is esti-
mated as t∗k = Ȳt+∆t

k −R∗kȲ
t
k. M rotations and translations

deform our template at every time-step. The method termi-
nates after maximum number of allowed iterations ξ. In the
end, the template Y is deformed to its final state Ŷ.

4. EXPERIMENTS AND EVALUATION

In all the experiments, the parameters required for the N-body
simulation part are set as: G = 1.67, ε = 0.1, η = 0.1, ∆t =
0.006, m(Yk) = 1.0, m(Xj) = 1.0, ξ = 100, and for the
cloth deformation, the wrinkle stretch parameter ψ = 0.05.
We quantify the matching quality of our method tested on
some synthetic [24] and real [25, 26] data sets, and compare
them against three benchmark methods of point-set registra-
tion – CPD [16], NRICP [7] and NRGA [15].
Evaluation Metric. Without known ground truth correspon-
dences between template and target garments, quantifying ge-
ometric deformation and matching accuracy is difficult. We
use a combined metric fλ as an average on – (1) the ratio
of Hausdorff distances fH before and after registration as
fH = DH(X, Ŷ)/DH(X,Y), (2) the fraction fS of trian-
gular faces T in Y collapsed into some infinitesimal area
when the area shrinkage is smaller than a threshold τ = 0.02,
fS = 1

|T |
∑

(i,j,k)∈T 1(∆̂ijk/∆ijk < τ), (3) the fraction of
faces with large rate of expansion fE is the opposite measure-
ment of shrinkage fS = 1

|T |
∑

(i,j,k)∈T 1(∆̂ijk/∆ijk > τ),
τ = 2.0, (4) the fraction of flipped triangles fF which mea-
sures if the angle greater than 90◦ between them before and
after, resulting in a scalar product of their normal vectors be-
low zero: fF = 1

|T |
∑
i∈T 1(nTi n̂i < 0). and finally, (5)

the RMSE error fR on the distances from the ground truth
correspondences, if available, – as fλ = (fH+fS+fE+fF+fR)

5 .

Fig. 3. Experimental results with simulation steps of our
method on two different types garment samples from [24].

On Synthetic Data. FoldSketch [24] requires some input
configurations for stitching disjoint segments of the garment
to generate desired folding, pleating, and hemline patterns in-
tuitively. We collect those disjoint segments and merge them
to get twelve input-output sets for our experiments – chipao,
conjoined, complex dress, flag, to name a few. Fig. 3 shows
the qualitative results of our method. Template and target
contain ≈13K and ≈14K points for the flag and complex
dress, respectively. FoldMatch converges in ∼30 − 40 iter-
ations (runtime: 3.5 mins) and the neighborhood boundaries



Fig. 4. A single template of ‘shirt’, without any surface de-
tails, is fitted on two scans with different drape patterns. Fold-
Match converges faster and results in capturing more accurate
surface details than CPD and NRGA.

ΓY
k and ΓX

k for Yk are kept to 2-ring (covers ≈0.2% of total
points 13K in the template) and 0.2% points from the target.
On Real Data. (1) The first set of experiments quantita-
tively evaluate the deformable registration accuracy of Fold-
Match when performed on some dressed-human body scans
from [25]. Fig. 4 summarizes the registration quality of our
FoldMatch, where the ‘shirt’of both scan subjects captures
all wrinkle and drape patterns close to the target scans. Our
method converges quickly after ∼20− 30 iterations, whereas
CPD and NRGA take more than ∼150 − 200 iterations to
reach a state where either the template mesh is deformed in-
correctly or capture coarser details of the wrinkle patterns.
The plots in Fig. 4 show that our method gradually optimizes
achieving the deformation state with the lowest values of fλ
for both subjects. For more analysis, Fig. 5 picks the ‘sub-
ject1’ from Fig. 4 and shows how the wrinkle vector fields,
v, are either locally sharpen or diffused when different sizes
of ring neighbors (ΓY

k ) – 1-ring, 2-ring, 3-ring, and 4-ring –
deciphering more information from respective Hk.
(2) Another set of experiments uses a large training data [26]
of a flat-piece of deformable clothes. [26] contains five dif-
ferent garments – cloth, T-shirt, hoody, sweater, and paper,
but only cloth contains ground truth meshes for ∼15799
samples. FoldMatch is tested on a subset of 300 randomly
selected samples as target meshes except for the first sam-
ple as template mesh. Fig. 5 reflects the distribution of the
quantitative error metric fλ, including its different compo-
nents (fH, fS, fE, fF, fR), for FoldMatch, CPD, NRICP and
NRGA. The third quantiles of maximum error are 0.8, 1.55,

Fig. 5. Deciphering sharpness of wrinkles from the deforma-
tion gradient for different spreads (n-ring) of subspace ΓY

k .

Fig. 6. Quantitative evaluation of FoldMatch (ours), CPD,
NRICP and NRGA methods on 300 samples from the training
data set [26]. Ours has the lowest of max-error values on all
evaluation metrics fH, fS, fE, fF, fR, and fλ (as avg. of all).

and 1.6 for CPD, NRICP, and NRGA, respectively. These er-
rors are ∼1.5 times and ∼3 times higher than our FoldMatch.
The outliers’ ranges are worse for NRICP and NRGA.

5. CONCLUSIONS AND FUTURE WORK

Our method is a new mesh fitting method for capturing high
fidelity details of the target scans. It allows analyzing patterns
of wrinkles or creases from the locally smooth deformation
gradients and wrinkle vector fields, which can further help in
relating human body motion primitives with garment defor-
mations statistics. Our method outperforms NRGA, CPD, and
NRICP in capturing intricate details of clothes. FoldMatch
can be a natural replacement for widely used NRICP or other
alignment methods in any cloth capturing or reconstruction
pipeline. In the future, we plan to employ acceleration tech-
niques for fast force computation on a GPU, and then to gen-
erate pseudo ground truth meshes of input 4D scan sequences.
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