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ABSTRACT
This paper investigates the possibility of using soft smart tex-
tiles over the hair regions to detect chewing activities under
episodes of snacking in a simulated scenario with everyday
activities. The planar pressure textile sensors are used to
perform mechanomyography of the temporalis muscles in
the form of a cap. 10 participants contributed 30 recording
sessions with time periods between 30 and 60 minutes. A
frequency analysis method is developed to detect moments
of snacking events with continuous sliding windows on 1-
second time granularity. Our approach results in a baseline
80% accuracy, over 85% after outlier removal, and above 90%
accuracy for some of the participants.

CCS CONCEPTS
• Human-centered computing → Empirical studies in
ubiquitous and mobile computing.
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1 INTRODUCTION
Automated Dietary Monitoring (ADM) is a central topic in
automated personal health and fitness management. The
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food consumption process can be understood as a process of
ingestion, chewing, and swallowing [18]. In the past decade,
ADM has been studied extensively in these three different
stages. Inertial measurement units (IMU) were used to detect
the hand gestures of bringing food to the mouth during the
ingestion stage in [3, 7, 20].
Sensors placed around the neck and throat have been

used to detect the swallowing moments [6, 22]. In [1, 11,
12], piezo sensors which generates electrical signal under
planar force were proposed as necklace-like devices. Cheng,
et al. studied the capacitance variation of the neck tissue
during swallowing in [5]. Contact microphones were also
demonstrated at the back of the neck in [19].

Figure 1: Experiment Apparatus. a.b. The outer view of the
Snacap. c. The inner view of the Snacap. d. The fabric sensors
with 2-by-3 points per patch and the position.

The chewing actions are mostly identified with the dis-
tinct sound which can be picked up by in-ear microphones
[2, 15], and the jawmovements. Our jawbonemoves from the
skull around the temporomandibular joints as hinges with
actions of adduction, abduction, protrusion and retraction
during biting, chewing and grinding of food. The actions
can be detected by mechanical changes around the temporo-
mandibular joints and the ear, such as the studies in [4, 9, 10]
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with IMUs, [8] with piezofilms on a glasses frame, or [14]
with a combination of photoplethysmography, audio and
IMUs. The actions are controlled by the mastication muscles
group, of which there are two superficial muscles that can be
detected by unobtrusive methods: the temporalis (under the
temple and the side of the scalp) and the masseter (under the
cheek). The muscle activities have been studied with surface
electromyography (EMG). In [16], generic wearable EMG
recording devices were attached on the cheeks. Zhang, et al.
custom-designed smart glasses with EMG electrodes in the
legs, which covers the temples [21].

Contribution
In this paper, we elaborate smart textiles in the scope of de-
tecting chewing activities from the temporalis muscle. The
muscle activities are detected by surface pressuremechanomyo-
graphy (MMG), which has been shown possible over the
forehead with textile headbands in [23]. Compared to EMG
approaches which usually come with strict skin-electrode
contact requirements, the smart textile MMG sensors can be
completely isolated from the user’s skin with normal fabrics.
In our evaluation, we also show that our approach can cope
with different hairstyles between the participant’s skin and
the sensors, even changing hairstyles of the same person.
We implemented our approach in the prototype ’Snacap’

with the form of a cap, which enables convenient data col-
lection. The prototype is evaluated with 10 participants in
simulated everyday scenarios. Our data analysis method in-
vestigates the time-frequency features of sliding windows
during continuous periods, and shows above 85% accuracy
with leave-person-out and leave-session-out validation con-
ditions, with the highest individual accuracy of 95%.

Figure 2: Signal example, annotation and prediction of a ses-
sion. a. 12-channel raw signals with detailed events. b. 12-
channel high-pass filtered signals with annotation, predic-
tion and temporal smoothed predictions, Class 1 is distin-
guished bymarker at higher positions. c. spectrogram of the
average high-pass filtered signals.

2 EXPERIMENT METHODS
Apparatus
The smart fabric sensor is made of Sefar SimpleSkin fabric
with silver stripes (0.7cm width with 1.5cm pitch) and Car-
botex (carbonpolymer fabric). The Carbotex is sewn in the
middle of two SimpleSkin layers as shown in Figure 1d. The
top and bottom layers of SimpleSkin are positioned with
approximate 40 degrees, which allows the sensor to cover
longer area with the same amount of wires. The electrical
resistance between the metal stripes from the top and bot-
tom layer each is sensitive to the pressure force applied at
each cross-points. The cap has a folded back flap as the inner
rim, which makes it comfortable to wear. The smart fabric
sensors are sewn under the flap rim, thus there is no direct
skin contact between the sensing element and the wearer.

An Arduino board (Adafruit Huzzah32) controls the data
acquisition system. For every 3-by-2 sensor patch, the side
with 3 metal stripes are connected to 3 analog input channels
of the Arduino board with a 1𝑘Ω grounding resistor each.
The side with 2 stripes are connected to 2 digital output pins,
to power one row at a time as the other pulled to ground.
The hardware scans all 12 sensor channels at approximately
30Hz, as the data is saved to an SD card. All rigid electronics
are secured on top of the rigid tongue of the cap.

Experiment Design
10 people (3 females, 7 males) between 20 and 31 years of
age participated in the experiment, which took part in an
office building. The goal of the experiment is to have the
participants consume various snacks in a period of time
as they perform their everyday activities, and detect the
moments when they are eating. In this experiment, we only
consider snacks that require chewing. The girth of the cap is
adjusted for each participant to be comfortably secure fit. The
participant consumed them with breaks between different
snacks. To simulate daily life scenarios, during the breaks, the
participants were instructed to walk around the building, talk
with other people, watch videos or work on the computer,
all with wearing the cap. All participants preferred to eat the
snacks while seating, either in the office or the social area
with sofas. Although there were short instances when they
were finishing up the last few bites of a snack standing up
and walking. Every session lasted between 30 and 60 minutes.
The participants gave informed consent in accordance with
the policies of the University of Kaiserslautern Committee
for the Protection of Human Subjects, which approved the
protocol. The recording is video logged for annotation. As
the activities of the session is labeled as in Figure 2a., we
define the snacking events as Class 1, everything else as
Class 0.
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Table 1: Participant Information

Person Sessions hairstyle ACC(%)1 ACC(%)2

1 5 short 85.54 95.70
2 3 mid-short 57.73 68.33
3 2 mid-short 90.82 91.68
4 5 multiple long3 81.35 81.38
5 2 long curl 85.58 81.52
6 4 long curl 83.69 82.47
7 1 short 69.80 71.55
8 3 mid-short curl 86.33 85.70
9 2 mid-short 88.21 88.25
10 3 mid-short 86.71 85.88

1: leave person out cross validation
2: leave session out cross validation
3: Person 4 has changed the hairstyle among straight long,
tied-back curls, box braids, tied-back box braids in different
sessions, flat hair clips were under the sensor for the tied-back
hairstyles.

Ultimately, the snacks included in the experiment are:
apples (sliced or whole), bananas, biscuits, chewing gums,
chocolates, cookies, gummy bears, nachos, nuts, muffins,
potato chips, protein bars, salami mini sausages, snack bars
of nuts, tangerines, waffles, yogurts with cereal.
The participants’ details are summarized in Table 1, as

overall 30 sessions were recorded.

3 DATA ANALYSIS METHOD
Signal Processing
The raw signals 𝑆𝑛 (𝑡) |𝑛 ∈ [1, 12] of the 12 channels from
a session of participant 1 are plotted in Figure 2a. First, we
can observe that during snacking events, there are clear
high frequency patterns, which can be better visualized in a
zoomed-in figure in Figure 3. Our following signal process-
ing thus is aimed at exploring the frequency domain. Also,
among different channels there are obvious bias. The bias
persists and varies among different participants and sessions.
We assume this is caused by the contour of the head struc-
ture or the hairstyle. To remove the bias, the raw signals are
processed with a zero-phase, IIR Butterworth highpass filter
with 0.1Hz stop frequency and 1Hz pass frequency. The high-
pass filtered signals 𝑆ℎ𝑝,𝑛 (𝑡) = 𝑓 𝑖𝑙𝑡𝑒𝑟ℎ𝑝 (𝑆𝑛 (𝑡)) are shown in
Figure 2b. The individual highpassed signals are then aver-
aged𝑀ℎ𝑝 =

∑12
𝑛=1 𝑆ℎ𝑝,𝑛 (𝑡). The spectrogram of𝑀ℎ𝑝 is shown

in Figure 2c. We observe from the spectrograms of all ses-
sions, that during snacking events, the major magnitude is
approximately in the range of 1 to 3 Hz, which coincides
with the study on the cheek masseter EMG signals during
chewing actions in [16]. Since there may be cancellations
between positive and negative values during the average

calculation, we also calculate the average of the absolute
values of the highpass filtered signals for further processing
𝐿ℎ𝑝 =

∑12
𝑛=1 |𝑆ℎ𝑝,𝑛 (𝑡) |.

Figure 3: The zoomed signal of Figure 2 around 36 min.

Feature Extraction
Sliding windows are then used to sweep through the data and
calculate features 𝑓𝑖 . The temporal features are inspired by
previous studies with the similar textile mechanomyography,
such as the study on the quadriceps in [24, 25]. Within every
window 𝑇 , we first calculate the statistical presentation: 𝑓1
average, 𝑓2 variance, 𝑓3 range, 𝑓4 skewness, 𝑓5 kurtosis, 𝑓6
waveform length [13], 𝑓7 sum of values greater than mean.

Then we calculate the power spectrum density of the win-
dow (PSD) with the fast Fourier transform to quantify the
frequency characteristics. Then we calcualte the average
magnitude of the PSD as feature 𝑓8 and the mean frequency
(the weighted center of the PSD as 𝑓9. Then the PSD is di-
vided to 5 equal frequency bands, the average values of each
band is calculated as 𝑓10 ∼ 𝑓14 (from low to high frequency).
Wavelet transform is also an effective method for fre-

quency domain analysis. We then perform fast wavelet trans-
form using the LTFAT toolbox [17] with J=4 filterbank it-
erations and ’Daubechies 8’ as the mother wavelet. Every
filterbank iteration ( 𝑗 ∈ [0, 4]) generates a coefficient vector
of varying lengths.We then calculate statistical presentations
of each coefficient vector: the mean value (𝑓15, 𝑓20, 𝑓25, 𝑓30,
𝑓35), the variance (𝑓16, 𝑓21, 𝑓26, 𝑓31, 𝑓36), the range (𝑓17, 𝑓22, 𝑓27,
𝑓32, 𝑓37) the skewness (𝑓18, 𝑓23, 𝑓28, 𝑓33, 𝑓38) and the kurtosis
(𝑓19, 𝑓24, 𝑓29, 𝑓34, 𝑓39).

Thus, 39 features are calculated separately for𝑀ℎ𝑝 and 𝐿ℎ𝑝 ;
overall 78 features are calculated from every time window.
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Machine Learning
We use the Matlab®Classification Learner to evaluate clas-
sifier models. First, the entire dataset with 25% hold out
validation is used to search for the best performing classifier
model, which resulted in the support vector machine model
(SVM) with the Gaussian kernel function. Obviously, random
partitioning with the entire dataset does not represent real-
world applications. Therefore, we perform leave-session-out
and leave-person-out with the exported SVM classifier fit-
ting function. In leave-session-out, one session from each
participant is left out for testing while the remaining are in
the training data. Five iterations are performed to have every
session in the testing data at least once.1 In leave-person-out,
every iteration leaves out all sessions from one participant
for testing, while all the remaining participants’ data are
used for training the model.2 We vary the sliding window’s
parameter in the leave-session-out scheme to have the opti-
mal accuracy, which resulted in 10 seconds window size and
1 second window step.

Figure 4: The confusion matrices of detecting snacking mo-
ments after removing the two outlier participants.

4 RESULTS AND DISCUSSION
The individual leave-session-out and leave-person-out accu-
racy values are shown in Table 1, with the average accuracy
81.73% for leave-person-out and 83.25% for leave-session-out.
Except for Person 2 and 7 (who only recorded one session
before the lock down), every participant has above 80% ac-
curacy. We notice that for Person 2, the frontal distance be-
tween their temples are narrower than the span of the rigid
tongue of the cap, leaving a gap between their temples and
the sensing fabric. This can be addressed by customized head-
wear design in the future. We still consider our exploratory
method with no skin contact, soft fabric sensors advanta-
geous in terms of user comfort and acceptance. Notably, with
Person 4, who has changed 3 hairstyles in different sessions,
has also shown above 80% accuracy. If we consider the two
participants as outliers and remove their results, the average

1Since the participants’ sessions are not even, some sessions are left out
more than once in different iterations.
2For Person 7, the only recorded session is always in the testing data for
leave-session-out and leave-person-out. The difference is for leave-session-
out, one session from each participant is not present in the training data.

accuracy is then 85.93% for leave-person-out and 86.57% for
leave-session-out.
With the sliding window approach along the continuous

periods of time, we can also perform fine time granularity
spotting. In Figure 2b., the green markers show the snacking
moments that are detected by the SVM model trained with
the leave-person-out approach. For the scope of this study,
the spotting performance can be considered the same as the
leave out validation.
In the related studies that investigate hand gestures, the

achieved accuracy is typically between 75% and 85% [3, 7,
20]. As the sensors are positioned directly at the neck, the
accuracy values are around 85% to 90% [1, 5, 11, 12]. Around
90% accuracy values have been reported in the studies that
place various sensors at the ear and the temporomandibular
joints [4, 9, 10, 14]. While the highest accuracy values are
reported in studies with sensor placements above the ear
and around the temples. The studies in [8] with piezo films
in a glass frame and in [21] at the temples achieved 99%
accuracy/F1-score in detecting chewing activities. It is worth
nothing that the classification in [8] is performed on pre-
segmented epochs of activities under controlled chewing
activities in a laboratory setting; while our study is based on
continuous sliding windows along a period of time under a
simulated scenario with everyday activities. The F1-score in
[21] is also the measure of complete eating events.

We can observe a trend that wearable sensing approaches
are better at detecting eating activities when the sensors are
closely coupled with the anatomical structures that control
the chewing actions. Overall, our textile approach with hairs
of varying thickness between the sensors and the skin pro-
vides comparable recognition accuracy with related studies.

5 CONCLUSION AND OUTLOOK
This study have explored using smart fabric in normal head-
wears over the hair region to detect snacking activities. This
is done by perform surface pressure mechanomyography at
the temporalis muscles which are responsible for pulling up
the jaw during chewing actions. The prototype Snacap takes
the form of a smart cap, which utilizes the existing structure
of the headwear to accommodate the sensing hardware.
In our future work, we would first look into integrating

the hardware more unobtrusively into the headwear. A pos-
sible direction is to have flattened electronics which can be
embedded inside the cap tongue. Other headwear such as
glasses and sweatbands will also be evaluated. With more
integrated and robust system, we would also perform longer
period user studies.
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