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Abstract—Environmental Sound Classification (ESC) is an
active research area in the audio domain and has seen a lot
of progress in the past years. However, many of the existing
approaches achieve high accuracy by relying on domain-specific
features and architectures, making it harder to benefit from
advances in other fields (e.g., the image domain). Additionally,
some of the past successes have been attributed to a discrepancy
of how results are evaluated (i.e., on unofficial splits of the
UrbanSound8K (US8K) dataset), distorting the overall progres-
sion of the field.

The contribution of this paper is twofold. First, we present
a model that is inherently compatible with mono and stereo
sound inputs. Our model is based on simple log-power Short-
Time Fourier Transform (STFT) spectrograms and combines
them with several well-known approaches from the image domain
(i.e., ResNet, Siamese-like networks and attention). We investigate
the influence of cross-domain pre-training, architectural changes,
and evaluate our model on standard datasets. We find that our
model out-performs all previously known approaches in a fair
comparison by achieving accuracies of 97.0 % (ESC-10), 91.5 %
(ESC-50) and 84.2 % / 85.4 % (US8K mono / stereo).

Second, we provide a comprehensive overview of the actual
state of the field, by differentiating several previously reported
results on the US8K dataset between official or unofficial
splits. For better reproducibility, our code (including any re-
implementations) is made available.

I. INTRODUCTION

With the increasing popularity of voice assistants, many
of which use Deep Learning techniques, the currently most
apparent task from the audio domain is probably automatic
speech recognition. However, apart from this very prominent
example, many other challenges still exist in the audio domain.
One of these challenges is Environmental Sound Classifica-
tion (ESC), which is concerned with correctly differentiating
between sound classes that we experience in our everyday
environment (e.g., “baby crying”, “car honking”, “children
playing”, “dog barking”, “siren”, “snoring”, “street music”).
While ESC has many potential application areas, one of the
most obvious ones is multimedia retrieval, in which ESC could
be used to improve the performance of video retrieval systems
by making better use of the audio modality [1]. Another
application area is the automated analysis of urban sounds, for
example to offer more detailed insights for high noise levels
[2].

While ESC is a comparably young field, a lot of progresses
were made after great datasets such as the ESC-50 [3] and

UrbanSound8K (US8K) [4] found wide acceptance in the
community. However, we observed that the general trend in the
ESC community is to design audio-domain-specific architec-
tures and combine them with specially engineered features. On
one side, this approach makes more difficult to benefit from
advances made in other fields, such as the computer vision
community. On the other, this scenario sparked our interest to
investigate how well a current state-of-the-art approach from
the image domain would perform on ESC. During our inves-
tigations, we found, that while our approach immediately out-
performed all previous ones on the ESC-50 dataset, it initially
seemed to perform quite poorly on US8K, despite the fact that
it can actually make use of stereo inputs. However, during our
follow-up, we noticed that there are reproducibility problems
wrt. prior publications reporting on the US8K dataset: many
existing approaches lack necessary details for reproduction and
about the used dataset splits. Given a fair comparison, our
approach in fact out-performs all prior ESC models also on
the US8K.

The remainder of this paper is organized as follows. In
Section II we discuss prior models that were used for envi-
ronmental sound classification. We then describe our proposed
approach based on log-power STFT spectrograms and a well-
known CNN model in Section III, how it was trained and eval-
uate in Section IV, before presenting our results in Section V
and concluding with a summary and future work in Section VI.

II. RELATED WORK

Unlike image-related tasks (image classification, segmen-
tation, object detection, etc.), the environmental sound clas-
sification task implies the usage of locally correlated one-
dimensional signals, so the input is stretched along a single
axis. The most widely known datasets in the field of environ-
mental sound classification are the ESC-50 / -10 [3] and the
UrbanSound8K (US8K) [4], further detailed in Section IV.

The representation of audio is quite different from visual
signals (e.g., photo) that have local correlations in both spatial
dimensions. Thus, many methods were proposed specifically
tailored towards the audio domain. We can divide them into
the following major groups. A comprehensive overview and
comparison of all methods can be found in the Table I.

ar
X

iv
:2

00
4.

07
30

1v
1 

 [
cs

.C
V

] 
 1

5 
A

pr
 2

02
0

firstname.lastname@dfki.de


A. Raw Waveform and 1D-CNN

The use of a raw signal as an input provides a straight-
forward solution to build a model that handles any sort of
time-frequency transformation internally. The most important
property of this class of models is that data pre-processing
is not needed. First, [5] and [6] proposed a one-dimensional
architecture called EnvNet v1 / 2 that was able to achieve
state-of-the-art results at that time. Later, in [7] the concept
of 1D-CNNs was extended into a model that operated on an
input signal at different time scales. Another way to improve
performance of this type of models was proposed in [8] where
the use of gammatone filterbanks for the initialization of model
allowed to improve results in comparison to the otherwise
random weight initialization.

In contrast, for simplicity and to reduce the amount of
trainable parameters (considering limited training data), we
decided to rely on a fixed time-frequency transform with a wide
spectrum range in our model. However, we mention potential
improvements in this direction in our future work.

B. Learnable Filterbanks and 2D-CNN

While one-dimensional CNNs handle all transformations of
input signal internally, which makes it possible to apply them in
an end-to-end fashion, this approach involves a lack of control
over the transformed representation. The use of gammatone
initialization in [8] helped to overcome this issue partially. The
uniqueness of [9] is that the model was split into two parts,
namely Convolutional Restricted Boltzman Machines (Con-
vRBM) for feature extraction (instead of the fixed procedure
that is used in our work) and the CNN proposed in [10] for
the actual classification task.

C. Pre-computed Time-Frequency Representation and 2D-
CNN

The first model that set the baseline for the environmental
sound classification was the CNN proposed in [10] (Piczak-
CNN) that operated on Mel-scaled [11] spectrograms. The
use of a fixed feature extraction procedure made it possible
to obtain a model’s input that possessed the required char-
acteristics. Further development of single-feature input and
research on data augmentation techniques were done in [12].
Follow-up studies involved the extension of input features to
others that based mostly on the Short-Time Fourier Transform
(STFT) [13] to Mel-Frequency Cepstral Coefficients (MFCC)
[14], [15]; Cross Recurrence Plot (CRP) [16], [15]; Teager’s
Energy Operator (TEO) [17], [18]; (Phase-Encoded) FilterBank
Energies ((PE)FBE) [19]; gammatone-spectrogram [20], [21],
[22]; chromagram [23], [24]; spectral contrast [25], [24]; and
Tonnetz [26], [24].

However, all of the aforementioned features were developed
with a reduction of computational complexity or compression
in mind. With the growth of computational capacity, it seems
that we can now make use of a single-feature that covers the
full range without any reduction.

The model we propose belongs to this major group, it is also
handling single-feature input (log-power spectrograms).

We provide detailed description of features used in the
aforementioned studies in the Table I.

D. Data Augmentation

Data augmentation is a powerful technique that allows to
increase variability in the training data and thus acts as a
regularizer preventing overfitting. According to [12] and [6]
there are the following transformations that augment audio
training data:

1) Time Stretching: This method changes the duration of
the audio, while keeping its spectral characteristic untouched.

2) Pitch Shift: In opposite to time stretching, this method
allows to manipulate spectral characteristics and preserve du-
ration of the track.

3) Time Inversion: Time inversion that was applied in [6]
is an effective data augmentation technique that is related
to random flip of images during the training on the visual
classification datasets.

E. Comparability of Results on the UrbanSound8K (US8K)
Dataset

According to our findings, there are at least five papers
(three in the 2019), whose reported results are not directly
comparable with others. In particular, as reported by [21], the
authors of [18] used an unofficial split of the US8K dataset.
Also, the authors of [15] stated that the results were obtained
on a non-standard split, whereas the authors of [8] provide the
description of a custom snippets generation strategy. Finally,
we determined that results published by [24] and [27] are
incomparable with those acquired on the official split [4] of
the US8K dataset as well. We provide further details on this
in the Table I and Section V-D.

III. MODEL

In this paper, we propose a visual domain convolutional
neural network in conjunction with log-power spectrograms to
solve the environmental sound classification task. This section
describes the architecture of the model and how it is extended
by the attention mechanism. We also describe its application
to stereo audio, the initialization of the network’s weights and
the process of log-power spectrogram computations.

A. Residual Networks

Residual neural networks are characterized by the additional
skip connections that bypass some of the layers and merge their
input and output. The motivation for this is to prevent gradient
vanishing that made it very difficult to design deep neural
networks before [28]. In our work, we propose the ESResNet
model based on the vanilla ResNet-50 architecture in order to
demonstrate its ability to achieve state-of-the-art results on a
domain the model was not designed for. The overall structure
of the model is presented in Figure 1.
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Figure 1. Overview of the ESResNet model handling single-channel input. The
main branch (2nd column) consists of the Convolutional layer (red) stacked
together with the Batch Normalization layer (green), followed by the residual
layers 1 – 4 (blue), the Average pooling (gray), and the Fully-Connected layer
(black). On the left, the typical structure of a residual layer is presented. Each
residual layer consists of the stack of the bottleneck layers (orange) that include
Conv-BN-operations applied sequentially and the skip-connection. Rectified
Linear Unit (ReLU) serves as an activation function. On the right (bounded
by the dashed line), the optional extension of the ESResNet model by the
attention blocks is presented. If applied, the attention block (violet) is stacked
in parallel to the residual layer 1 to 4 or to the average pooling layer. The
attention block includes the Max-pooling operation (gray) followed by the
depth-wise separable convolution stacked together with batch normalization.
The output of the attention block is given by the logistic function.

B. Attention

The attention mechanism was presented initially for the
use in conjunction with recurrent models, in particular, in
sequence modelling tasks [29]. The main goal of it was to
highlight relevant parts of a long sequence and to get rid of
irrelevant ones. In the visual domain, one uses attention blocks
in order to produce weighting for the input signal. Usually,
there are several attention sub-branches consisting of one or
many convolutional layers that process feature maps in parallel
with the main branch.

For the environmental sound classification task, the main
purpose of the attention blocks is to focus the model on the
most important information in both the time and frequency
domain. To implement the attention mechanism, we extended
our ESResNet model (inspired by [22]), by adding a stack
of attention blocks in parallel (ESResNet-Attention, Figure 1).
Each block among the first 4 handles either frequency- or time-
related information. For instance, the first attention block A1

receives the same input as the first layer L1, then it processes
the signal x using frequency-dedicated convolutional filters and
provides an output of the same shape as the one provided by
the L1. Finally, the input of the second layer is constructed
by the element-wise multiplication of outputs of L1 and A1

blocks (Equation 1).

Latt.
i (x) = Li(x)�Ai(x) (1)

The last attention block handles a joint time-frequency
representation. The core of the attention block is a depth-wise

separable convolution [30]. Output of each attention block is
given by the logistic function.

C. Spectrogram

A spectrogram is an image-like representation of the spec-
trum of frequencies varying with time. In relation to digital
signal processing, there are several ways to obtain a spectro-
gram. It can be generated using filterbanks, Fourier (or more
generally wavelet) transform, etc. In our work, we compute
log-power spectrogram S from the STFT of an audio signal
X(τ, ω) (Equation 2).

S = 10 Log10|X(τ, ω)|2 (2)

1) Short-Time Fourier Transform (STFT): STFT belongs
to the family of Fourier-related transforms and is used to
determine magnitude and phase of basis sinusoidal frequencies
ω at different time points τ in a time-domain signal x.

X(τ, ω) =

∞∑
n=−∞

x[n]w[n− τ ]e−jωn (3)

In practice, to compute Equation 3, one splits input signal
into overlapping frames multiplied by window function w, then
the Fast Fourier Transform (FFT) [31] is being applied to each
frame separately.

2) Window Function: In order to reduce spectrum pertur-
bances caused by the framing, a window function is applied.
The use of windowing reduces the amount of noise in the
spectrum and therefore improves the signal-to-noise ratio. The
drawback of the usage of a window function is so-called
spectral leakage. Spectral leakage is a common name for the
non-zero values produced by Fourier transform at frequencies
other than fundamental. The choice of window function is a
trade-off between many characteristics. In our work, we de-
cided to choose the minimum 4-term Blackman-Harris window
[32] which is given by Equation 4 as it provides reasonable
bandwidth and very low spectral leakage making it a good
choice as a general-purpose window [33]:

w[k] = a0 − a1 cos
(
2πk

N

)
+ a2 cos

(
4πk

N

)
− a3 cos

(
6πk

N

) (4)

a0 = 0.35875; a1 = 0.48829; a2 = 0.14128; a3 = 0.01168

As a trade-off between time and frequency resolution, we
split the input signal into frames of 37.5 ms length. The
corresponding overlap between subsequent frames depends on
the chosen window function. In our case, the recommended
overlap for the Blackman-Harris window of 66.1% (24.8 ms)
[33] was used.



D. Input Channel Transformation

For image classification models, such as ours, the usual way
to represent input data is an RGB model with 3 input channels
(red, green and blue). However, our spectrograms only provide
input in form of a single-channel (grayscale values). One way
to tackle this issue is to replicate the spectrogram to other
channels or to pass zeros instead. The major drawback of
this solution is either unnecessary redundancy or the loss of
information, and increased computational cost.

In order to overcome this limitation, we decided to map
the spectrogram along its frequency axis onto the three input
channels, so it is split into 3 frequency bands (Figure 2): lower
(0.00−7.35kHz), middle (7.35−14.70kHz) and upper (14.7−
22.05 kHz).
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Figure 2. Example of the ESResNet model’s input. The raw audio (bottom)
is used to create the log-power spectrogram that is split into three frequency
bands: lower, middle and upper. Thus, the network’s input consists of three
channels that are aligned with visual channels (red, green and blue, respec-
tively).

E. Handling Stereo Audio Using Siamese-like Architecture

The way how humans perceive audible information is in-
herently stereo. In this work, we exploit advantages brought
by additional audio channels and show on the US8K dataset
that a minor architectural tweak helps us to out-perform
state-of-the-art results.

Siamese neural networks were developed to produce a
similarity measure for two input samples [34]. In this work,
we however use the common broader notation to call any
network Siamese that applies the same set of weights to two
different inputs and thus produces two comparable vectors (or
embeddings). As Figure 3 illustrates, we take a two-channel
audio input followed by log-power spectrogram computation
(via STFT) and pass each channel separately through the
layers. After we obtain the network’s outputs, we fuse them
by an element-wise addition and pass the resulting embedding
through the last fully-connected layer that performs the final
classification.

F. ImageNet Training as Weight Initializer

The ESC datasets contain a limited number of samples. This
setup becomes especially important in case of the ESC-50

dataset as it provides the challenging task to distinguish be-
tween 50 classes using only 1600 training samples [3].

To leverage the full power of deep neural networks, the
amount of data should grow exponentially with the amount
of parameters. If the number of training samples is restricted,
one way is to perform fine-tuning. In this work, we decided
to employ a model that was trained from scratch on the
ImageNet dataset [35]. The ImageNet dataset provides more
than 1 million training samples divided into 1000 classes. As
we will see in Section V, the initialization of weights based
on a pre-training on the ImageNet image classification task is
beneficial for the environmental sound classification.

FC (2048 → Nclasses)

20482048

Nclasses

Log-power spectrogram

Audio channel #1

Log-power spectrogram

Audio channel #2
STFT STFT

Figure 3. Overview of the ESResNet model handling two-channel input.
Optional attention blocks are omitted. The color scheme is the same as in
Figure 1. The first channel is passed through the main branch (saturated
coloring), so the resulting embedding of size 2048 is acquired. Then, the
second channel is passed through the same set of weights (pale coloring),
resulting in another embedding of size 2048. Finally, the two embeddings are
added element-wise and their sum is passed through the last fully-connected
layer that performs the final prediction of a class the input sample belongs to.

IV. EXPERIMENTAL SETUP

In this section we describe the setup of our experiments,
starting with the datasets, their pre-processing and how our
model was trained. We also describe our reproduction of
previous results / re-implementation of their approaches for
comparison.

A. Datasets

1) ESC-50 / -10: The ESC-50 dataset consists of 2000
monarual samples belonging to 50 classes that can be divided
into 5 groups, such as animal sounds, natural and water
sounds, non-speech human sounds, interior and exterior sounds
[3]. Samples are distributed equally among classes, thus each
category consists of 40 recordings. Each track has length of 5
seconds, the native sample rate is 44.1 kHz. The dataset was
divided into 5 folds by its authors that we used in current work
to perform our evaluation. The ESC-10 dataset is a subset of the
ESC-50 dataset. It consists of only 10 classes that are restricted
to the following categories: transient / percussive sounds with
temporal patterns, sounds with strong harmonic content, and
noise / soundscapes. All other characteristics of the ESC-10
dataset are equal to those of the ESC-50 dataset.



2) UrbanSound8K: The US8K dataset consists of 8732
samples (both mono and stereo) belonging to 10 classes:
“air conditioner”, “car horn”, “children playing”, “dog bark”,
“drilling”, “engine idling”, “gun shot”, “jackhammer”, “siren”,
and “street music” [4]. The classes are not balanced in terms
of overall recording lengths per class. Each track has variable
length up to 4 seconds, the native sample rate varies from
16kHz to 48kHz. The dataset was divided into 10 folds by its
authors that we used in current work to perform our evaluation.

We would like to explicitly highlight the importance of using
the officially provided folds by describing the way training
samples were acquired by authors of [4]. As at the time
of collection the number of qualitatively labeled recordings
provided by the Freesound project [36] was restricted [4], each
track was split into snippets that had an overlap of 50 % [4].
Let us consider two tracks A and B belonging to the same
class (Figure 4). Applying a sliding window and moving it
with the overlap of 50 %, we obtain snippets called A1–4 and
B1–4, respectively. Two subsequent snippets share a part of the
original track, so one has to make sure that they are presented
either in training or evaluation set (the official split) and not
in both (as happens by random shuffling, which is underlying
many unofficial splits).

3) Data Pre-processing: For all datasets, audio samples
were normalized to the sample rate of 44.1 kHz using Librosa
0.7.2 library [37]. According to the chosen window length of
37.5ms, the frame length was 1654 samples. As the underlying
implementation includes an FFT, frames were explicitly padded
to the next power of 2 (211 = 2048) using a reflection padding
strategy [31].

Train

Test

Official Unofficial

A1, A4

B2, B4
A1..4

A2, A3

B1, B3
B1..4

A1 A3

A2 A4

B1 B3

B2 B4

Train ∩ Test ≠ Ø

File “A.wav”

File “B.wav”

Figure 4. Generation and split of the UrbanSound8K dataset. The dataset
consists of the samples that were obtained applying a sliding window that
had an overlap of 50 % to the original recordings provided by the Freesound
project [36]. The official split of the dataset takes care of putting subsequent
samples into either the train- or the test-set, so there are no shared parts of
the original track in both. A random split (frequent in unofficial splits) does
not follow this constraint, which results in a mix-up of train- and test-data
(highlighted area) and thus unreasonably high model performance.

B. Model Training

The model was trained using the Adam [38] optimizer for
300 epochs. The batch size was set to 16, training samples were

shuffled between batches after every epoch. During the train-
ing, the learning rate was adjusted according to an exponential
decay schedule with warm-up [39]. The basic learning rate
value was set to 0.00025. For the first 5 epochs it was ten times
lower, then the learning rate grew up linearly during the next
10 epochs. After the warm-up period, it decayed exponentially
with γ = 0.985 so the training ended up with learning rate of
3.37e−6. In order to introduce more stability into the training
process, a weight decay with α = 0.0005 [40] was applied.
Other hyper-parameters [38] such as β1, β2, ε were set to
their default values. Categorical cross-entropy served as a loss
function.

During the training phase, the following augmentations were
applied (see Section II-D): random time inversion and time
scaling [6]. The later can be considered as a combination of
time stretching and pitch shift. The main advantage of such
combined transformation is its computational cheapness in
comparison to aforementioned ones. For instance, pitch shift
implies forward and inverse STFT which makes it inefficient
to apply this transformation on-the-fly during the training.
The probability of the time inversion was set to 0.5. The
scaling factor was sampled uniformly from the continuous
range [1.25−1, 1.25].

C. Re-implementation

As the results reported by [27] and especially [24] were
very high, we focused on them to find the key to a such high
performance. As the description of models and / or setups did
not allow us to determine the crucial component, we decided
to reproduce their results. Sadly, the authors of [24] did not
publish their code, nor did any of them respond to our email
within a month. Hence, we re-implemented the part of the
TSCNN-DS model called LMCNet and evaluated it on the
official [4] and unofficial random split of the US8K dataset
using all available implementation details provided by authors.

The authors of [27] had published parts of their source
code including hyper-parameters for their TFNet model (only
ESC-50), which allowed us to reproduce their results with
minor re-implementations (by extending to US8K). Sadly, after
contacting them by email, the original repository disappeared.

For our evaluations on an unofficial random split of the
US8K dataset we used a StratifiedKFold as provided
by scikit-learn [41]. The number of splits was set to 10, all
experiments were conducted with the same random seed.

We report the reproduced results in Table I (emphasized by
italic font) and discuss them in Section V-D.

V. RESULTS

As can be observed in Table I, our presented approaches
out-perform all previous approaches in a fair comparison.

A. ImageNet Weights vs. Random Weights

As we discussed in the Section IV-A, the amount of avail-
able training samples plays a crucial role for deep learning
models. In this work, we compared performance differences
between a model that was trained from scratch and one that

https://freesound.org/
https://freesound.org/
https://scikit-learn.org


Table I
EVALUATION RESULTS (ACCURACY, %)

Model Source Representation ESC-10 ESC-50
US8K US8K
official unofficial

O
th

er
s

Human (2015) [3] – 95.70 81.30 – –

Raw waveform and 1D-CNN
EnvNet (2017) [5] raw 88.10 74.10 71.10 –
EnvNet v2 (2017) [6] raw 91.30 84.70 78.30 –
Multiresolution 1D-CNN (2018) [7] raw – 75.10 – –
Gammatone 1D-CNN (2019) [8] raw – – – 89.00 1

Learnable filterbank and 2D-CNN
Piczak-CNN + ConvRBM (2017) [9] FBE – 86.50 – –

Time-frequency representation and 2D-CNN
Piczak-CNN (2015) [10] Mel-spec 90.20 64.50 73.70 –
SB-CNN (2017) [12] Mel-spec – – 79.00 –
GoogLeNet (2017) [15] Mel-spec, MFCC, CRP 86.00 73.00 – 93.00 2

Piczak-CNN (2017) [18] (TEO-)GT-spec – 81.95 – 88.02 3

Piczak-CNN (2017) [19] (PE)FBE – 84.15 – –
VGG-like CNN + mix-up (2018) [21] Mel-, GT-spec 91.70 83.90 83.70 –
VGG-like CNN + Bi-GRU + att. (2019) [22] GT-spec 94.20 86.50 – –

TSCNN-DS (2019) [24] Mel-spec, MFCC, CST – – – 97.20
LMCNet (2019) [24] Mel-spec, CST – – – 95.20
LMCNet (no aug.) reproduced 4 Mel-spec, CST 5 – – 74.04 94.00

TFNet (2019) [27] Mel-spec 95.80 87.70 – 88.50
TFNet (no aug.) (2019) [27] Mel-spec 93.10 86.20 – 87.20
TFNet (no aug.) reproduced 6 Mel-spec 7 – 79.45 78.50 96.69

O
ur

s

ESResNet
from scratch log-power spec 92.50 81.15 81.31 (96.74)
ImageNet pre-trained log-power spec 96.75 90.80 84.90 (98.18)
ESResNet-Attention
from scratch log-power spec 94.25 83.15 82.76 (96.83)
ImageNet pre-trained log-power spec 97.00 91.50 85.42 (98.84)

The table shows a comprehensive overview of the achieved accuracy in percent. Numbers on the ESC and UrbanSound8K (US8K) dataset are as originally
reported in the source. If not indicated otherwise, we differentiate into the US8K official or unofficial column according to our findings.
Abbreviations: FBE: FilterBank Energies [9]; spec: spectrogram; MFCC: Mel-Frequency Cepstral Coefficients [25]; CRP: Cross Recurrence
Plot [16]; TEO: Teager’s Energy Operator [17]; GT: GammaTone [20]; (PE)FBE: (Phase-Encoded) FilterBank Energies [19];
CST: Chromagram, Spectral contrast and Tonnetz [24].
Comments: 1 “The audio files were segmented into 16,000 samples and successive frames have 50 % of overlapping. Ten percent of the dataset was
used as validation set and 10 % percent of the dataset was also used as test set. Each network was trained with 80 % of the dataset” [8];
2 “We used 5-fold cross validation” [15]; 3 Determined by [21]; 4 Full re-implementation (based on description in [24]);
5 Computed according to [24]; 6 Partial re-implementation (based on temporarily available code (incomplete) from [27]); 7 Code from [27] used.

Table II
EVALUATION RESULTS OF THE ESRESNET(-ATTENTION) MODEL ON

MONO AND STEREO INPUT (ACCURACY, %)

Model ImageNet pre-trained
UrbanSound8K

mono stereo

ESResNet
No 79.91 81.31
Yes 83.59 84.90

ESResNet-Attention
No 81.00 82.76
Yes 84.21 85.42

was pre-trained on the ImageNet dataset and then fine-tuned.
The largest relative change can be observed on the ESC-50

dataset (from 81.15 % to 90.80 %, ESResNet) as it presents a
challenging problem in conjunction with a restricted number
of training samples. We still find strong improvements on
the ESC-10 (from 92.50 % to 96.75 %, ESResNet) and US8K
dataset (from 79.91 % to 83.59 %, ESResNet).

B. Stereo vs. Mono
Further, despite the availability of stereo recordings in the

US8K, we identified, that the competing previous models only
consider single-channel audio. As described, we use a Siamese-
like extension to the vanilla input processing of the ResNet-50
network in order to enable our ESResNet architecture to
process multi-channel inputs where possible (US8K in Table I).
Further, Table II presents a comparison of results of our model
achieved on mono and stereo inputs. The results show that



between-channel difference provides useful information that
allows to out-perform previous state-of-the-art results on the
US8K dataset even without the use of additional attention
blocks. For instance, the ESResNet model trained from scratch
is able to achieve accuracy of 79.91 % on the US8K dataset
using mono audio as an input, however the use of stereo input
allows to classify 81.31 % of the test samples correctly whereas
the extension by attention blocks (ESResNet-Attention) pro-
vides a smaller performance gain when operating only on
mono input (81.00 %). A similar situation can be observed
in the case of our ESResNet model that was pre-trained on
the ImageNet dataset [35]. The use of stereo input for the
ESResNet model out-performs (84.90 %) the vanilla model on
mono input (83.59 %) as well as the attention-boosted model
on mono input (84.21 %).

C. Attention-boosted vs. Vanilla

Combining a powerful visual model and descriptive time-
frequency representation (ESResNet) already allows us to out-
perform previous results. However, further improvement is pos-
sible by including attention (ESResNet-Attention, Figure 1).
The use of the attention blocks allows us to out-perform previ-
ous state-of-the-art results on all three datasets (ESC-50 / -10
and US8K) achieving 91.50 %, 97.00 % and 84.21 %, respec-
tively. Additionally, the combination of stereo input and atten-
tion blocks provides further improvement of the achieved ac-
curacy on the US8K, allowing the ESResNet-Attention model
to achieve a new highest state-of-the-art accuracy of 85.42 %.

D. Official and Unofficial Splits and Reproducibility Problems

As stated in the Section IV-C, we reproduced the approaches
presented in [24] and [27].

The performance achieved by the re-implemented LMCNet
model on the US8K (Table I) allows us to attribute the results
of [24] to those that did not perform evaluation on the official
split.

For TFNet, we re-ran the temporarily available code for the
ESC-50 dataset (without data-augmentation). We then slightly
adapted the code to also run it on the US8K. In both cases,
we surprisingly reached significantly lower accuracies than
stated by the authors [27]. However, when running their code
on a completely random unofficial US8K split, we achieved
significantly higher results than previously reported. We con-
clude from this, that either, the shared code lacks crucial steps
for reproducibility of the reported results, or that the authors
neither ran their experiments on the official nor a completely
random unofficial US8K split.

In order to roughly quantify the influence of an unofficial
(random) splitting strategy on our results, we also report them
in Table I. To point out, that these very high numbers do
not constitute a basis for fair comparison, we put them in
parenthesis.

VI. CONCLUSION

In this work we demonstrated how a well-known visual
domain model could successfully be applied to Enviromental

Sound Classification. Being applied in conjunction with reg-
ular log-power spectrograms, our ESResNet model is able to
perform competitive to humans (ESC-50), whereas pre-training
on the ImageNet dataset already allows us to out-perform all
current state-of-the-art methods. We also showed that the pres-
ence of multiple channels in the input signal gives an additional
performance gain on the UrbanSound8K dataset with only
minor architectural changes (Siamese-like processing). Further
improvement is possible with the help of attention blocks
supporting the network in focusing on the relevant parts of
its input in time and frequency domain (ESResNet-Attention).
Such a configuration reached the highest accuracy and out-
performed all previous state-of-the-art models significantly in
a fair comparison on the ESC-50 and UrbanSound8K datasets.

Finally, we highlighted the importance of the strict adhe-
rence to the evaluation procedure, demonstrated the influence
of a random splitting strategy on evaluation results on the
UrbanSound8K dataset and differentiated previously reported
results into official and unofficial splits. For reproducibility,
we provide all code, also including our re-implementations of
models that were sadly published without code before.

In the future, we would like to investigate learning time-
frequency representations instead of using the current fixed
feature extraction. Also as we have seen that ImageNet helps
in the initialization of our model, we would like to investigate
which classes benefit more and which less from domain
transfer.
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