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ABSTRACT

Assembly state detection, i.e., object state detection, has a critical
meaning in computer vision tasks, especially in AR assisted assem-
bly. Unlike other object detection problems, the visual difference
between different object states can be subtle. For the better learn-
ing of such subtle appearance difference, we proposed a two-level
group attention module (TGA), which consists of inter-group at-
tention and intro-group attention. The relationship between feature
groups as well as the representation within each feature group is
simultaneously enhanced. We embedded the proposed TGA module
in a popular object detector and evaluated it on two new datasets
related to object state estimation. The result shows that our proposed
attention module outperforms the baseline attention module.

Index Terms: Computing methodologies—Machine learning—
Machine learning approaches—Neural networks; Computing
methodologies—Artificial intelligence—Computer vision—
Computer vision tasks; Human-centered computing—Human
computer interaction (HCI)—Interaction paradigms—Mixed/
augmented reality;

1 INTRODUCTION

As a user-friendly human-machine interaction technology, AR has
advanced a lot in the last decades. It can be used in education [19],
healthcare [29], manufacturing [22], etc. AR assisted assembly as
one possible use case has also been researched a lot recently [26,
31, 32]. Objects which consist of several removable and adjustable
components can have different states due to the assembly step and
the assembly method. The object state detection task is one of the
critical components in AR assisted assembly and automatic robotic
manipulation.

For object state estimation, one possible way is to estimate 6
DoF pose of each component using pose estimation methods [8, 20].
Based on the relative pose of each component, the assembly state
can be estimated. However, the pose estimation methods perform
less accurately when the target objects are more or less occluded.
Nevertheless, the components are usually occluded after the assem-
bly. Another possible approach is to treat state estimation as a pure
classification problem, which focuses on the whole object rather
than each component.

However, unlike the typical image detection and classification
problem, in our task, half-assembled products (see Fig. 1 top-left)
and similar object states(see Fig. 1 second row) are usually occurred
in the assembly process, which are a considerable challenge for the
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Figure 1: Object state detection has a critical meaning in computer
vision tasks, especially in AR assisted assembly. The half-assembled
assembly state have to be distinguished with finished assembly state
(top images). The appearance similar object states (bottom images)
also have to be recognized individually. In this work, we proposed a
new attention module, i.e. TGA to solving this problem.

classification. Thus, we require a network that can learn the global
structure and subtle visual differences between assembly states.

The fine-grained classification problem is similar to our problem
since sub-class classification is performed. The visual difference
between sub-classes is conceivably smaller than the difference be-
tween classes. Attention-based CNN [35] has achieved significant
performance on fine-grained visual categorization task. They try
to solve the sub-class classification by learning part detectors, part
annotation, and cropping the detail parts with predefined quantity
(e.g., the head, the body and the foot of the bird). However, their
attention methods have several issues if applied to assembly task
such as the one we are addressing. Specifically, the part annotation
information will limit the robustness and generalization ability of
the model. The number of required annotations varies for different
objects. Moreover, the occlusion in the assembly makes the precise
annotation more difficult.

To remedy the above problems, we proposed a two-level group
attention module inspired by [15], which divides the feature maps
into several groups and improves the semantic response in each
feature group. We proposed a lightweight attention module named
two-level group attention (TGA). It can strongly capture the detail
feature from lots of subtle areas by 1) modelling the cross-group
relationship (inter-group attention), and 2) enhancing the feature
representation for each group (intro-group attention). Specifically,
the former learns the global structure with the important factor be-
tween groups. The later captures features for a specific detail in each
group. Furthermore, an assembling object usually consists of several
different size components. To make the parts of different scales have
the same representational power, we added a multi-branch trident



block [16] into the CNN backbone to select the appropriate receptive
field by dilated convolutional layers. Collecting and labelling a mas-
sive dataset from the real-world is a cumbersome process. Thus we
used the CAD models of the objects in different states to create syn-
thetic training data without any manual annotation cost. We apply
the domain randomization and the domain adaptation technique in
the synthetic datasets to close the reality gap between the simulator
and the physical world and make sure the model generalizes well in
different real environments. The overall structure of the network is
represented in Fig. 3.

We tested our TGA on two different datasets (see Fig. 1). The
CNN is able to distinguish the difference between the half-assembled
assembly state and finished assembly state in the IKEA-table dataset:
The top-left image has been classified as state 3 while the top-right
as state 4. And the CNN can also recognize the appearance similar
object states in the Fender dataset (the Fender has been assembled in
different length in the bottom images): bottom-left image has been
classified as state 0 while the bottom-right as state 2.

Our contributions are summarized as follows:

• We apply bilinear pooling to obtain the relationship among
feature groups, which builds the inter-group attention. It con-
tains only 2 learn-able parameters, can be embedded in CNNs
without extra complex computations.

• We proposed a two-level attention module (TGA). The first
level is our proposed inter-group attention. The second level is
intro-group attention. This design simultaneously enhances the
cross-groups relationship as well as the representation within
a group. The TGA can be easily embedded in the most CNN
backbones.

• We embedded TGA in the backbone of an object detector
and tested different CNNs with our object state datasets. The
results show that the CNN with the proposed TGA outperforms
other CNNs.

• The backbone with TGA can be used in many AR applications,
e.g. [26] to build an AR assisted Assembly

The paper is organized as follows: We first give an overview
of the related work in Sec. 2. The attention module and overall
architecture are described in detail in Sec. 3. Subsequently, we
present our dataset used for training as well as testing in Sec. 4.
Finally, a quantitative evaluation of our proposed TGA is presented
in Sec. 5.

2 RELATED WORK

2.1 Object Detection
Although anchor-free object detectors like FCOS [27] have rapidly
developed in recent years, anchor-based object detectors are still the
most popular one. The anchor-based object detectors can be divided
into two categories, i.e., one-stage detectors, and two-stage detectors.
One-stage detectors like YOLO family [2,23] and SSD [17] treat ob-
ject detection as a regression problem. They take an input image and
predefined anchors to predict the class probabilities and bounding
box coordinates. One-stage detectors achieve high inference speed,
whereas two-stage detectors are superior on location and recognition
accuracy. The two-stage detectors like Faster R-CNN [24] and Mask
R-CNN [6] consist of a coarse prediction stage and a finer prediction
stage. In the first stage, adopt a Region Proposal Network (RPN) to
generate regions of interest (ROIs). In the second stage, the proposed
ROIs are sent down the pipeline for finer object classification and
bounding-box regression.

At the same time, the scales of object instances could vary in a
wide range. This scale variation makes the object detection problem
more difficult. The benefit of the feature pyramid SSD [17] and

MS-CNN [3] assign proposals to appropriate feature levels for infer-
ence. Instead, SNIP [14] creates an image pyramid to train objects
on different image scales selectively. HyperNet [12] concatenates
features from different levels to generate appropriate region propos-
als that could alleviate scale variation. Furthermore, TridentNet [16]
constructs a parallel multi-branch feature architecture with different
receptive fields and achieve significant improvements. We use the
idea behind TridentNet in this paper to build our object detector.

2.2 Group Attention Mechanism
Lots of research [11, 18] published that the attention mechanism
plays a significant role in human perception. Recently, attention
mechanism has proven to be a potential means to enhance deep
CNNs. In [9] an attention module was introduced to exploit the
channel-wise relationship. CBAM [30] further considered both
spatial-wise and channel-wise relationship. TASN [35] proposed a
trilinear attention module that conducts bilinear pooling to obtain
the relationship among feature channels.

The idea of group attention algorithm is from group convolution
and feature clustering functions. The earliest idea of group CNN
began with AlexNet [13] that divides features into two groups on dif-
ferent GPUs to save computing resources. Besides, there have been
several attempts [4,34] to incorporate group convolutions processing
to improve the performance of CNNs. Inspired by group convolu-
tion, ResNest [33] generalized the channel-wise attention [9] into
feature-map group representation. SGE [15] proposed a spatial-wise
attention mechanism inside each feature group, by scaling the fea-
ture vectors over all the locations with an attention mask to enhance
the semantic entity representations within each feature groups.

Compared with our work, our attention mechanism can simul-
taneously learn 1) intra-relationships of channels within a group,
and 2) inter-relationships between different groups. Similar to SGE,
each feature group in the TGA has its own semantic representation,
which may be a key detail of the assembling component, or it may
be unimportant noise information.

3 TWO-LEVEL GROUP ATTENTION MODULE (TGA)
In this section, we introduce the proposed TGA module and the
overall network. We first describe our proposed inter-group attention
module, which aims to learn the importance of relationships across
feature groups. We further give a brief overview of the intro-group
attention module (SGE [15]). Then we present the TGA module
by series connecting the inter-group attention and the intro-group
attention. In the end, we describe the entire CNN architecture.

3.1 Inter-Group Attention Module
Our Inter-group Attention Module is an attention-based computa-
tional unit consisting of 1) dividing the feature maps into groups
and 2) learning importance factors for each group. The first row of
Fig. 2 depicts an overview of our inter-group attention.

As the assumption of [15, 25], we expect that each feature group
can gradually capture the semantic response of the detail discrim-
inate part. Thus we divide the original feature map Fo ∈ Rc×h×w

into F ∈ Rg×c′×h×w , with c = g× c′. Then we apply average pool-
ing layer cross g dimension to aggregate the representation of each
group features. The feature map with aggregated group features has
a shape of g×1×h×w. After merging the first two dimensions, we
denote it as FG ∈ Rg×h×w.

As shown in [15], each group of the FG corresponds to a special
visual pattern. Inspired by trilinear attention [35], which conducts
bilinear pooling to capture the relationship among feature channels.
We use the same idea to obtain the relationship among groups ac-
cording to the feature representation of each FG. We reshape the FG
to F̂G ∈ Rg×hw, then the calculation of the attention mask M can be
formulated as:

M = N(N(F̂G)F̂T
G) , (1)
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Figure 2: Illustration of our proposed TGA attention module. 1) inter-group attention module: the feature channels of each group is aggregated by
average operation, then the bilinear pooling operation is used to obtain the attention guidance for each group. 2) intra-group attention module: we
apply the idea of the SGE attention module proposed in [15], that is able to enhance semantic feature representation in each group.

where N(·) denotes softmax operation and F̂T
G ∈ Rhw×g denotes

the transpose of F̂G . Subsequently, we obtain the attention mask
among groups M ∈ Rg×g. The inter-group relationship matrix Mi, j
indicates the ith group’s influence on jth group. We reshape the
F ∈ Rg×c′×h×w into F̄ ∈ Rg×c′hw, then apply matrix dot production
over M and F̄ to obtain a matrix in g×c′hw. The overall inter-group
attention module can be summarized as:

F′ = reshape(tanh(λ · (MF̄))) , (2)

F′′ = F′⊕F , (3)

where ⊕ denotes element-wise summation. The MF̄ is scaled by
a learn-able parameter λ , then take a tanh as activation function, and
reshape operation to obtain the F′ ∈ Rg×c′×h×w. Finally reshape the
output F′′ into the size of c×h×w as the feature map applied with
our inter-group attention.

3.2 Intra-Group Attention Module

As introduced above, we designed the entire TGA attention module
structure with inter-group attention and intra-group attention. In
our method, we use the SGE attention module proposed in [15] as
our intra-group attention, which enhances the representation inside
each feature group. The inter-group attention we proposed aims
to emphasize or suppress each individual feature group. The intra-
group attention can be summarized as:

sssvvv = Fgp(X) (4)

cccoooeee fff fff = γ ·N(sssvvv ·X)+β (5)

X̂ = X ·σ(cccoooeee fff fff ) (6)

which X denotes a group of feature, and sssvvv is the global average
pooling of this group X, indicates the semantic vector. The cccoooeee fff fff
denotes importance coefficients, the operation N(·) is normalization
over the space dimension. This module involved only 2 parameters
for each group: γ and β . Finally, to obtain enhanced group feature
X̂, the original X is scaled by the generated importance coefficients
coe f f via a sigmoid function gate σ(·) over the space. The intra-
group attention module can be illustrated in the bottom left of Fig. 2.

3.3 Overall CNN Architecture

In our attention module, we adopt a sequential inter-intra arranging
method. Furthermore, our TGA module is a lightweight attention
unit without extra complex calculations (see bottom right of Fig. 2).

We build our object state detector based on Faster RCNN [24]
with trident block [16]. The architecture of the entire CNN is de-
picted in Fig. 3. We embedded our TGA-module in the backbone
Resnet50 [7] backbone, by placing our TGA-module after the last
BatchNorm [10] layer of residual block on stage1 and stage2. A
multi-branch trident block is used to extract high-level feature from
the outputs by attention module. The trident block contains multi-
ple dilated convolutions with various dilation rates. Each dilated
convolution independently extracts the feature map. The output of
backbone is sent to RPN Network for the proposal of ROIs. The
ROIs will be aligned as fixed-size feature maps, which are further
processed for the object states classification their bounding box re-
gression. In the following experiment section, we will present our
proposed method’s performance on the object state detection task.

4 DATASET

Considering two different scenarios in AR assisted assembly. 1)The
object can be assembled as multiple possible states. This is a com-
mon industrial assembly use-case. Typically, the states have a very
similar appearance. After assembly, AR can be used to ensure the
assembled state is the required state. 2)In the AR guided assem-
bly [26], the system must be able to distinguish, if an assembly step
is already finished, in order to show the next assembly step.

We captured two datasets 1)Fender-assembly and 2)IKEA-table,
to test our proposed method in the two different scenarios, respec-
tively. Table 1 shows statistics of these datasets.

Dataset State 0 State 1 State 2 State 3 State 4 State 5 SUM

IKEA-table real 161 180 140 147 122 21 771
synthetic 25.2k 25.2k 25.2k 25.2k 25.2k 25.2k 151.2k

Fender-assembly real 106 116 102 108 106 110 648
synthetic 19.44k 19.44k 19.44k 19.44k 19.44k 19.44k 116.64k

Table 1: Statistics of these datasets used in our experiments.

4.1 Real Test Dataset

The industrial Fender-assembly dataset consists of 6 possible states.
The Fender can be assembled in 3 different lengths. For each length,
it can be assembled in 2 directions (6 state = 3 length * 2 direction).
The appearance variance of different states is very small. However,



Figure 3: Overview of the entire CNN used for object state detection: Faster-RCNN detector embedded with TGA module and multi-branch trident
block. The details of the network are summarized in the Sec 5.1.
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Figure 4: Synthetic objects with different assembly state are rendered on top of a random background (left), with random pose, random illumination,
random light position, viewpoint and noise. For each state (except the final state), the distractor will randomly appear around its assembly location
in the scene. Finally, all images will pass through pencil filter [21] as the input of the network

according to different product requirements on the production line,
only one of the six states is correct.

The IKEA-table dataset also consists of 6 total possible states
separately indicating each step of the manual assembly process. It
is necessary to distinguish between the finished assembly and the
half-assembled assembly, so that the AR system can show the correct
guide for the assembly step. For each state i, the images involve the
state i and the half-assembled state i+1 (since the half-assembled
state i+1 is still not the state i+1, it will be labeled as state i).

The details of the assembly state label can be found in the corre-
sponding object state graph (is illustrated in Fig. 5), which depicts
the step-by-step assembly instructions.

4.2 Synthetic Training Dataset
Collecting and manually annotating a large number of training
datasets is typically an expensive and time-consuming task in the
real world. But it is easy to generate a synthetic dataset using a
rendering engine.

In our work, we generated synthetic datasets with Unity3D using
industrial CAD models. The 3D model of an object state is placed in
a 3D scene with a random pose. The virtual camera rotates around
the object with a step of 5± 2.5 degrees. In each viewpoint, the
camera will translate to a random position within a pre-defined
range to render the 3D object. Meanwhile, ground truth labels are
automatically generated: state label and bounding box of objects.

In particular, the IKEA real test dataset contains many images,
which depict an intermediate state (half-assembled state). Therefore
when we generated the IKEA synthetic training dataset, besides the
object state model, we added an additional table’s leg model into
the scene. The object state model, together with an unassembled
table leg model, is used to simulate such half-assembled states. We
call the unassembled table leg (or any other unassembled compo-
nent) ’flying distractor’. 50% of the total images include the ’flying

St
at

e

IKEA-table Fender-assembly































0

1

3

4

5

2

length: L3  
direction: Right

length: L2   
direction: Left

direction

length: L2  
direction: Right

length: L3    
direction: Left

length: L1 
direction: Left

length: L1 
direction: Right

length

*length: L1>L2>L3

Figure 5: Assembly instruction step-by-step.

distractor’. We randomize the translation of the flying distractor
obeying a normal distribution. Empirically, we define that the offset
of the flying distractor along each translation axis obeys the normal
distribution N(0,12.975). This distribution indicates that the offset
has 30% chance to be between -5cm to 5cm. Note that the table size
is measured in 50× 50 cm. For a better training of the CNN, the
image of half-assembled state should be adequate distinguished with



an image of fully assembled state). So in the training dataset, if the
distractor’ distance to the assembly location is less than 5cm, then
its angular distance related to the assembly pose have to be limited
to at least 15 degrees.

Considering the gap from synthetic to real-world data, we applied
the technique of domain randomization [28], sampling the 3D model
by randomly varying the several aspects of the scene:

• Location and angle of the virtual camera with respect to the
scene(azimuth from 0◦ to 360◦ , elevation from 25◦ to 90◦)

• Location of the point light
• Random background images from VOC2014 [5]
• Random illumination
• Random noise

We apply pencil filter as our pre-processing step for input images
for both training and testing, which was successfully used in [21,26].
This pre-processing step forced the image to focus only on the
edge information. Our models are trained on pencil images of the
synthetic training images and evaluated on the pencil images of real
test images. Taken Ikea-table dataset as an example, we show the
whole process of data generation in the Fig. 4. The process suits
arbitrary objects.

5 EXPERIMENTS AND EVALUATION

In this section we give implementation details of the network and an
evaluation of the proposed TGA in two datasets.

5.1 Implementation Details
In the experiment, we embedded different attention module in the
Faster RCNN [24] detector with trident-block.

ResNet50 [7] in bottleneck style is used as the backbone of Faster
RCNN detector. For the trident-block, it is constructed as multiple
parallel residual blocks by 3×3 convolution with different dilation
rates. The multi-branch trident-block placed in the last stage of
the Faster RCNN backbone can achieve significant improvement
on object detection task, and more than three branches bring no
further performance improvement [16]. In our application, although
the difference in the scale of the detected object exists but is not
particularly huge, we use the multi-branch block with 2 dilated
convolutions with the dilation rate of 2 and 3 that share weights, and
valid range for each state are set as [0,220], and [180,∞], to achieve
the same representation power on different scale object by different
adaptive receptive fields.

We used one state-of-the-art attention module, i.e., SGE [15], as
the baseline attention module, and compare it with our proposed
TGA. We also tested alone the inter-group attention of TGA, which
is proposed in this work. All the involved attention module are
based on group attention mechanism. The feature map will be
divided into g sub-groups. The value of g affects the semantic
distribution between sub-groups and the semantic representation
capabilities within the sub-group. If g’s value is too large, then the
dimension of each group will be reduced, resulting in weak semantic
representation ability. On the contrary, if g’s value is too small, it
is not conducive to the capture of detailed features for each group.
In the work of [15], they recommend the number of groups g to
be 32 or 64 to boost the performance. In our experiment, we set
the number of G to 64 for all attention module. All the attention
module is placed after the last BatchNorm layer inside each residual
bottleneck on conv1 and conv2 stages.

We used MXNet [1] as our Framework. The image with the
original size of 640 × 480 is used to train the network and the
batchsize was set to 1. The backbone of Faster RCNN is pre-trained
on Imagenet. We trained the entire network with Stochastic Gradient
Descent (SGD) with 0.9 momentum and a weight decay of 0.0001.
The learning rate is initialized as 10−3 and reduced to 0.5 times

every 3 epochs. The network is trained on the GTX 1080Ti GPU for
7 epochs.

5.2 Qualitative Evaluation
We present experimental results for assembling object state detection
on the dataset: IKEA-Table and Fender-Assembly. We randomly
selected 80% for training and 20% for validation from synthetic
datasets, and the testing datasets are all collected from the real-world
by a camera.

We demonstrate the performance of the object detector embedded
with SGE module, TGA module, and alone the inter-group module
of TGA. SGE is not proposed in this work, and act as the baseline
attention module in the comparison. The threshold of IOU is selected
as 0.5, and the result is summarized in Table 2. Here we don’t present
the result of the CNNs in the synthetic validation data, because they
are already too close to 1. We also visualized the entire tested images
with the bounding box and detected state, which can be found in
supplementary materials.

First of all, we can notice that all the attention modules improve
the performance of CNN. Besides, the CNN with our proposed inter-
group attention is also slightly better than with the SGE attention.
We think the reason is the inter-group attention focuses more on the
spatial relationship between groups, and this spatial relationship is
more critical in the object state detection problem. Together with
an enhanced representation in the group, the TGA performs best
in most case. In the Fender-assembly dataset, the CNN is accurate
enough. The failure cases are mostly too tricky due to the strong
background illumination. So the TGA and the inter-group attention
result with a similar recall rate.

6 CONCLUSION

In this paper, we deal with the problem of object state estimation,
which is critical for AR applications. To address this problem, we
present a two level-group attention module (TGA), which consist of
inter-group attention and intro-group attention. With our proposed
attention module, the relationship cross-feature groups, as well as
the representation within a feature group, can be simultaneously
enhanced. The TGA can be easily embedded into the CNN layers
with only a few extra parameters. The experimental results show the
TGA module can enhance the performance on object state estimation,
our it outperforms the baseline attention module.
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