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Abstract

Nearest neighbor search algorithms on GPUs have been improving for years. Starting with tree-based approaches in the middle
70’s, state-of-the-art methods use hash-based or grid-based methods. Leveraging high-performance hardware functionality
decreases runtime of these search algorithms. Furthermore, memory consumption has been decreased significantly as well
using Shared Memory. In the scope of these enhancements, particles have been reordered by different constraints that simplify
neighbor processing. However, inspecting the existing algorithms reveals underused capabilities caused by algorithm desing.
Exploiting these capabilities in a smart way can increase occupancy and efficiency on GPUs. In this paper, we present a
neighbor processing approach that is based on dynamic load balancing. We rely on a lightweight workload-analysis phase that
is applied during neighbor processing to distribute work throughout all warps in a thread group on-the-fly. In different domains,
the neighbor function is often symmetric and, thus, commutative in each argument. In contrast to prior work, we use this
domain knowledge to reduce the number of memory accesses considerably. Measurements of the newly introduced features on
our evaluation scenarios show a comparable runtime performance to state-of-the-art methods. Increasing the overall workload
by processing million-particle domains leads to significant improvements in terms of runtime. At the same time, we minimize
global memory consumption to enable more particles to be processed compared to current approaches.

CCS Concepts
• Computing methodologies → Shared memory algorithms; Massively parallel algorithms; Graphics processors;

1. Introduction

Nearest neighbor search is an indispensable feature in different
methods, for example in Position Based Dynamics [MHHR07] or
in Position Based Fluids [MM13, KK16]. To simulate real-world
behavior, these approaches perform multiple iterations to deter-
mine forces between and apply them to particles. To compute these
forces, a detection of neighbor particles has to be done in a short
time range of several milliseconds. This ensures a fluent creation
of updated particle datasets rendered in real-time without having
visual effects like lags [MMCK14, KSG15, KSZD15, KK18]. The
neighbor determination concept is also needed in other areas in
computer graphics, for instance photon mapping [GPGSK18]. Pho-
ton particles are shot into a scene and collected afterwards to calcu-
late the degree of illumination in a certain range around a specified
point.

In all of these methods, the amount of particles is usually lim-
ited to ensure fast processing and achieve real-time performance.
However, it can be necessary to increase the amount of particles
significantly in other kinds of simulations. Regarding an agent-

based model [Kos18], it can be necessary to have a large amount of
agents to simulate realistic scenarios. If we want to check a given
behavior within a metropolitan area, we can easily reach millions
of agents that have to be considered. In this case, the runtime does
not have to be real-time, since the result is not as time-critical as in
the presented computer-graphics scenarios. Instead, the simulation
should deliver a suitable result in a reasonable time with respect
to the amount of agents [Mil16]. For interaction between agents, a
nearest neighbor step has to be performed to find a corresponding
interaction agent. This search step is similar to the ones in particle-
simulation domains.

Nearest neighbor search has been investigated for many years
primarily in the scope of tree-based methods. Especially, the k-
d-tree construction has been heavily explored [ZHWG08] and
there have been many improvements in terms of algorithms as
shown in [Ota13,GHOI14]. After the appearance of fast grid-based
searches [Gre08], runtime could be reduced significantly. However,
there are still opportunities for further optimization and increase of
performance leveraging novel hardware-based features.
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In this paper, we provide concepts to increase occupancy of
a GPU-based neighbor search and its associated processing step.
Our work is based on the method and its algorithms by Groß et
al. [GKK19]. In the first step, we introduce a commutative particle
processing scheme to reduce the number of memory accesses. In
the second step, particles are reordered in a different way to form
larger contigous chunks in memory that enables us to realize fused
neighboring-cell lookup tables. This reduces the number of random
memory accesses by cutting down the number of entries in these
tables. Finally, we present a novel warp-scheduling algorithm that
averages the work per warp in each thread group. This significantly
helps to increase the occupancy on the whole device level. After a
comparison to related work, the novel algorithms are presented in
Section 3. In Section 4 the performance is compared to the state-
of-the-art methods. In the end, we give a short summary and an
outlook about upcoming topics.

2. Related Work

Regarding nearest neighbor search, grid-based methods are the
state-of-the-art approaches to ensure fast performance. Grid cells
are predestined for being processed efficiently in parallel, since
their simple memory layout is most suitable for GPUs. Green pre-
sented two algorithms using a grid to improve nearest neighbor
search [Gre12]. In his first version, he uses mappings to store the
relation between a grid cell index and a particle index. These map-
pings are sorted by grid cell index using a Radixsort [SJ17]. In
a second version, he enhances this approach using novel low-level
hardware functionalities like Atomic functions to count the particles
in each cell [NVI19]. Hoetzlein improves this approach [Hoe13] by
avoiding slow Radixsort passes. In order to create a histogram of
particles, he also uses Atomic functions. Instead of using a sorting
algorithm, he uses a prefix scan algorithm [MG16] to calculate the
start indices per grid cell and reorder particles accordingly.

Groß et al. improved Hoetzlein’s approach by presenting their
method FENNS [GKK19]. They introduce a concept of differently
typed particles that is described in Section 3 in more detail. Fur-
thermore, they decrease memory consumption significantly by re-
ducing the overall grid size. In addition, an acceleration structure in
shared memory has been designed in the scope of a group-level al-
gorithm. This increases processing performance, since a grid cell
contains many more particles and, hence, they achieve a higher
occupancy of the warps. Although there is comparable computa-
tional overhead, they realize compatible runtime with respect to
other state-of-the-art approaches.

Algorithms that create different workloads in warps can lead
to gaps that can be used by other warps. To improve utilization,
it is beneficial to use methods based on the concept of dynamic
warp scheduling. Warps having a high workload are determined
and their work is split into different smaller parts. These parts are
processed by the idle warps to increase occupancy and runtime
performance. An example of such a warp scheduling technique is
given by Narasiman et al. [NSL∗11]. They provide a warp-based
microarchitecture to analyze branch divergencies within a warp in
a two-level approach. Using a reordering, they can increase the oc-
cupancy by avoiding idle threads in the scope a warp. This approach

Figure 1: The relations between the two different regions that con-
tain either inner particles or border particles. The distance between
a grid-cell border (in the middle) and a virtual inner grid-cell bor-
der (the edges of the red rectangles) is exactly the search radius
r. The inner particles (violet, blue) can only reach particles within
their own grid cell. Border particles (black, yellow) can reach po-
tential neighbor particles in two or more neighboring grid cells.

aims to realize an inner-warp scheduling, but does not cover general
warp-scheduling tasks.

Another approach to increase performance is Dynamic paral-
lelism provided by NVIDIA [NVI14a]. In this method, GPU ker-
nels are launched within another GPU kernel. This enables recur-
sive method calls on the GPU side. Otherwise, the intermediate
result has to be checked on the CPU-side and a GPU kernel has
to be invoked afterwards. Using this feature reduces the workload
on CPU-side and the memory transferring overhead between both
devices.

Regarding different workloads, load balancing is another com-
mon concept. In general, common approaches estimate a workload
distribution and send parts of their work to other processing units,
if there is an imbalance between these loads. Especially in parallel
units, this concept plays a major role [RSG10, KB16]. A method
using a real-world scenario is presented by Sthapit et al. [SHT17].
An adaptive approach using a functional performance model is in-
troduced by Clarke et al. [CLR11]. Utilizing load balancing in the
field of GPUs is presented in [PPCS∗15]. However, the presented
concepts of scheduling warps cannot be applied to our neighbor
processing task.

3. Concepts

FENNS introduces a particle-category concept to divide particles
into two different groups. Depending on their locations within a
grid cell, a particle is either an inner or a border particle. This leads
to a splitting of the grid cell into two different areas. The category
specification of a particle is given as follows: Since the search ra-
dius and the resulting grid are fixed, they are used to determine the
areas in each grid cell. Consider a particle located exactly on the
edge of a grid cell. Potentially, there are reachable particles with
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Figure 2: Top: During sequential neighbor processing, particles
are loaded from global memory into shared memory (blue). They
process their neighbors and store the results. In a following step,
the neighbor particles are loaded and the previous particles have
to be accessed again. This leads to a doubled load amount, since
every particle has to be accessed in global memory and stored in
shared memory. Bottom: Using commutative processing, we can
reduce the amount of loads, since only one part of the particles has
to be moved into shared memory. The processing is done and the
results are stored in the respective particle data. The second step of
the sequential processing can be skipped in this case.

respect to the search radius in the neighboring grid cells. Since we
can only reach particles up to this radius, we create a virtual border
within each grid cell (see Figure 1). Considering a particle located
on any point of the border, the result is a virtual grid cell with di-
mension gridCellLength−2∗ searchRadius. Every particle within
this virtual grid cell is an inner particle. This kind of particles can
only reach neighbors in their own grid cell during neighbor process-
ing. Particles outside of the virtual grid may have potential neighbor
particles in neighboring grid cells and are called border particles.
Since the neighbor grid cells are also divided, only border parti-
cles from the own and the surrounding cells have to be checked for
neighbor relations.

3.1. Commutative Processing

In the previous work by Groß et al., they load particle data (from a
given input buffer) into shared memory. They look up particles of

the neighboring cells in global memory and use this data to perform
calculations like forces. As soon as all loaded particles have been
processed with respect to their neighbors, the results are stored and
the next chunk of particles is processed. Note, that we have to ap-
ply this step also for the already inspected neighbor particles. This
means, the neighbor particles are accessed in global memory again.
By definition, we know that the previously loaded particles are in
range and have to be handled. This leads to a second load from
global memory to fetch the previously loaded particle data. Since
lookups of particle data always happen in both directions, we can
skip one access.

The commutative processing is only possible, if a symmetric
neighbor-kernel function is used. A prominent example domain
is Smoothed Particle Hydrodynamics (SPH), in which such neigh-
bor kernels are used [Mon92]. Smoothing kernels in SPH are usu-
ally applied to each neighbor and the other way around [MCG03,
SSP07,KK16]. As a consequence, we merge both processing direc-
tions into one single step. Using this method, we are able to reduce
the amount of loads significantly (see Figure 2).

Considering FENNS, processing of neighbors within a grid cell
can be handled in a commutative way. Only particles in the loaded
chunk has to be excluded, since they are processed in parallel. A
parallel commutative applying would result in a doubled handling.
For this reason, we apply the processing in the sequential way to
avoid wrong results. To process the remaining neighbors, we have
to split the for-loop of FENNS into different loops. These loops
handle either inner particles or border particles, since they are lo-
cated in different memory regions (compare Figure 3).

3.2. Particle Reordering

Particle reordering is the first step in nearest neighbor search. This
is needed, since particle data has to be processed in blocks. To ac-
cess these blocks easily, we need the start indices of each block.
Moreover, the amount of particles can be derived from these in-
dices. The index buffer is usually generated during the particle sort-
ing step, while all particles are moved to their appropriate memory
locations. In FENNS, the particles are ordered in a two way ap-
proach. First, they are ordered by their underlying grid cell index.
Second, the particles are ordered by being either an inner particle
or a border particle (see Figure 3, left).

For the following concepts (see Section 3.3 and Section 3.4) a
different particle reordering is needed. This time, the ordering steps
are switched. In the first step, the particles are sorted by being an
inner or border particle, while in the second step the particles are
sorted by grid cell index (see Figure 3, right). This layout is more
suitable, since memory is accessed in a more efficient way dur-
ing processing on GPUs. Although the border particle data has to
be loaded according to the lookup table, a three-cell chunk can be
loaded in one step using coherent memory accesses. Sorting this
way ensures that the inner particle section has to be accessed only
once. For neighbor processing, only the border-particle section has
to be taken into account. A further advantage is that all accesses to
border particles can be performed consecutively.

The implementation of this step is done as follows: First, we
build a histogram of inner and border particles per grid cell in an
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Figure 3: Left: The sorting of particles in [GKK19]. The particles are sorted by grid cell and the by being an inner(red) or a border
particle(green). Right: The new sorting result. The particles are first sorted by being an inner or a border particle, then by grid cell. This is
advantageous, since in the first processing step all inner particles are processed. In the second step, only border particles has to be processed.
The particle data is close to all other border particles. Furthermore, the memory access pattern is improved, since we can leverage coherent
memory accesses.

additional buffer using AtomicAdds. All inner particles are in the
first part and the border particles in the last part of this buffer (de-
picted in Figure 3). Second, the buffer is handled completely by an
inclusive prefix sum to get the global end indices of each grid-cell
subsection. Third, the particles are reordered into their appropriate
location by drawing a number from the buffer count using Atomi-
cAdd again. This Atomic function is used with value -1 to decrease
the counter meaning that the buffer is filled from the end to the
start.

3.3. Merging Lookup Table Accesses

As a third concept, we can shrink the lookup table from 27 to 9
entries in a 3D-scenario. Since the table always refers to three con-
secutive grid cells, we can use this fact to reduce the amount of
lookups. Instead of inspecting only one grid cell after another and
lookup the start and the end index each time, we consider three grid
cells as one large virtual grid cell (see Figure 4). In this case, we
only have to retrieve the start index of the first cell and the end in-
dex of the last cell. In our implementation, we used the lower values
as it is shown in the right grid in Figure 4. In essence, the program-
mer has to decide which values should be stored. However, during
neighbor processing, the current grid cell has to be excluded, since
calculations within a grid cell are already done. This special case
has to be handled in line 24 in Algorithm 1.

3.4. Warp Scheduling

In the implementation of FENNS, the neighbor grid cells are pro-
cessed in parallel using one warp per cell. This always causes idle
warps, since this implementation uses 26 warps, although our tar-
get GPU architecture provides 32 in one group. Furthermore, there
can be cases related to grid cells in corners or at the edges of a
given scene that have empty neighbor grid cells located outside of
the scene. The worst case (a corner grid cell) only occupies 7 warps
at maximum (see Figure 5, left). The goal of this method is to uti-
lize idle warps and increase occupancy. The workload balance of
all warps is calculated in the beginning to check the work distri-
bution. Afterwards, we reduce the amount of work per warp by
sharing work in two or more warps. The result is a smoother distri-
bution throughout a group. Especially in million particle domains,

this can increase performance, since the work can be distributed
and processed in a more efficient way (see Figure 5, right).

In general, the hardware-implemented warp scheduler takes care
to occupy all warps on a device. If only 26 warps are needed during
the neighbor processing, the remaining warps are assigned to other
groups to achieve occupancy. However, our goal aims to another
kind of occupancy that achieves better performance at the same
time. Consider the case, where a single warp has to handle a huge
amount of particles. This results in a sequential processing. The
hardware scheduler assigns other groups to the remaining warps.
This leads to scattered memory accesses and hence to performance
loss. If we move work from this performance-critical warp to the
other warps, we benefit from coherent memory accesses for this
particle chunk resulting in a higher performance.

Our warp scheduler is embedded into the border-particle-
processing step shown in Algorithm 1. To prepare the information
for warp scheduling, we only need to invoke the first warp (Algo-
rithm 1, line 2). The remaining warps wait until the scheduling pass
has finished at line 16. Since the lookup table has been reduced as
described in Section 3.3, only the first 9 lanes have to load their
associated particle histogram into a temporary mapping buffer in
shared memory (lines 3 - 13). This histogram is needed to decide
the schedule of warps. The scheduler is started afterwards (line 14).

Using the given histogram, the scheduler creates results for three
shared memory buffers containing maps and values for further pro-
cessing. The dependencies and example values are shown in Fig-
ure 6. The first buffer WarpMap contains the target warp group in-
dex and is needed to access the right values in the other two buffers.
In Figure 6, the first three warps belong to group 0, warp 4 and 5
to 1 and so on. The second buffer TargetMap contains the origin
warp index. If only warp 0, 1, 3 and 4 need to work, we can ac-
cess the values by using WarpMap and TargetMap. The third buffer
WarpStarts contains the amount of warps that are scheduled for a
specific group (group 0 needs 3 warps, for example). We can use
the same lookup stored in WarpMap for WarpStarts and TargetMap.
This buffer is only needed to determine the stride length of the warp
stride loop and the corresponding starting indices per lane in Algo-
rithm 1 lines 21 and 22.

When the scheduler has finished, we can assign each warp to its
calculated group index. This index is needed to lookup the target
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Figure 4: Left:A 2D-lookup table with relative indices. The relative grid cell is cell 0. Right: A reduced lookup table that only contains the
beginning of a 3-cell block. Since there are always three cells in a row, we can reduce the lookup table and merge these cells into one cell.

Figure 5: Left: During neighbor processing, one warp processes the particles of one neighbor cell. Since there are 26 neighbor cells in a
3D-domain, this leads to at least 6 empty warps. Regarding edges or corners of a given scene, there can be further empty warps. Right:
To increase occupancy, a large amount of particles within a warp can be split and assigned to different warps. This leads to a smoother
distribution and uses all available warps in a group.

Figure 6: To increase occupancy and schedule all warps, a warp
map is needed. Assuming a warp size of 8 and 4 occupied warps,
we get such a warp map for example (middle). This map is used to
find the underlying grid cells with help of a target map that contains
the grid cell indices (top). For processing using grid-stride loops,
they need knowledge about the amount of warps that are involved
in processing a specified grid cell. For this reason, we need to store
an additional start index within the parent thread-group (bottom).

warp position according to the mapping in Figure 6 and, thus, the
global grid cell index (lines 18 and 19). In the following loop, the
neighbor processing takes place. After initializing the values and
buffers for processing, the step size is retrieved using the Warp-
Starts buffer mentioned above.

Algorithm 2 presents the warp scheduling process. First, we pre-
pare the TargetMap by setting the lane index to each warp that has
to process particles. Otherwise, the value is set to intMax to sort
these values ascendingly in line 9 (using a parallel bubble sort algo-
rithm [Mun15]). Second, the scheduling part is started also creating
the WarpStarts buffer in the course of execution. In line 10, the total
amount of particles is calculated using a warp reduction [NVI14b].
A percentage distribution over all warps is provided per warp in the
next step. Due to rounding artifacts, the calculated amount of warps
is in range between 0 and 64. For this reason, an adjustment has to
be applied to reach exactly 32 warps. In the first case (lines 12 -
21), the amount of warps is larger than 32 and therefore the amount
needs to be reduced. In this step, we have to take care that warps are
not disabled accidentially and we have to check that there is at least
one warp enabled (line 15). In the second case (lines 22 - 31), the
groups are pumped up to 32 warps to achieve maximum occupancy.
Again, we have to take care that disabled warps are not enabled ac-
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cidentially (line 25). After storing the result (line 33), we calculate
the start indices of the warps and create the WarpStarts buffer (see
Algorithm 3). The reordering step and the following scan SHG08
distributes the warps such that every warp maps to its target warp
as shown in Figure 6 (see lines 36 - 38).

The start indices calculation method is shown in Algorithm 3. In
the beginning, the WarpStarts buffer is used as a temporary buffer
to check, if a warp is used or not. Using an exclusive scan provides
the new index of this warp in the compacted version. In line 9, the
index is used to store the amount of warps per group in the right
position. The last scan stores the start indices in the buffer. Algo-
rithm 4 shows the implementation for reordering all warps to their
new position. The target position of each warp is stored in a tempo-
rary variable. Afterwards, the gap between the starts is calculated
(lines 2 - 7) and the map is reset to 0. In the following step, the gap
is stored at the determined position retrieved from the temporary
variable.

Algorithm 1: Processing particles in surrounding grid cells
Input: counter, globalGrid, globalLookup

1 initialize values and memory
2 if warp index == 0 then
3 if lane index < 9 then
4 pos := grid index + globalLookup[lane index];
5 for int i = pos; i < pos; i++ do
6 if i >= 0 & i < globalGrid.Size then
7 warpMap[lane index] +=
8 counter[i + 1] - counter[i];
9 end

10 end
11 else
12 warpMap[lane index] = 0
13 end
14 ScheduleWarps(warpMap, targetMap, warpStarts);
15 end
16 group barrier;
17 targetWarp := warpMap[warp index];
18 targetWarpPos := targetMap[targetWarp];
19 gridPos := grid index + globalLookup[targetWarpPos];
20 for int i = start + group index; i < end; i += group size do
21 initialize neighbor processing and values
22 stepsize := warpStarts[targetWarp] * warp size;
23 for int k = borderStart; k < borderEnd; k += stepsize

do
24 if k < start | k >= end then
25 LookupNeighborCells();
26 end
27 end
28 store results
29 end

3.5. Implementation Details

The presented concepts are implemented in C# using the ILGPU
compiler †. The shown algorithms are designed to be executed on
GPUs. The termination conditions of for-loops are padded to mul-
tiples of the group size to avoid thread divergencies and, hence,
performance loss.

Algorithm 2: Workload calculation and scheduling
Input: warpMap, targetMap, warpStarts

1 diff := SharedMemory<int>(1);
2 if warpMap[lane index] > 0 then
3 targetMap[lane index] = lane index;
4 else
5 targetMap[lane index] = intMax ;
6 end
7 warp barrier;
8 SortAscending(targetMap);
9 amountWarps := WarpReduce (warpMap[lane index]);

10 percentage := DivRoundUp(
11 warpMap[lane index] * warp size,
12 amountWarps);
13 if amountWarps > warp size then
14 diff[0] = amountWarps - 32;
15 while diff[0] > 0 do
16 if percentage > 1 then
17 if AtomicAdd (diff[0], -1) > 0 then
18 percentage−−;
19 end
20 end
21 end
22 else
23 diff[0] = 32 - amountWarps;
24 while diff[0] > 0 do
25 if percentage > 0 then
26 if AtomicAdd (diff[0], -1) > 0 then
27 percentage++;
28 end
29 end
30 end
31 end
32 warp barrier;
33 warpMap[lane index] = percentage;
34 CalculateStartIndices(warpStarts, warpMap);
35 WarpScanInclusive (warpMap);
36 ReorderWarps(warpMap);
37 if lane index > 0 &
38 warpMap[lane index] - warpMap[lane index- 1] != 0 then
39 warpMap[lane index] = 1;
40 else
41 warpMap[lane index] = 0;
42 end
43 WarpScanInclusive (warpMap);

† www.ilgpu.net
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All buffers are known beforehand and can be allocated before
running the algorithms. The buffer sizes are also padded to a multi-
ple of the warp size [KLH∗14, KGK19, KGK20]. The surplus ele-
ments caused by padding had to be excluded from calculations and
serve as dummy elements without any effect.

Algorithm 3: Calculation of warp start indices
Input: warpStarts, warpMap

1 if warpMap[lane index] > 0 then
2 warpStarts[lane index] = 1;
3 end
4 warp barrier;
5 WarpScanExclusive (warpStarts);
6 newIndex = warpStarts[lane index];
7 warp barrier;
8 if warpMap[lane index] > 0 &
9 newIndex < warp size & newIndex >= 0 then

10 warpStarts[newIndex] = warpMap[lane index];
11 end
12 WarpScanExclusive (warpStarts);

Algorithm 4: Reordering warps in the scheduling step
Input: warpMap

1 temp:= warpMap[lane index];
2 if lane index < warp size −2 then
3 gap :=
4 warpMap[lane index + 1] − warpMap[lane index];
5 else
6 gap := warp size − warpMap[lane index];
7 end
8 warp barrier;
9 warpMap[lane index] = 0;

10 warp barrier;
11 if gap > 0 then
12 warpMap[temp] = gap;
13 end
14 WarpScanInclusive (warpMap);

4. Evaluation

4.1. Scenarios

For performance measurements, different scenarios have been cre-
ated and evaluated. The actual concepts are tested against the un-
derlying implementation of FENNS. As additional reference re-
sults, the methods of Hoetzlein and Green are also implemented
to discuss the differences in terms of runtime. Different amounts
between 1 million and 8 million particles are measured in these sce-
narios. Thereby, the particles are uniformly distributed throughout
the scene. The scene dimensions are also changed to create cases
using a different amount of potential neighbor particles within a
grid cell. The scene dimension varies from 90 to 180 in world co-
ordinates with steps of 30. Furthermore, the search radius is var-
ied affecting the neighbor amount directly. For realistic scenarios,
the measurements are setup that a particle has approximately 30-40
neighbors. For this reason, the radius was measured in range of 0.5

to 1.5 in world coordinates and is divided in 0.25 steps. However,
since the shared-memory approaches use coarser grids in the first
level, the particle amount within a certain grid cell is always larger
compared to Hoetzlein’s and Green’s approach. Given a specified
particle, the average amount of neighbors is calculated by particles

gridsize ,

where gridsize is
( scenesize

2·radius
)3

.

4.2. Runtime

For runtime measurements, we used two NVIDIA devices
(GeForce GTX 980 Ti and GeForce GTX 1080 Ti) to check the
behavior using different kinds of compute capabilty. The measure-
ments show that the 980 Ti usually needs twice as long as the 1080
Ti. All scenarios are executed in 100 runs and the result tables show
the median and the standard deviation. The time is measured in mil-
liseconds[ms].

Table 1 shows the runtime in different scenarios using a fixed
average amount of particles. Using the equation mentioned above
leads to an average neighbor amount of 38.84 in each scenario. The
measurements show that Green’s approach is always slower than
Hoetzlein’s and for this reason, the results are omitted. In these sce-
narios, CLAWS is always slower than Hoetzlein’s in a range from
approximately 3 to 6 ms. These slowdown results from the addi-
tonal overhead in our approach, since the neighbor search is more
sophisticated and we have to check a larger amount of potential
neighbors due to the coarse grid. However, except in the 1 million
case, we are also significantly faster than FENNS. In this case, the
slowdown is only up to 3.2%, while the speed up in the other cases
is up to 75.1%.

Moreover, the slowdowns are not that problematic, since CLAWS
aims to a million particle domain. Especially the case, in which the
amount of particles per grid cell increases, it shows its advantage in
terms of runtime. This increasement occurs, if we consider regions
with a high density of particles. This can be the case, if we use
compressible fluids for example. A closer look on Table 2 shows
the significant speed up, if we consider millions of particles. As
baseline, we use the scenario with following parameters: The scene
size is 90, the amount of particles is 1 million and the search radius
is set 1.5. Afterwards, we double the amount each time and measure
runtime. From the case having an average of 77.67 neighbors, our
approach is fastest with respect to the other methods. This effect
becomes more obvious, if the average is doubled again. Using 8
million particles, we can process neighbor up to 2.5x faster.

4.3. Memory Consumption

The complexity of the memory consumption in all presented meth-
ods is m3, where m is the grid size in one dimension [GKK19].
Although complexity is not changed, the real memory consump-
tion has been decreased significantly between Green’s/Hoetzlein’s
and Groß’s approach. Green and Hoetzlein use large grids and have
therefore a high memory consumption up to several GB. Groß only
needs a small grid that fits in shared memory and this fact limits
the consumption to several KB of memory. Since the applied im-
provements are based on the latter one, we can still benefit from
a low memory usage. Only the consumption in shared memory is
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SceneSize NumParticles Radius Algorithm 980 Ti σ 1080 Ti σ

60 1048576 1.0 Hoetzlein 15.35 0.64 7.92 0.38
* * * FENNS 21.37 1.12 10.72 0.06
* * * CLAWS 22.64 1.24 11.07 0.68
* 8388608 0.5 Hoetzlein 127.16 5.31 76.46 2.02
* * * FENNS 242.76 1.77 137.24 27.14
* * * CLAWS 155.63 0.78 82.94 2.28

90 1048576 1.5 Hoetzlein 14.66 0.65 7.75 0.0
* * * FENNS 20.63 0.88 11.55 0.02
* * * CLAWS 22.58 0.99 11.67 0.03
* 8388608 0.75 Hoetzlein 139.09 34.09 71.18 4.09
* * * FENNS 239.17 122.43 125.79 51.7
* * * CLAWS 147.8 2.08 77.14 1.21

120 * 1.0 Hoetzlein 134.36 50.29 68.4 6.97
* * * FENNS 236.27 107.72 126.71 46.07
* * * CLAWS 145.57 1.32 75.96 1.58

150 * 1.25 Hoetzlein 132.02 48.17 67.66 6.83
* * * FENNS 230.6 72.13 123.2 46.0
* * * CLAWS 138.86 1.09 72.3 1.43

180 * 1.5 Hoetzlein 129.94 45.0 66.81 4.26
* * * FENNS 224.89 76.8 120.9 43.35
* * * CLAWS 132.39 1.19 69.01 1.32

Table 1: Performance measurements of the evaluation scenarios. Avg. Neighbors is 38.84 in all cases.

NumParticles Avg. Neighbors Algorithm 980 Ti σ 1080 Ti σ

2097152 77.67 Hoetzlein 61.25 0.76 28.24 0.91
* * FENNS 46.66 7.22 25.18 0.49
* * CLAWS 40.27 0.97 23.98 0.96

4194304 155.34 Hoetzlein 232.6 0.38 115.49 1.02
* * FENNS 120.43 29.73 66.16 15.78
* * CLAWS 93.84 1.02 49.61 2.02

8388608 310.69 Hoetzlein 903.5 949.94 445.24 13.52
* * FENNS 524.43 146.65 269.43 17.51
* * CLAWS 343.73 2.89 174.02 4.57

Table 2: Performance measurements of the evaluation scenarios. SceneSize is set to 90, Radius to 1.5.

slightly higher than in FENNS. The shared memory consumption is
increased by 3∗warpsize∗4+4 bytes. However, this is not a limi-
tation, since shared memory is only a temporary memory buffer and
although it is not that large, it is still not exceeded by this approach.

5. Conclusion

In this paper, we introduced CLAWS, a concept to utilize all warps
within a nearest neighbor processing step. For this reason, an algo-
rithm to calculate the workload balance has been designed to create
a schedule and distribute work accordingly. To improve memory
accesses, particles are reordered in an appropriate way in global
memory. This ensures faster coherent memory loads. Using a sym-
metric processing concept, we are able to reduce the amount of
loads and stores which are no longer needed.

We showed that these improvements can lead to a significant
speed up compared to the existing methods. Especially in million-
particle domains and concerning lots of neighbors in a certain place
(like compressible fluids), this method can be useful to speed up

neighbor processing. Furthermore, we can benefit from a low mem-
ory consumption to save resources.

For future work, we can explore the algorithm behavior, if we
increase the workload within the neighbor kernels. Moreover, we
can evaluate this method using agent-based scenarios.
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