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ABSTRACT 

Autonomy on rovers with robotic arms is desirable 

towards speeding up tasks like sample fetching. This 

premise is the cornerstone of the work presented in this 

paper. We describe here the software developed to 

plan and control the motion of a mobile manipulator, 

part of the ongoing H2020 project ADE. Its utilization 

is complemented with the simulation environment 

MARS, which serves to check the viability of those 

motion plans created specifically for extreme cases, 

like when the sample is located on top of a quite 

difficult terrain. Furthermore, we provide details 

regarding a series of tests carried out in Bremen with 

the SherpaTT rover, with the purpose of validating the 

implementation of the software and its use on a case 

where a hypothetical sample is hardly accessible. 

 

1 INTRODUCTION 

Rovers equipped with robotic arms play a key role in 

the scientific return of planetary exploration missions. 

Their mobility capabilities allow them to reach more 

places and as result enhance their possibilities to 

interact with the environment. In this way, tasks such 

as sweeping the ground at close range for hyper 

spectral imaging or sampling ground material can be 

performed in a higher number of times and situations. 

Furthermore, upcoming missions foresee the 

transportation back to Earth of extraterrestrial samples 

[1]. This is the case in the Mars Sample Return 

campaign, where an ESA rover, the Sample Fetching 

Rover (SFR), shall take those samples left in advance 

by the NASA rover Perseverance and return them to a 

launcher that later puts them in orbit [2].  Nevertheless, 

the automatic placement of the robotic arm to carry out 

these tasks is a challenge. Some research works can be 

found in the literature that propose different 

approaches to overcome this problem [3][4]. Up to 

now, the intervention of ground operators is still 

mandatory in planetary missions to preserve the 

integrity of the rover hardware. In the Mars Science 

Laboratory (MSL) mission, for instance, operators 

make use of a simulation environment named Surface 

Simulation (SSim) to check the effect that may be 

produced by the commands that are meant to be sent 

to the Curiosity rover [5]. 

 

Figure 1:  SherpaTT with the avionics box and mast 

installed for the H2020 OG10-ADE project 

(Autonomous DEcision making in very long 

traverses, https://h2020-ade.eu). 

In this paper we present a workflow approach that 

aims at carrying out tasks where a rover and its 

manipulation arm must move in a coordinated way to 

reach a specific location or to use the mobile platform 

to increase the effective workspace of the arm. By 

combining the arm deployment with the location 

approach the mission timing can be optimized and 

important operational time can be spent either for 

investigating more closely with instruments mounted 

on the arm or for more terrain coverage per Sol. We 

propose the use of the simulation step to validate the 

plan produced by the control software -up to the final 

motions in a physics simulation- based on the rover’s 

environment representation, prior to sending it to the 

rover. The main idea consists of the following: a 

ground operator makes use of the same control 

software that the real platform runs on-board but 

connected instead to the rover within a simulation 

environment. Thereafter, the operator commands the 

rover in the simulation, sending it to the simulated 

target location to perform the mobile manipulation 

task. Then, for any approach operation the control 

software deliberates two paths to be followed. Firstly, 



 

 

one that guides the rover mobility system to make the 

robot get closer to the destination. Later, a second one, 

serves as a reference for the arm to adopt different 

configurations according to the robot location, in order 

to coordinate the motion of both. By completing the 

operation in the simulation first, the operator has a 

major degree of confidence to command the same 

operations on the remote rover. In this way, we 

provide an additional safety measure to avoid any 

unforeseen risk, while we take advantage of the same 

control software that is executed on-board. 

 

2 TARGET PLATFORMS 

We make use of MARS (Machina Arte Robotu 

Simulans, https://github.com/rock-simulation/mars), a 

modular robotics simulator, along with the SherpaTT 

rover, depicted in Fig. 1.  

2.1 SherpaTT 

This four-legged articulated rover is equipped with a 

6DoF robotic arm. The four legs can keep all wheels 

in permanent ground contact, while actively 

controlling the roll and pitch of the central body, hence 

the orientation of the manipulator arm. The SherpaTT 

rover already proved its field readiness in two 4-week 

field deployments in Utah (2016) and Morocco 

(2018). The control software for the overall combined 

platform and manipulator movements is the Mobile 

Manipulation component developed for the H2020 

project ADE and will be tested in a field campaign on 

Fuerteventura by the end of 2020. 

2.2 MARS 

The simulation of SherpaTT has been developed in 

MARS. It is a robotics simulator developed and used 

extensively by DFKI, used traditionally to validate 

modifications in the robotic software and find and 

debug any failure. Moreover, it is also convenient to 

continue a development when the robot is not 

available or to save time avoiding robotic setups. In 

addition, the simulator can be used to assess the 

suitability of certain commands, for instance, to 

evaluate if the robot would be capable of traversing a 

certain slope. 

In the core of MARS lies the physics engine Open 

Dynamics Engine (ODE, https://www.ode.org/), 

which provides realistic physics simulations of rigid 

body dynamics including collisions. Around ODE, a 

large set of libraries has been implemented that allows 

the use of convenient features. These include the 

control of the simulation execution (e.g. starting, 

stopping, going step-by-step), the load of URDF-

based robot models and virtual environments (scenes), 

the visualization of the simulation execution in real-

time and the simulation of the functioning of motors 

and sensors. MARS software design incorporates a 

plugin mechanism that eases the addition of new 

functionalities without modifying the core libraries. 

The Control Center is the central class in charge of the 

management and communication with the physics 

engine. Around this class, managers for Entities, 

Motors, Joints, Sensors, Simulation Nodes, 

Controllers and Graphics provide all needed features 

for development, testing and identifying advantages 

and disadvantages of both robot controllers and 

design.  

To simulate a robotic mission in a realistic way, only 

running the robotics simulator is not enough. A 

Robotics Control Operating System is needed as well 

to connect the different software components that run 

on the system as in the real case. For this reason, the 

RObot Construction Kit or ROCK (http://rock-

robotics.org) framework is used to develop tasks that 

allow the use of the simulation environment in 

coordination with other robotic software components. 

This is in fact consistent with the components that will 

control the low-level mechanisms of SherpaTT when 

running on the non-simulated system.  

The SherpaTT simulation robot model developed at 

DFKI is completely compatible with MARS. It 

includes all the sensors and actuators that the robot 

currently has, including the avionics box and the mast 

integrated for the OG10-ADE project. In Fig. 2 is 

shown this model of SherpaTT, placed within the 

simulated environment that includes the virtual model 

of the area where the tests described later in this work 

are made. The simulation environment was produced 

using a point cloud generated by a drone survey of 

such area. Furthermore, communications with both 

simulated and physical robot are possible thanks to the 

same API, which is shown in the schematic Fig. 3 

depicts.  

 

Figure 2: The SherpaTT Simulation includes all 

sensors available on the rover and the software that 

controls the simulated rover are the same except for 

the hardware drivers. 



 

 

 

Figure 3:  Schematic of the mobile manipulation 

software architecture, showing its connections with 

targets and libraries.  

 

3 MOBILE MANIPULATION SOFTWARE 

3.1 Architecture 

The planning and control software developed for 

performing mobile manipulation tasks is based on four 

classes as shown in Fig. 3. The main class, the 

MobileManipMotionPlanner, serves as the interface 

with the harness component, which in turn uses the 

API to communicate with either the SherpaTT rover or 

its virtual equivalent within the MARS environment. 

This class receives a Digital Elevation Model or DEM 

and creates consequently an instance of the 

MobileManipMap class to handle it. The latter class 

includes such DEM and oversees the computation of 

the obstacles and the creation of the cost map that is 

later used to generate a motion plan. Once a motion 

plan is deliberated by means of the corresponding 

class (MotionPlan), it can be executed by creating an 

instance of the MobileManipExecutor class, which in 

turn contains such motion plan. 

This software is implemented with the intention of 

performing two kinds of operation. The first of them 

is the Atomic Operation, which consists of exclusively 

controlling the arm to make a certain movement, and 

therefore is out of the scope of this paper. The second 

operation is the Coupled Arm-rover Motion 

Operation, which must be produced by means of the 

Path & Motion Planning libraries based on the 2D and 

3D versions of the Fast-Marching Method (FMM) [6]. 

The latter operation consists of coordinating the rover 

and the arm in a synchronous fashion to reach the 

location of a sample and place the end effector on it. 

Thereafter, it is foreseen the execution of a particular 

task to do something with the sample, e.g. place the 

end effector in contact with the sample, pick up a 

sample of soil or drop it. 

The sequence of actions taken to make the rover 

perform a Coupled Arm-rover Motion Operation is 

explained as follows. First, the harness component 

calls the MobileManipMotionPlanner to instantiate 

the class. This constructor has the rover surrounding 

DEM, with all its metadata, as parameter. This DEM 

is then processed to calculate the obstacles and cost 

maps. Later on, the harness component requests a 

motion plan that is based on the initial rover pose 

(position and orientation) and the estimated sample 

location. This method generates the rover path and 

manipulator trajectory using the FMM algorithm. Both 

depend on the provided information and the 

MobileManipMap object. If the sample can be in fact 

reached, a MotionPlan instance is sent to the 

MobileManipExecutor with the class constructor. 

Once it is stored, the subsystem would be ready to run 

the motion plan, which would begin once the harness 

indicates so. 

3.2 Path & Motion Planning 

The objective of the motion planner is to reach the 

sample position and place the rover manipulator close 

to it, i.e. 10-20 cm far. The proposed algorithm for 

rover path and arm trajectory generation is, as stated 

before, based on the FMM algorithm, making use of 

2D and 3D workspaces respectively. In a few words, 

this method computes the numerical solution of a 

wave that propagates through the environment starting 

from a certain point. The rate at which the wave 

propagates depends on the cost assigned to every part 

of such an environment, which is discretized into a 

grid. Thus, FMM computes the minimal time at which 

the wave arrives at each grid node. Then, by making 

use of the gradient descent method, a path is retrieved 

from any point to the one from which the wave started 

expanding. The main advantages of using this method 

are: 

- Smooth trajectories generation: unlike other 

methods like A* or D*, the turning angles of the paths 

obtained through FMM are not restricted at all. 

Besides, the location of the waypoints making up these 

paths are not constrained to the location of the grid 

nodes, meaning they can be anywhere within the 

workspace. In this way, it is not necessary to apply any 

post-processing to the path to smooth it. 

- Optimal solution. FMM numerically solves the 

propagation of a wave using the eikonal equation, an 

expression that correlates the propagation rate with a 

cost value defined at any workspace point. In this way, 

the retrieved paths always tend to be optimal, and the 

only error committed is due to the grid discretization. 

Other grid-search based methods like Field-D*[7] or 

Theta*[8] cannot ensure this, since, although the 

computed paths can be also smooth, they make use of 



 

 

estimation methods that introduce more error and, in 

some cases, can produce suboptimal solutions. 

- Computer complexity. It is like other path 

planning algorithms with fewer features, using a 

Dijkstra-based grid-search method to visit each grid 

node. The computer complexity is similar to A* and 

D*, the most typical path planning algorithms. 

However, as shown, this method is much better in 

some features. 

- Parallelization. Since FMM computes the 

optimal solution of a wave propagation, by using its 

bi-directional version it can be parallelized: two waves 

can be propagated, one originated from the start and 

the other from the goal location. Then, they encounter 

at an intermediate point and, because of the nature of 

FMM, the whole path between start and goal is the 

concatenation of the path between the intermediate 

point and the start and between the intermediate point 

and the goal. This would be useful in the case of using 

multiple cores processors. 

Therefore, the proposed algorithm can generate the 

rover path and the manipulator end effector trajectory, 

given a 2D cost map, an initial rover position and the 

sample location, which corresponds to the desired 

final manipulator end effector position. Then, by using 

the inverse kinematics, a profile of the rover joint 

references can be generated depending on the relation 

between the rover path and the end effector trajectory. 

Since the cost map has a direct effect on the resulting 

path and end effector trajectory, the error committed 

to build it is here relevant. In this sense, the rover and 

the sample positions, as well as the DEM, are provided 

with their respective accuracy. The sum of all 

estimation errors provided has an impact on the 

uncertainty of the end effector position as shown in 

Fig. 5. In this figure, the main reference frames from 

the rover and manipulator are shown. The first one is 

the rover position frame with respect to the world 

frame. Any error on the rover pose is extended to the 

end effector frame, e.g. a yaw error would increase the 

end effector position error based on the distance 

between the rover and the end effector frames (L). On 

the other hand, an error on the sample location would 

also increase the total error committed by the 

manipulator. Taking into consideration these errors, a 

sphere can be defined. It represents the error space, i.e. 

the manipulator end effector would be in any place 

within the sphere. Therefore, the size of this sphere is 

proportional to the amount of introduced error. 

Assuming the manipulator has a Force/Torque sensor 

on the end effector, the vertical error could be reduced 

by detecting the instant time the manipulator is in 

contact with the surface. It would belong to the final 

stage of the manipulator movement. 

 

Figure 5:  Relation between the estimation errors. 

The provided DEM is processed to detect obstacles in 

the surrounding area of the rover. Two parameters are 

derived from the elevation data: the slope and the 

roughness. By means of thresholds values based on 

previous experiments [9], obstacles can be determined 

on the map. Thereafter, thanks to the OpenCV library, 

a metric indicating the distance from any pixel to the 

closest obstacle can be computed. It serves to produce 

a cost map that tends to make paths get further from 

obstacles by means of repulsive fields. The size of 

these obstacles may be larger due to the amount of 

estimation error introduced. Therefore, reachability of 

some samples could be set as unfeasible by the 

algorithm because of the DEM error, although they 

could in fact be reached. For example, in Fig. 6 there 

is a small corridor in position (5,15) that could be 

closed if there were a big estimation error on the DEM. 

Therefore, it is important to reduce DEM error to avoid 

those cases where the algorithm would state that the 

sample cannot be reached even when it could be in 

fact. 

 

Figure 6:  Cost map example. 

The FMM does not ensure by itself the arrival of the 

path following a certain heading final condition. This 

is because rather than the direction the vehicle is 

heading, only the 2-D position of the waypoints is 

considered when computing a path, being the heading 

of each of these waypoints just the tangent to the path 

they make up. Moreover, this method does not 

consider the shape and kinematic configuration of the 

vehicle, using a simplification in the form of a single 

point in space. Nevertheless, it is still possible to 

define a cost map that considers the distance between 

the rover center and the sample location, while at the 

same time the rover arrives facing the sample. 



 

 

      

 

Figure 7:  Example case of ensuring the path goes 

straight to the sample. (Above) The rover, depicted as 

a blue circle, follows the path towards the sample in 

the red dot. (Below) Corresponding Traversability 

and Cost maps created using the DEM. 

 

Figure 8:  URDF model of SherpaTT (grey) and its 

manipulator (yellow). 

Once the base trajectory is planned, the algorithm 

generates a new path for the manipulator to reach the 

sample. During the planning phase, it is necessary to 

consider possible collisions of the arm with the rover 

itself (legs, wheels, cameras mast…). To do this, the 

open source library DART (Dynamic Animation and 

Robotics Toolkit) is used to detect collisions, together 

with an URDF model of the whole rover. This model 

contains the virtual collision objects corresponding to 

the whole system, as depicted in Fig. 8. By using it, a 

reachability volume of the manipulator can be 

generated, which defines what positions of the arm are 

fully safe. The reachability volume of SherpaTT is 

shown in Fig. 9. If the planner places the arm wrist 

inside this reachability volume, it is completely 

ensured that the arm will not collide with the rover. So, 

to later obtain a 3D path to be tracked by the wrist, a 

tunnel shaped volume of cost is built surrounding the 

rover base path, employing the stated reachability 

volume of the manipulator. An example of this cost 

tunnel is shown in Fig. 10, where a section of the 

tunnel shows its interior cost distribution. Basically, 

the cost is defined in a way it gets higher values while 

being closer to the limits of the tunnel. In this way, we 

benefit keeping the wrist as far as possible from the 

non-reachable areas.  

 

Figure 9:  Reachability volume of the manipulator, 

where reachable zones are colored from red (far 

from limits) to blue (near limits). 

 

Figure 10:  Rover path (white), with the generated 

tunnel volume associated to it. 

Inside this tunnel, the FMM in a 3D version generates 

a trajectory for the manipulator to reach the sample. 

An example of a trajectory is shown in Fig. 11, where 

the initial configuration of the arm is also shown. Next, 

it is needed to match the manipulator waypoints with 

the rover planned path. In this stage, it can be 

configured how the arm is deployed: at the beginning, 

during the trajectory or close to the sample. Finally, 



 

 

the arm positions profile is obtained by means of the 

inverse kinematic model of the manipulator at every 

waypoint of the trajectory. The end-effector joints 

positions are set ensuring the last segments of the arm 

do not collide with anything. 

 

Figure 11:  Rover path (white) and arm wrist (blue) 

trajectories, together with the initial arm 

configuration (black). 

Finally, the MobileManipExecutor class serves as the 

controller that provides the commands to the Sherpa 

API. According to the state of both the rover and the 

arm, it returns the rotational and translational 

velocities of the mobile platform, as well as the 

position reference of the arm joints. It also makes use 

of DART to continuously check the status of the rover 

and prevent any collision during the operation 

execution. The control algorithm used to control the 

rover motion is based on the c-pursuit algorithm 

implemented by ESA [10]. 

(a)

(b) 

Figure 12:  Terrain setup chosen for the tests (a) and 

a virtual model of it built in MARS (b). 

4 TESTS 

A series of tests were performed to validate the initial 

version of the component. This implementation is 

being integrated into the autonomy software of the 

ADE project. The tests in question were taken in 

Bremen with SherpaTT, in a certain terrain located 

close to the DFKI facilities, portrayed in Fig. 12a. This 

terrain is a square area large enough to execute short 

traverses with a length of few meters. It contains on its 

corners a series of elements in the form of ramps and 

tubes that serve as obstacles. The idea behind the first 

test is to assign the rover the task of going to a certain 

location next to one of the ramps and place the arm end 

effector on top of the terrain surface. Thereafter it is 

emulated an operation to cover the area with the end 

effector by sweeping it, and later the arm is retrieved 

and folded.  

To preserve the safety of the system, the same tests 

were also performed in simulation using MARS and 

the same component software. It was checked the 

implementation of the mobile manipulation 

component would behave as expected. Fig. 12b 

depicts a screenshot of the MARS environment with a 

virtual model of the terrain. This model was built 

thanks to the georeferenced images taken from a drone 

and later processed by the Pix4D software 

(https://www.pix4d.com). Moreover, the input DEM 

used to feed the MobileManipMap class was taken 

from this processing as well. For solving the 

localization problem, the position of the rover was 

obtained by means of an onboard differential GPS 

antenna. 

Fig. 13 presents some pictures showing the SherpaTT 

in action. After a few seconds processing the DEM and 

deliberating the plan, it proceeds to start moving. Its 

first action is to unfold the arm, which usually starts 

being at a predefined parking position. Thereafter the 

mobile platform performs Ackermann maneuvers that 

are combined with the continuous deployment of the 

arm. The rover reaches a position in which it stops, far 

enough from the goal location but at the same time 

close enough to ensure the arm can reach it. In the final 

step, the rover places the end effector on top of the goal 

location and starts carrying out a sweeping motion. 

Such motion serves to cover a certain area, which in 

turn results from all the uncertainty derived from all 

the accumulated errors. The main idea behind this is 

that by executing this sweeping motion we can ensure 

the arm tip will effectively be in contact with the 

(fictional in this case) sample. Then, the arm is safely 

retrieved and left in its initial parking configuration. 



 

 

 

(a) 

 

(b) 

  

(c) 

Figure 13:  First test done to check the proper 

functioning of the mobile manipulation software. 

 

The goal of the second test was to prove a hypothetical 

situation in which it is of great interest to deploy the 

arm on top of an obstacle. The main idea was to make 

the rover reach a position that the component would in 

nominal functioning consider as forbidden, but in fact 

would be reachable. In the current state of the 

component, the software would state that there would 

not exist any feasible plan since it does not allow the 

rover to get so close to an obstacle. For this particular 

case, the rover would stop in a place where for certain 

heading angles its wheels could collide with the 

obstacle element, so special care is needed for 

performing this operation. It is worth mentioning, we 

are not accounting for the reconfiguration capabilities 

of SherpaTT to modify its footprint but considering it 

as static. Therefore, we lay out this situation to justify 

the utilization of a workflow including the simulation 

tool to complement the Mobile Manipulation planning 

component.  

To effectively make the rover reach such a location, 

obstacles are not considered, i.e. the threshold values 

for slope and roughness mentioned in the previous 

section are not considered. This entails the problem of 

ensuring the rover's safety is not jeopardized. As 

stated, this is solved thanks to the use of the simulator: 

it serves to verify that the integrity of the rover would 

be in fact preserved. Fig. 14 shows how the rover 

manages to get quite close to the ramp, enough to be 

inadvisable to turn on the spot, i.e. turn with zero 

radius. The sweeping operation was slightly modified 

to make the end effector move at a higher height, on 

top of the ramp. 

(a)

(b)

(c) 

 

(d) 

Figure 14:  Second test where the plan produced 

allows the rover to get closer to the ramp. (a-c) It is 

simulated beforehand to identify the exact 

parametrization to be used on the operation (d). 



 

 

5 CONCLUSIONS 

This paper serves as an introductory text describing in 

an overall way the work we are carrying out in mobile 

manipulation for rovers. We have here explained how 

the Mobile Manipulation component is built, stressing 

the workflow created to plan and execute the 

coordinated motion of both rover and arm. This 

implementation is integrated within the H2020 ADE 

project autonomy software. Moreover, a special case 

in which the MARS simulation is involved to 

effectively carry out a risky task to make the rover get 

close to an obstacle is set out. A brief description of 

the two tests carried out in Bremen are also included. 

The first served to validate the current implementation 

of the software, while the second served to emulate a 

special case in which the simulation verifies the safety 

of the vehicle in a plan where the thresholds to 

determine obstacles are artificially removed. 

For the near future, it is foreseen that the 

implementation is further refined and tested. The final 

goal is to have a mobile manipulation component 

oriented to sample fetching missions, with the 

capability to autonomously reach a sample from 

relatively far in a single run, given the errors that may 

affect. Some improvements include determining the 

best position to reach the sample in energetic terms, as 

in similar research in the past [11], stressing the 

combined movement of arm and platform by seeing 

the manipulation as integral part of mobility and 

increasing the workspace considering the 

reconfigurable mobile base. Moreover, the arm could 

be used to enhance mobility by using it actively as a 

leg. 
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