
SPACE ROBOTICS SOFTWARE TESTING WITH THE HYBRID LOCOMOTION

ROVER SHERPATT AND A VALIDATION TOOLSET
Virtual Conference 19–23 October 2020

Raul Dominguez1, Florian Cordes1, Malte Wirkus1, Thomas Vögele1

11DFKI Robotics Innovation Center Bremen, Robert-Hooke-Str. 1, 28359 Bremen, Germany:

{name.surname}@dfki.de

ABSTRACT

The paper summarizes the experiences and recent de-

velopments in the context of robotics software and

hardware testing for space missions gathered by our

team at the DFKI Robotics Innovation Center in Bre-

men. In space robotics, two types of testing take tradi-

tionally place: offline and field testing. The robotic

platform SherpaTT and testing software which has

been used to evaluate the performance of components

developed by multiple institutions is presented. The

rover SherpaTT provides multiple sensors, advanced

mobility features and payload carriage capability, fea-

tures which meet the most common needs for these

tests. The validation software for development, inte-

gration, and performance analysis that we have devel-

oped targeting this type of testing is also described. Fi-

nally, gathered experiences in field testing on repre-

sentative environments are presented. Stable software

system is not just a requirement for space robotics [1]

but also gain massive importance in terrestrial fields

like rehabilitation [2] and even Human-Robot Interac-

tion [3].

1 INTRODUCTION

A cornerstone in the development of stable software is

thorough testing. The case of space robotics software

is an exemplary case: Complex software systems, of-

ten jointly developed by multiple institutions are inte-

grated, and their final quality must be accurately esti-

mated and demonstrated in order to defend the quality

in terms of robustness, efficiency and safety of the pro-

duced work.

Software testing in the robotics context can be divided

in two main parts: Offline (lab) testing and field test-

ing. In the context of the Strategic Research Cluster

(SRC) on Space Robotics Technologies funded by the

European Commission and guided by ESA and sev-

eral space agencies in the member states, more than

20 institutions were involved in software development

and both aspects of testing were covered. To support

extensive field testing of the technologies developed

in the first suite of interlinked R&D projects, the DFKI

Robotics Innovation Center in Bremen deployed the

SherpaTT (Figure 1). This hybrid-locomotion rover

was used as a platform to test and validate various soft-

ware- and hardware modules needed for the autono-

mous operation of a robotic rover on a planetary sur-

face. This included a general space-robot operating

system (developed in the SRC project “ESROCOS”),

software for autonomous trajectory- and mission plan-

ning (result of the SRC project “ERGO”), software for

perception and navigation (outcome of SRC project

“InFuse”), and also a standard interface for the con-

nection of physical space robot modules (the “SI-

ROM” interface).

After preliminary tests in the labs of DFKI in Bremen,

SherpaTT was shipped to Morocco for extensive field

tests in the Moroccan desert. To support the tests with

SherpaTT, a Validation Toolset was developed.

In this paper, Section 2 introduces the Rover Sher-

paTT, involved in field test activities since 2016. Sec-

tion 3 provides a description of the software involved

in the preparation and the execution of the field test

campaigns. Section 4 presents the latest field test ac-

tivity in the Dessert of Morocco and Section 5 con-

cludes the paper.

Figure 1 The SherpaTT Rover with the HCRU

engineered by DLR Institute of Robotics and

Mechatronics mounted during field tests in the

desert of Morocco.

2 SHERPATT

The robotic platform SherpaTT is a hybrid leg-

wheeled rover with outstanding performance in loco-

motion capabilities [4]. SherpaTT has been designed

to perform long traverses through unstructured, harsh

environments (e.g. rocky surfaces). On the perception

side, SherpaTT includes proprioceptive sensors (e.g.

force torque at each wheel mounting) which can be

used for state estimation and surface context identifi-

cation as well as exteroceptive sensors (e.g. cameras)

which can be used for environment reconstruction.

Furthermore, the system allows for the mechanical in-

tegration of middle-size external modules that can in-

crease computational, and sensing capabilities. In Fig-

ure 1SherpaTT is shown with a perception subsystem

mounted for testing in a mars analog mission used in

the project OG3-InFuse, in the follow-up project

OG10-ADE a larger module, the Avionics Box, was

mounted and is shown in Figure 4 (b).

The four-wheeled mobile robot is equipped with an ac-

tively articulated suspension system and a manipula-

tion arm. The five limbs of the system add up to 26

active Degree of Freedom (DoF) in total, five in each

of the four legs and six DoF in the manipulator arm.

Apart from the active suspension system, a modular

system approach with exchangeable Payload-Items

(PLIs) is a key feature of the rover. Figure 2 presents

a visual description of the hardware integrated in the

rover.

Altogether SherpaTT offers what is needed to pose the

required challenges for space robotics software and to

collect the correspondent ground truth data for poste-

rior accurate performance analysis.

3 VALIDATION SOFTWARE

Along with the rover, a comprehensive validation tool-

set aiming to assess the quality of the modules is under

development. The Validation Toolset comprises on

one hand a robotics simulator for planning and control

tests, and on the other hand a perception framework,

CDFF [5], which allows the replay of logged data for

perception and state estimation tests. On top of these

components, the Validation Toolset will perform auto-

matic analysis of virtual missions. The simulation en-

vironments were generated from analog sites, which

have been reconstructed with high level of accuracy

(up to 1cm/px) using images from drone surveys.

These environments are used also along with the

DGPS data captured onboard of the rover as ground

truth for the validation of the perception components.

Figure 2: Rover system overview with indication of components.

3.1 SherpaTT Software

In the last test campaign, project results from different

research projects were tested, each covering different

areas of robotics and thus demanding different require-

ments of the validation system SherpaTT. In OG2-

ERGO [6], for example, a robot autonomy control sys-

tem was tested, which includes functionalities such as

path and mission planning, guidance & control and de-

cision making, but does not take into account the pro-

cessing of sensor data for producing the map represen-

tations or localization capabilities that are needed to

this purpose. The tests of OG3-InFuse, on the other

hand, focused on the processing of specific sensor cur-

rents for mapping, object registration, recognition and

tracking as well as data storage and analysis. Finally,

OG1-ESROCOS tested a framework for the compo-

nent-based integration of robotics software.

Based on the requirements of these individual tests, a

set of software functionalities was provided for Sher-

paTT to complement the functionalities required for

the respective tests. While OG3 only required access

to various sensor data of the rover (D-GPS positioning,

LiDAR, IMU and cameras), as well as capabilities for

basic control of the robot (Motion Control System,

MCS) [4, 7] and the possibility to tele-operate the ro-

bot from remote, OG2 required additional functionali-

ties such as odometry, the creation of local and global

maps and self-localization1. For this purpose, we

mainly used existing software modules and integrated

them with the framework Rock [8].

For the execution of the software from OG2, which

was integrated by using ESROCOS [9], a separate PC,

the OBC, was provided. The HCRU also provided a

separate runtime environment for the software of

OG3. The SherpaTT-API was developed for the com-

munication between the hardware and software sys-

tems, which is explained in the following section.

3.2 SherpaTT API

Rover control is conducted by the Motion Control Sys-

tem (MCS) running in the Rock framework as de-

scribed in Subsection 3.1. The MCS is interfaced by

the modules to be tested through the SherpaTT API.

The API design consists of two parts, one being the

regular SherpaTT_API and one additional, Sher-

paTT_Sim_API, being used to interface components

mounted on the Rover System available initially only

through the Simulator. The second API will not be

1 SLAM3D Software: https://github.com/dfki-

ric/slam3d/

used during the field deployment to control of the core

hardware of rover, only its additions target of testing.

Figure 3 illustrates the API design. The SherpaTT_API

is used in both hardware as well as simulation usages.

It provides the basic commands and telemetry chan-

nels for/from the system.

SherpaTT_Sim_API is used to interface in simulation

with those components to be tested while the hardware

parts are not completed and integrated. The parallel

development of software and hardware has proven

helpful for refining the design mainly of the software.

The approach and parametrization that better suits the

system can be identified and once the hardware is

ready and integrated, the software requires only adapt-

ing the parametrization. Adaptations on the initial de-

sign of the hardware flow into the simulation and the

software that uses it gets directly affected.

3.3 Simulation

The software modules that are integrated in the simu-

lator are grouped into three categories: 1) components

which belong to core robotic simulation library

MARS2, 2) components that belong to the Rock frame-

work, for wrapping the Mars library and for the Mo-

tion Control of SherpaTT, and 3) SherpaTT_API.

Mars, the simulation software uses in its core the Open

Dynamics Engine (ODE) for the physics and the

graphics. Mars includes an extended robot model

loader, which takes a Universal Robot Definition For-

mat (URDF) robot model along with additional infor-

mation on the sensors and actuators to instantiate in

the simulation the correspondent rover. The model has

been developed using the open source plugin for

2 MARS (Machina Arte Robotum Simulans):

https://github.com/rock-simulation/mars

Figure 3 Layout of the SherpaTT API. The SherpaTT

Sim API is used in combination with the SherpaTT

API when using the simulation. For the final tests on

the rover, the SherpaTT Sim API is not used.

Blender Phobos [10], which allows for the design and

integration of the parts of the robot using a GUI.

All sensors and actuators are simulated. The sensors

include 5 cameras, four force-torque sensors, LIDAR,

IMU, GPS, and a thermal infrared camera. The avion-

ics box, which is mounted on SherpaTT for testing and

described in Section 2 has been integrated in the sim-

ulated model too. The resulting simulated rover is

shown in Figure 4 (a).

The infrared camera component is currently in its ini-

tial version, the temperature values are generated from

the real visual color values of the correspondent envi-

ronment. Therefore, they are not realistic, but the pro-

duced values are in the range of values expected by the

software that consumes them. So that a minimal level

of integration is possible. In later iterations, more real-

istic temperature values are envisioned by either in-

creasing the complexity of the simulated environment

to include temperature or using Deep Learning for the

generation of the simulated thermal images from nor-

mal images.

3.4 Simulation Modes

In the project OG10-ADE the Simulator is integrated

in the Ground Control Station (GCS) for two reasons:

Validation of software and on mission operation vali-

dation. These two use cases or modes share in its core,

the same interaction routine between the operator and

the simulation which is depicted in Figure 5. Basically,

the GCS operator commands the simulated robot as

the rover on a mission would be commanded, observes

the behavior, and runs further operations or closes the

simulator. The goal is to identify problems and to com-

pare potential software improvements.

The Simulation Mode 1 (S1), is used for the integra-

tion and testing of the software from the different part-

ners. S1 has the goal of identifying potential failures

caused by errors in the code (bugs) as well for estimat-

ing the performance depending on different parame-

ters values. In Figure 6 (a), the process of launching a

simulation of type S1 is presented. For this feature to

be complete the Avionics Box simulation model was

produced and integrated with the SherpaTT rover

model, SherpaTT_API was adapted, the simulated

force torque sensors improved, the ground control ad-

aptation checked with the improved force torque sen-

sors and the new sensors (different cameras) and com-

mands (PTU commands) were integrated.

The simulation mode S2 has the goal of identifying the

potential outcome of an activity during a mission. This

type of simulation is triggered by the operator on the

Figure 5 Workflow of interactions between the user

and the Rover Simulator in OG10-ADE.

Figure 4 (a) Starting from the CAD model design and
the mechanical integration plan, the simulation

model was generated and integrated with the robot

model of SherpaTT.(b) After testing in simulation, the

hardware module was produced and integrated.

GCS when the particular outcome of an activity during

the mission shall be validated before execution using

the available fused data generated by the robot. In Fig-

ure 6 (b) the process of generating and running a sim-

ulation based on the data of the mission and the data

collected by the robot is depicted as an activity dia-

gram. For this feature to be available, the simulation

core must be adapted to deal efficiently with the envi-

ronment representation that the robot produces (regis-

tered pointcloud). Also, the interfaces to obtain from

the rover in the GCS the map, position and pose must

have to be implemented and tested.

In the GCS the status of all joints of the rover are re-

trieved through the SherpaTT_API, the position esti-

mation and the DEM or registered pointcloud from the

OG3 module. Once this data is received, a component

merges the orbital map stored in the DataProductMan-

ager with the received DEM or registered pointcloud

from OG3 and updates a robot state graph using the

joint positions and the robot model. Finally, this class

will provide these products (robot graph and fused en-

vironment representation) to the simulation.

3.5 Simulation of representative environments

Using the data collected by drone surveys (provided

by ESA) on 4 different sites, correspondent simulation

environments have been designed. The process in-

volved the use of several open source libraries such as

PDAL (for processing of the original point clouds),

GDAL (for processing of the rasters that are used by

the simulation) and other image processing tools and

MARS plugins to ensure that the surfaces visual and

physical dimensions of the simulation match and that

simulated interaction between these and the rover are

realistic enough to be useful for testing.

The four environments which have been developed

are: 1) A first Morocco environment, where tests of

OG2 and OG3 were performed, 2) A second Morocco

environment, where data collection in OG3 was per-

formed, 3) The environment of Colmenar where the

first field test of the project is planned and 4) The en-

vironment of Fuerteventura, where the final field test

will be performed. Figure 7 shows some of the men-

tioned environments, with the simulated rover in it.

3.6 Common Data Fusion Framework Develop-

ment

For the validation of data fusion components, testing

with data from field tests or even space missions are

preferable to testing with synthetic data generated

from the simulator. Since the data fusion components

do not execute actions that affect the environment or

the rover, there is no need to have a physical simulator

engine supporting these interactions. For these reasons

a replay mechanism, that can be connected to the data

fusion modules is preferable. In the project OG3, such

Figure 6 (a) Workflow of simulation mode S1. The user selects the specific simulation to be started. Each different

simulation is characterized by an environment a robot model and several other parameters set to specific values. (b)

Workflow of simulation mode 2. The user selects the option Generation Simulation which triggers the generation of

a running simulation based on the information available to the robot about the environment and its location in it.

mechanism was developed and tested and in OG10 it

is as well been used.

The replay mode consists of the generation of data

streams from existent logs so that software compo-

nents can be connected to the streams and simulate a

real execution. This process facilitates the debugging

and evaluation of the components connected. Because

the input data comes from field tests or past missions,

it is highly realistic. It is worth noticing, that the replay

mode is particularly suited for evaluating the perfor-

mance of perception components and not for control-

ling or planning components. A useful feature to im-

plement that makes use of logs from components is the

automatic post processing of the logs for performance

analysis.

The implementation of the connection of OG3 mod-

ules to replay sensor data streams is done using and

extending the features implemented in the Develop-

ment tools of the Common Data Fusion Framework

software of OG3. The datasets produced are converted

to an intermediate format (message packs) and then

loaded in Python PANDAS data frames. These data

structures can be then replayed and connected to the

python wrapped OG3 components. The data products

of the OG3 components, as well as the input data that

these receive can be visualized. In addition, bench-

marking software will provide insights on the compu-

tational requirements of the components.

3.7 Validation Toolset

To ease the process of evaluating the control and per-

ception software capabilities and to help identifying

errors in the earliest stage possible, a validation toolset

will be implemented. The software will provide a da-

tabase in which to register: 1) the logs captured, 2) the

simulation environments, 3) the missions that can be

performed in these environments, 4) the tests scripts

which launch such simulated missions as well as test

scripts to launch replay-based tests, and 5) the results

of such tests.

An initial database Entity-Relationship model diagram

is provided in Figure 8. The results will be generated

automatically thanks to the supervision tools, but they

can be extended by a human user.

The development of the toolset will be done inde-

pendently of the other components of ADE to be able

to demonstrate its functionality before the other soft-

ware components are available. Its application will be

limited to navigation functions and perception compo-

nents. To provide a good evaluation of the simulated

rover in terrain with different characteristics, separated

tests with various inclinations will be included.

Logs from previous field test will be integrated for per-

formance evaluation of the perception components

and simulation environments based on ground truth

maps too. Finally, the scripts to launch the different

tests, produce and store the results will as well be in-

cluded, so that the whole process of performing a full

analysis of a system can be automatically launched.

In order to produce a valuable automatic performance

analysis of the execution of a mission in simulation,

supervision software will be developed to collect per-

formance information during execution. These are

some examples of the information which will be col-

lected: duration of the execution mission, deviation

between planned trajectories and executed trajectories,

error in the localization, failure in the traverse of a path

and collisions between arm and other parts of the ro-

bot. In addition to this, it will be pursued to detect

Figure 7 Simulation environments produced from

drone-survey generated point clouds. The simulated

environments correspond to places were field tests

were or will be performed in the context of the OGs.

cases of slippage, blockage, collisions, and reorienta-

tion events.

Validation against ground truth makes more sense in-

deed using the replay mechanism than the simulation.

In that case, the ground truth is GPS, to validate posi-

tion estimation. The simulation-based validation tests

make more sense for analysis of the performance of a

mission. There, a complete trajectory can be executed

with different parametrizations and the comparison

between parameter sets can be produced. Once the tool

is developed it can be used in upcoming projects also

to compare the performance of different versions of

the navigation stack.

4 FIELD TESTS

From the beginning, the R&D project initiated as part

of the Strategic Research Cluster on Space Robotics

Technologies had a strong focus on field-testing of

software and hardware. Although analogue missions

on Earth will never be able to simulate the full spec-

trum of environmental conditions encountered on ex-

traterrestrial planetary surfaces, they still provide a

valuable – and probably the best currently available -

tool to put both software and hardware to the test. The

benefit of such missions is that they are able to evalu-

ate how not only individual SW and HW modules, but

also fully integrated systems can cope with the chal-

lenges imposed by realistic operating conditions. Only

full-scale field testing can reveal conceptual flaws and

potential problems of the robotic system interacting

with a complex, unstructured and un-controlled natu-

ral environment.

To test the results of the OG2 and OG3 projects, ex-

tensive field tests were organized in November and

December 2018 in a desert region in south-eastern

Morocco. The site was chosen because the natural to-

pography is similar to the topography of some regions

on Mars and because the climatic conditions in Mo-

rocco are favorable of outdoor tests. In addition, the

touristic infrastructure available in this part of Mo-

rocco proved to be of great value for the logistics of

the mission and the Moroccan authorities exhibited a

generally positive and supportive attitude towards the

project.

The main objective of the Morocco analogue mission

was to prove that the OG2 and OG3 software modules

were able to support a fully autonomous long-distance

traverse of a planetary rover in difficult terrain. The

Figure 8 Design of the Validation Toolset database. A database and the correspondent management layer will be
implemented to maintain and automatically launch the different tests based on simulated missions or replayed da-

tasets.

SherpaTT rover was used as a hardware platform in

the tests. The tests were successful as the SherpaTT,

guided by OG2 and OG3 software, was ultimately able

to cover in fully autonomous mode a distance of more

than 1,6 km.

5 CONCLUSION

Development and testing of space robotics software

involves the following: 1) Robust and reliable robotic

systems to perform the physical tasks aimed to be con-

trolled by the tested software, 2) Reliably working

software to guarantee the requirements on which the

software to be tested requires (e.g. locomotion is re-

quired for autonomous navigation), 3) Tools for accel-

erating the development and the optimization and 4)

Planetary analog environments where to demonstrate

the capabilities and identify limitations. This docu-

ment has presented how these four elements have been

successfully provided for testing in several projects.

 The robotic system SherpaTT, its integrated software

with all requirement for testing autonomy and percep-

tion software, the simulator -for developing and on

mission testing- and the tools for development using

logged datasets have been presented. Furthermore, the

ongoing development of the Validation Toolset, an ad-

ditional component to validate through automatic reg-

ular testing in virtual mission and with dataset from

previous field missions, has been presented. Finally,

the last test campaigns where a representative environ-

ment was selected and in which the rover SherpaTT

satisfied all requirements for the final tests was pre-

sented.

Acknowledgement

We would like to thank the European Commission and

the members of the PERASPERA program support ac-

tivity for their support and guidance in the ADE activ-

ity. This project has received funding from the Euro-

pean Union’s Horizon 2020 Research and Innovation

program under Grant Agreement No 821988.

References

[1] Locomotion modes for a hybrid wheeled-leg plan-

etary rover. Cordes F., Dettmann A., Kirchner F. In

Proceedings of the IEEE International Conference on

Robotics and Biomimetics, pages 2586-2592 (2011)

[2] The capio active upper body exoskeleton and its

application for teleoperation. Mallwitz M., Will N.,

Teiwes J., Kirchner E.A. In Proceedings of the 13th

Symposium on Advanced Space Technologies in Ro-

botics and Automation. ESA/Estec Symposium on

Advanced Space Technologies in Robotics and

Automation (ASTRA-2015), Noordwijk, European

Space Agency (ESA) (2015).

[3] Intrinsic interactive reinforcement learning - Us-

ing error-related potentials for real world human-ro-

bot interaction. Kim, S.K., Kirchner, E.A., Stefes, A.,

Kirchner F. Sci Rep 7, 17562 (2017).

https://doi.org/10.1038/s41598-017-17682-7

[4] Design and Field Testing of a Rover with an Ac-

tively Articulated Suspension System in a Mars Analog

Terrain. Cordes F., Kirchner F, Babu A. In Journal of

Field Robotics, Wiley, volume 35, number 7, pages

1149-1181 (2018).

[5] Common Data Fusion Framework: An open-

source Common Data Fusion Framework for space

robotics. Dominguez, R., Post, M., Fabisch, A.,

Michalec, R., Bissonnette, V., & Govindaraj, S. Inter-

national Journal of Advanced Robotic Systems (2020).

[6] The ERGO framework and its use in planetary/or-

bital scenarios. Ocón, J., Colmenero, F., Estremera, J.,

Buckley, K., Alonso, M., Heredia, E., Schach, A. In

Proceedings of the 69th International Astronautical

Congress (IAC) (2018).

[7] Static Force Distribution and Orientation Control

for a Rover with an Actively Articulated Suspension

System. Florian Cordes, Ajish Babu, Frank Kirchner.

In Proceedings of the 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems,

(IROS-17), 24.9.-28.9.2017, Vancouver, BC,

IEEE/RSJ (2017).

[8] Modular Software for an Autonomous Space

Rover. Sylvain Joyeux, Jakob Schwendner, and

Thomas M. Roehr. In Proceedings of the 12th Interna-

tional Symposium on Artificial Intelligence, Robotics

and Automation in Space (i-SAIRAS 2014), Montreal,

Québec, Canada (2014).

[9] ESROCOS: Development and Validation of a

Space Robotics Framework. Miguel Munoz Aracon,

Malte Wirkus, Kilian Hoeflinger, Nikolaos Tsiogkas,

Saddek Bensalem, Olli Rantanen, Daniel Silveira, Je-

rome Hugues, Mark Shilton, Herman Bruyninckx. In

Proceedings of the 15th Symposium on Advanced

Space Technologies in Robotics and Automation (AS-

TRA 2019), (ASTRA-2019), 27.5.-28.5.2019, Noord-

wijk, European Space Agency (ESA) (2019).

[10] Phobos: A tool for creating complex robot mod-

els. von Szadkowski et al. Journal of Open Source

Software, 5(45), 1326 (2020)

